
mathematics

Article

Gain-Preserving Data-Driven Approximation of the Koopman
Operator and Its Application in Robust Controller Design

Keita Hara and Masaki Inoue *

����������
�������

Citation: Hara, K.; Inoue, M.

Gain-Preserving Data-Driven

Approximation of the Koopman

Operator and Its Application in

Robust Controller Design.

Mathematics 2021, 9, 949. https://

doi.org/10.3390/math9090949

Academic Editors: Alexandre Mauroy,

Yoshihiko Susuki and Igor Mezic

Received: 24 March 2021

Accepted: 22 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, Kanagawa 223-8522, Japan; reds@z3.keio.jp
* Correspondence: minoue@appi.keio.ac.jp; Tel.: +81-045-566-1567

Abstract: In this paper, we address the data-driven modeling of a nonlinear dynamical system while
incorporating a priori information. The nonlinear system is described using the Koopman operator,
which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the
L2 gain of the system is known, the data-driven finite-dimensional approximation of the operator
while preserving information about the gain, namely L2 gain-preserving data-driven modeling, is
formulated. Then, its computationally efficient solution method is presented. An application of the
modeling method to feedback controller design is also presented. Aiming for robust stabilization
using data-driven control under a poor training dataset, we address the following two modeling
problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant
system to derive the plant model; (2) Backward modeling: L2 gain-preserving data-driven modeling
is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller
composed of the plant and inverse models is created based on internal model control, and it robustly
stabilizes the plant system. A design demonstration of the data-driven controller is provided using a
numerical experiment.

Keywords: Koopman operator; data-driven modeling; data-driven control; robust control; internal
model control

1. Introduction

In recent years, data-driven modeling of dynamical systems has become an active
and central theme in various research communities such as dynamical systems theory [1],
control engineering [2], etc. The main aims of this modeling are to understand, analyze,
and control the dynamical system in an efficient and reliable manner. To further improve
the efficiency and reliability, there have been many trials on data-driven modeling while
incorporating a priori known information on the dynamical system. Some examples
of the a priori known information include the properties of linear dynamical systems
such as stability [3], dominant eigen-mode [4,5], steady-state response [6,7], passivity [8,9],
frequency response [10], system moment [11], etc. The general aim of this paper is to
extend data-driven modeling techniques utilizing such a priori known information for
linear systems to nonlinear system modeling. In particular, we address the problem of data-
driven modeling of nonlinear dynamical systems while incorporating the input–output
gain of dynamical systems, which plays central roles in robustness analysis and robust
controller design [12].

The Koopman operator is a linear operator defined on the lifted infinite-dimensional
state-space and is utilized for analyzing complex dynamical systems. Motivated by its
high ability to express nonlinearity, data-driven finite-dimensional approximation of the
operator has been studied and applied not only in system analysis [13–15] but also in
control system design [16–26]. In this paper, a nonlinear dynamical system is described
using the Koopman operator, and its data-driven approximation is addressed. Assuming
that the input–output gain of the system is available in addition to system operating data,
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the data-driven approximation of the Koopman operator while preserving information on
its gain, namely gain-preserving data-driven modeling, is formulated. Then, an efficient
method for resolving the problem is presented based on the work of References [15,27].

The modeling method is applied to data-driven feedback controller design based on
internal model control (IMC [28,29]). IMC is a model-based control technique in which
a plant model is directly embedded as part of the controller. Since IMC is compatible
with data-driven modeling, there have been various work on data-driven IMC design.
See, for example, the work in References [30–33]. The main drawback of conventional
data-driven IMC is the fragility of the controlled system. There inevitably exists a modeling
error in the plant model that may cause performance degradation and destabilization of
the controlled system, in particular, when rich data is not available for modeling. In this
paper, we address the data-driven design of a robust and reliable controller based on IMC
in the following manner. First, we address forward modeling of the plant: a data-driven
modeling method is applied to the operating data of a plant system to derive the plant
model as an approximated Koopman operator. Secondly, we address backward modeling of
the plant: gain-preserving data-driven modeling is applied to the same data to derive an
inverse model of the plant system. Then, the two models are used to form an IMC-based
feedback controller that robustly stabilizes the plant system.

The remaining parts of this paper are organized as follows. In Section 2, we review the
theory on the Koopman operator, the stability concept for input–output dynamical systems,
and IMC. Section 3 is devoted to the gain-constrained data-driven approximation of the
Koopman operator. The approximation problem is formulated, and a numerically efficient
algorithm is presented. In Section 4, the gain-constrained approximation is applied to the
IMC design, and robust stabilization of the overall control system is achieved. Section 5
shows a demonstration of the proposed data-driven robust IMC.

Notation: ‖M‖F represents the Frobenius norm of matrix M. In addition, He(N)
represents He(N) = N + N> for square matrix N. The positive and negative definiteness
of matrix M are denoted by M � 0 and M ≺ 0, respectively.

2. Preliminaries
2.1. Koopman Operator and Its Data-Driven Approximation

In this subsection, we consider a nonlinear dynamical system described by the discrete-
time state equation:

S :
{

x(k + 1) = f (x(k), u(k)),
y(k) = g(x(k)),

(1)

where k is the discrete time, x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rl is the output,
and f (·) : Rn+m → Rn and g(·) : Rn → Rl are the nonlinear functions. Nonlinear system
S is expressed by the Koopman operator, and its data-driven approximation is stated.

2.1.1. Koopman Operator

Let z denote the extended state:

z :=
[

x
u

]
∈ Rn+m,

we define nonlinear operator F by

F (z) :=
[

f (x, u)
T (u)

]
,

where T is the time-shift operator:

T (u(k)) := u(k + 1).
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Then, the time evolution of z is described by

z(k + 1) = F (z(k)).

Now, we introduce the Koopman operator. To this end, let φinf(z) denote the infinite-
dimensional lifting function described by

φinf(z) =

 φ1(z)
φ2(z)

...

.

Then, the Koopman operator, denoted by K, is defined as

K(φinf(z)) := φinf(F (z)).

The time evolution of φinf(z) follows:

φinf(z(k + 1)) = K(φinf(z(k))). (2)

Note that the Koopman operator is a linear operator defined on the infinite-dimensional
lifted state space, while expressing the nonlinear dynamics described by (1). Figure 1 pro-
vides a sketch of nonlinear operator F on the state space and Koopman operator K on the
lifted state space.

Lifting

: Nonlinear operator

State-space on Lifted state-space on  

: Linear operator

(finite) (infinite) 

Figure 1. Nonlinear operator F on state space and Koopman operator K on lifted state space.

2.1.2. Approximation of the Koopman Operator

Due to its infinite-dimensionality, the Koopman operator is not tractable for numerical
analysis, simulation, and system design. In this subsection, the finite-dimensional approxi-
mation of the operator is addressed. To this end, we define Nφ-dimensional lifting function
φ(z) : Rn+m → RNφ as

φ(z) =

 φ1(z)
...

φNφ
(z)

 ∈ RNφ .

Furthermore, we let A ∈ RNφ×Nφ be a finite-dimensional matrix that approximates
operator K. In other words, A is found such that ‖Aφ(z)− φ(F (z))‖ is sufficiently small
for some normal sense. With this A, we have the following expression:

φ(z(k + 1)) ≈ Aφ(z(k)), (3)

which approximately expresses the time evolution of φinf(z(k)), described in (2).
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We address the data-driven approximation of K, i.e., the estimation of A using the
data of time sequence {z(k)}. In particular, we aim to construct an input-linear model that
approximates (3). To this end, we further specialize the class of lifting function φ(z) in the
following form:

φ(z) =
[

ψ(x)
u

]
∈ RN+m,

where ψ(x) : Rn → RN is the N-dimensional lifting function given by

ψ(x) =

 ψ1(x)
...

ψN(x)

 ∈ RN ,

and N + m = Nφ holds. Let matrix A be partitioned as

A =

[
A B
∗ ∗

]
∈ R(N+m)×(N+m),

where A ∈ RN×N and B ∈ RN×m. It follows from (3) that the the time-evolution of ψ(x) is
expressed by

ψ(x(k + 1)) ≈ Aψ(x(k)) + Bu(k).

In addition, we address the approximation of the output equation in (1) by

y(k) ≈ Cψ(x(k)),

where C ∈ Rl×N . For simplicity of notation, we let ψ(k) = ψ(x(k)). Then, we obtain the
lifted state-space equation defined on the functional space as

Skoop :
{

ψ(k + 1) = Aψ(k) + Bu(k),
y(k) = Cψ(k).

(4)

Model Skoop of (4) approximately expresses the input–output behavior generated by
nonlinear system S . In this paper, model Skoop is called the “Koopman model”. This paper
addresses the data-driven modeling of Skoop by estimating system matrices (A, B, C).

2.1.3. Data-Driven Approximation of Koopman Operator

For simplicity of notation, we define the following data matrices based on the se-
quences of the input, output, and state of system S .

Uk := [u(k) u(k + 1) · · · u(k + M− 1)] ∈ Rm×M,

Yk := [y(k) y(k + 1) · · · y(k + M− 1)] ∈ Rl×M,

Ψk := [ψ(k) ψ(k + 1) · · · ψ(k + M− 1)] ∈ RN×M,

Ψk+1 := [ψ(k + 1) ψ(k + 2) · · · ψ(k + M)] ∈ RN×M.

It should be noted that Ψk and Ψk+1 are constructed by using the measured data
on the state, denoted by {x(k), . . . , x(k + M)} through ψ(k) = ψ(x(k)). The problem of
data-driven Koopman modeling is formulated as follows.

Problem 1. Given data matrices (Uk, Yk, Ψk, Ψk+1), we solve the following optimization problem:

min
A,B,C

J(A, B, C),
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where J(A, B, C) is given by

J(A, B, C) =
∥∥∥∥[ Ψk+1

Yk

]
−
[

A B
C 0

][
Ψk
Uk

]∥∥∥∥2

F
. (5)

The solution to Problem 1 is denoted by (A†, B†, C†), which are estimates of the system

matrices. It is assumed that
[
Ψ>k U>k

]>
is of full row rank, which is a natural assumption

when rich data are available for modeling. Then, (A†, B†, C†) are uniquely determined.

2.2. L2 Stability
2.2.1. Definition of L2 Stability

In this subsection, we consider an input–output dynamical system such as system S
of (1) and define the stability. The concept of the stability of input–output systems can be
seen in the pioneering work [34]. In the following definitions, {u}k

0 denotes input sequence
{u(0), u(1), . . . , u(k)}.

Definition 1. Consider input–output system y = Su. Then, system S is said to be L2 stable if
there is positive constant γ ∈ R+ such that inequality

k

∑
τ=0

y(τ)>y(τ) ≤ γ
k

∑
τ=0

u(τ)>u(τ), ∀{u}k
0 ∈ L2, ∀k ∈ Z+ (6)

holds.

Definition 2. Suppose that input–output system y = Su is L2 stable. Then, the L2 gain of S is
defined as

‖S‖L2 := sup
{u}k

0∈L2

√√√√ k

∑
τ=0

y(τ)>y(τ)
u(τ)>u(τ)

.

L2 stability, given in Definition 1, can be said to be “finite-gain” L2 stability in a clearer
manner. Characterization of the L2 gain for the Koopman model Skoop of (4) is given in the
following lemma. See, for example, the book in Reference [35] for details of its proof.

Lemma 1. The following statements (i) and (ii) are equivalent.

(i) ‖Skoop‖L2 ≤ γ holds.

(ii) There exists symmetric matrix P such that the following inequalities hold.

P � 0, (7)[
A B
I 0

]>[ P 0
0 −P

][
A B
I 0

]
+

[
C>C 0

0 −γ2 I

]
≺ 0. (8)

2.2.2. Stability Analysis for Feedback System

Stability analysis of the feedback systems is addressed in this section. We consider two
input–output systems yi = Siui, i ∈ {1, 2} and their feedback connection, which is denoted
by FB(S1,S2) and illustrated in Figure 2. Then, the following lemma states the condition for
L2 stability of the feedback system. See, for example, the work in Reference [34] for details.
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Figure 2. Negative feedback interconnection of subsystems Si, i ∈ {1, 2}.

Lemma 2. Suppose that systems yi = Siui, i ∈ {1, 2} are L2 stable with L2 gain γi, i ∈ {1, 2},
respectively. In other words, ‖Si‖L2 = γi, i ∈ {1, 2} hold. Then, feedback system FB(S1,S2)
illustrated in Figure 2 is L2 stable from (r1, r2) to (y1, y2) if

γ1γ2 < 1 (9)

holds.

Note that, in the lemma, any detailed model of subsystems Si, i ∈ {1, 2} such as the
state-space model is not required for the stability analysis. The lemma plays an essential
role of developing theory and applications of robust control. See, for example, the work in
Reference [12].

2.3. Internal Model Control

In this subsection, a feedback controller design called internal model control (IMC) is
addressed. IMC is a model-based control technique and provides an effective, intuitive,
and simple framework for analysis of the control system performance. See, for example,
the pioneering works [28,29]. The structure of IMC is shown in Figure 3. In the figure,
system y = Pu is a nonlinear plant system to be controlled. Although the realization of
P can be given by a state-space model such as S of (1), the discussion in this subsection
is independent on system realization. System ym = PMu is a model of plant system P ,
and system Q is a filter to be designed. As illustrated in the figure, the positive feedback
connection of PM and Q constitutes a controller. In the IMC scheme, the modeling error
evaluated by the output of P and PM is fed back into the system. Then, the error is filtered
by Q to generate control input u as

u = Q(r− (y− ym)).

The overall control law is described by

u = (I −QPM)−1Q(r− y).

Some propositions for IMC are given as follows.

Proposition 1. Suppose that PM = P holds and that P and Q are L2 stable. Then, the overall
control system in Figure 3 is L2 stable from r to y.

Proposition 2. Suppose that PM = P holds, that P is invertible, and that P and its inversion
P−1 are L2 stable. Then, letting Q = P−1

M , the overall control system in Figure 3 is perfectly
controlled, i.e., y(k) = r(k), ∀k holds.

Remark 1. As implied in Proposition 2, the optimal design of filter Q is the inversion of plant
model PM. In the case that plant model P contains non-minimal phase elements, such as time
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delays and unstable zeros, the controller based on inverse model P−1
M is not realizable. To address

this issue, a low-pass filter F is attached to inverse model P−1
M such that filter Q = FP−1

M becomes
(bi) proper and stable. Then, the controller composed of plant model PM and Q stabilizes the overall
control system and achieves a high control performance. See the work in Reference [36] for more
details.

Figure 3. A sketch of the feedback control system by IMC.

3. Result 1: L2 Gain-Preserving Data-Driven Modeling

In this section, we address the problem of data-driven modeling while preserving the
L2 gain for nonlinear dynamical systems. The result of this section is derived and refined
based on the work by the authors of [15].

3.1. Problem Setting

In the setting, we assume that the L2 gain of the system in Equation (1) is known
and available for modeling. Then, the gain information is incorporated into the data-
driven model. The L2 gain-preserving modeling problem of the Koopman model Skoop is
formulated as follows.

Problem 2. Given a positive constant γ and data matrices (Uk, Yk, Ψk, Ψk+1), we solve the
following optimization problem:

min
P,A,B,C

J(A, B, C)

sub to (7), (8).

From Lemma 1, any feasible solution (A, B, C) generates a Koopman model Skoop
satisfying ‖Skoop‖L2 ≤ γ. Note that constraint (8) is non-convex in decision variables
(P, A, B, C) and that Problem 2 is not numerically tractable. To overcome this draw-
back, the problem is approximated to a convex one and an approximation of optimizer
(P∗, A∗, B∗, C∗) is found in a computationally efficient manner.

3.2. Convex Approximation of Problem 2

By applying the change in variables technique proposed in the work of Reference [9],
inequality (8) is reduced to a linear matrix one as follows. Firstly, inequality (8) is equivalently
expressed by

[
P 0
0 γ2 I

]
−
[

A B
C 0

]>[ P 0
0 I

][
A B
C 0

]
� 0. (10)
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Note that P � 0 and P = PP−1P hold. Then, applying the Schur complement to (10),
it follows that 

[
P 0
0 γ2 I

] [
A>P C>

B>P 0

]
[

PA PB
C 0

] [
P 0
0 I

]
 � 0 (11)

holds.
Secondly, we let

M = PA, N = PB (12)

to reduce (11) to inequality 
P 0 M> C>

0 γ2 I N> 0
M N P 0
C 0 0 I

 � 0, (13)

which is linear in decision variables (P, M, N, C) and numerically tractable. Note here that the
solution to (8) is reconstructed from that to (13) by letting (P, A, B, C) =

(
P, P−1M, P−1N, C

)
.

This implies that non-convex constraint (8) is equivalently reduced to a convex one (13).
There is another drawback caused by the variable change in (12). Noting that J(A, B, C) =

J(P−1M, P−1N, C), the cost function is no more convex in decision variables (P, M, N, C).
Therefore, the problem of minimizing J(P−1M, P−1N, C) subjected to (7) and (13) is still non-
convex. In the following, we address the approximation of the non-convex problem into
a convex one. To this end, we introduce matrix W into J(A, B, C) to define the weighted
cost function:

JW(A, B, C) =
∥∥∥∥[ W 0

0 I

]([
Ψk+1

Yk

]
−
[

A B
C 0

][
Ψk
Uk

])∥∥∥∥2

F
.

Further letting W = P and noting M = PA and N = PB, we obtain

JW(A, B, C) =
∥∥∥∥[ P Ψk+1

Yk

]
−
[

M N
C 0

][
Ψk
Uk

]∥∥∥∥2

F
=: JW(P, M, N, C).

Function JW(P, M, N, C) is convex in matrices (P, M, N, C). The minimization problem
of JW(P, M, N, C) under inequalities (7) and (13) is in the class of the convex optimization.
The optimization problem is summarized as follows.

Problem 3. Given a positive constant γ and data matrices (Uk, Yk, Ψk, Ψk+1), we solve the
following optimization problem:

min
P,M,N,C

JW(P, M, N, C)

sub to (7), (13).

Letting
(

P̂, M̂, N̂, Ĉ
)

be the optimizer of Problem 3, we have the following system
matrices: (

Â, B̂, Ĉ
)
=
(

P̂−1M̂, P̂−1N̂, Ĉ
)

. (14)

We have the following proposition for the Koopman model with
(

Â, B̂, Ĉ
)
.
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Proposition 3. Suppose that Problem 3 is feasible and that the system matrices are given by (14).
Then, quadruplet

(
P̂, Â, B̂, Ĉ

)
is the “feasible” solution to Problem 2. In other words, the Koopman

model Skoop with
(

Â, B̂, Ĉ
)

is L2 stable and ‖Skoop‖L2 ≤ γ holds.

Note that the proposition does not state that system matrices given in (14) are the
optimizer to Problem 2. In general,

(
P̂, Â, B̂, Ĉ

)
is conservative for Problem 2. In the

following subsection, we aim to reduce the conservativeness.

3.3. Sequential Convex Approximation of Problem 2

In this subsection, we give an efficient solution to Problem 2 based on the overbound-
ing method, which is proposed by the work [27]. Assuming that some initial estimate
of the solution is available, the method gradually reduces the conservativeness of the
approximated solution generated by Problem 3.

Suppose that the feasible solution to Problem 2, denoted by (P, A, B, C) = (P0, A0, B0, C0),
is obtained. An example of the feasible solution includes the solution to Problem 3. Then,
we try to update the “initial estimate” (P0, A0, B0, C0) to obtain a less conservative solu-
tion, i.e., to reduce the value of J(A, B, C). First, we let decision variable (P, A, B, C) be
decomposed as

P = P0 + ∆P, A = A0 + ∆A, B = B0 + ∆B, C = C0 + ∆C.

Furthermore, we let G and H be additional decision variables. Then, we define the
inequality condition described by

He





Q(∆P, ∆A, ∆B, ∆C)

 0 0[
∆P 0
0 0

]
0

 0

0 −G G

−H

 [
∆A ∆B
∆C 0

]
0

0 0

 0 −H




≺ 0, (15)

where Q(∆P, ∆A, ∆B, ∆C) is given by

Q(∆P, ∆A, ∆B, ∆C)

= −1
2


[

P0 + ∆P 0
0 γ2 I

]
0

0
[

P0 + ∆P 0
0 I

]
−

 0 0[
P0 A0 P0B0

C0 0

]
0



−

 0 0[
∆PA0 ∆PB0

0 0

]
0

−
 0 0[

P0∆A P0∆B
∆C 0

]
0

. (16)

We have the following proposition.

Proposition 4. Suppose that (15) holds. Then, letting (P, A, B, C) = (P0 + ∆P, A0 + ∆A, B0 +
∆B, C0 + ∆C), it holds that (8).

The proposition is straightforwardly derived based on the work in Reference [27], and
therefore, the proof is omitted in this paper.

It should be noted that (15) is linear in (∆P, ∆A, ∆B, ∆C, G). This implies that, for any
fixed H, (15) is convex and numerically tractable.
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Recall J(A, B, C) of (5) to obtain the following expression:

J(A0 + ∆A, B0 + ∆B, C0 + ∆C) =
∥∥∥∥[ Ψk+1

Yk

]
−
[

A0 + ∆A B0 + ∆B
C0 + ∆C 0

][
Ψk
Uk

]∥∥∥∥2

F
.

Then, the problem of finding (∆P, ∆A, ∆B, ∆C, G) that minimizes J(A0 + ∆A, B0 +
∆B, C0 + ∆C) under the constraint of (15) based on the initial estimates (P0, A0, B0, C0) is
stated as follows.

Problem 4. Given a positive constant γ; data matrices (Uk, Yk, Ψk, Ψk+1); a feasible solution to
Problem 2, denoted by (P0, A0, B0, C0); and a real matrix H, we solve the optimization problem:

min
∆P,∆A,∆B,∆C,G

J(A0 + ∆A, B0 + ∆B, C0 + ∆C)

sub to P0 + ∆P � 0,

(15).

Letting (∆P̄, ∆Ā, ∆B̄, ∆C̄) be the optimizer to Problem 4, we define the following:

P̄ = P0 + ∆P̄, Ā = A0 + ∆Ā, B̄ = B0 + ∆B̄, C̄ = C0 + ∆C̄. (17)

It should be emphasized here that (P̄, Ā, B̄, C̄) of (17) is a less conservative solution to
Problem 2 than any initial estimate (P0, A0, B0, C0). This fact is mathematically stated in the
following proposition. To make the notation on the optimal solutions to Problems 2–4 clear,
Table 1 is provided for the benefit of the readers.

Table 1. Notation of optimal solutions.

Problem Optimal Solution

Problem 2 (P∗, A∗, B∗, C∗)
Problem 3

(
P̂, M̂, N̂, Ĉ

)
⇔
(

P̂, Â, B̂, Ĉ
)

Problem 4 (∆P̄, ∆Ā, ∆B̄, ∆C̄)⇔ (P̄, Ā, B̄, C̄)

Proposition 5. Suppose that Problem 2 is feasible. Then, for any real matrix H satisfying

H + H> � 0,

Problem 4 is feasible. In addition, letting (P0, A0, B0, C0) be the feasible but non-(local)
optimal solution to Problem 2, it holds that

J(A0 + ∆Ā, B0 + ∆B̄, C0 + ∆C̄) < J(A0, B0, C0). (18)

Remark 2. The "strict" inequality in the proposition implies that the solution to Problem 4
generates a less conservative solution to Problem 2 than the solution to Problem 3. This is seen by
letting (P0, A0, B0, C0) in Problem 4 be replaced by (P0, A0, B0, C0) =

(
P̂, Â, B̂, Ĉ

)
. One can solve

Problem 4 by updating (P0, A0, B0, C0) with (P̄, Ā, B̄, C̄) to further reduce the conservativeness.

4. Result 2: Gain-Preserving Approximation of the Koopman Operator for
Data-Driven Robust Controller Design

In this section, a data-driven feedback controller design is addressed based on L2
gain-preserving modeling, presented in Section 3. In particular, the data-driven IMC design
is presented. The structure of the overall control system including plant system P and
IMC is illustrated in Figure 4. IMC is composed of plant model PM and filter Q, which
were designed using the operating data on plant system P , which is denoted by {u, y}, as
mentioned in the figure.
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Data-driven design via 
Koopman model (§4.1) 

Data-driven “inverse” design
via Koopman model 

with      gain guarantee (§4.2) 

Figure 4. IMC-based control system and organization of Section 4.

The procedure of the IMC design is stated as follows. Firstly, the data-driven modeling
of plant P is addressed to construct Koopman model PM based on data {u, y}. This
“forward” modeling is stated in Section 4.1. Secondly, the data-driven modeling of “inverse”
plant P−1 is addressed to construct the Koopman model Q based on the “flipped” data
{y, u}. This "backward" modeling is stated in Section 4.2.

4.1. Data-Driven Modeling of Plant System

In this subsection, the data-driven modeling of plant system P is addressed. Consider
a discrete-time nonlinear plant system described by

P :
{

x(k + 1) = fp(x(k), u(k)),
y(k) = gp(x(k)),

(19)

where u ∈ Rm is the input, x ∈ Rn is the state, y ∈ Rl is the output, and fp(·) : Rn+m → Rn

and gp(·) : Rn → Rl are the nonlinear functions.
Data-driven modeling of P is used to obtain plant Koopman model PM described by

PM :
{

ψm(k + 1) = Amψm(k) + Bmu(k),
ym(k) = Cmψm(k),

(20)

where ym ∈ Rl is the output of plant model PM and ψm(k) ∈ RNm is the Nm-dimensional
lifted state given by

ψm(k) := ψm(x(k)) :=

 ψm,1(x(k))
...

ψm,N(x(k))

 ∈ RNm .

For simplicity of discussion, it is assumed that

ψm(0) = 0

holds, i.e., the origin is the equilibrium of the zero input system.
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We define the following data matrices based on the sequences of the input, output,
and state of plant (19):

Uk := [u(k) u(k + 1) · · · u(k + M− 1)] ∈ Rm×M,

Yk := [y(k) y(k + 1) · · · y(k + M− 1)] ∈ Rl×M,

Ψm,k := [ψm(k) ψm(k + 1) · · · ψm(k + M− 1)] ∈ RNm×M,

Ψm,k+1 := [ψm(k + 1) ψm(k + 2) · · · ψm(k + M)] ∈ RNm×M,

We assume that data matrices (Uk, Yk, Ψm,k, Ψm,k+1) are available for data-driven plant
modeling. The problem of data-driven modeling to construct a plant Koopman model (20)
is formulated as follows.

Problem 5. Given data matrices (Uk, Yk, Ψm,k, Ψm,k+1), we solve following the optimization
problem:

min
Am,Bm,Cm

Jm(Am, Bm, Cm),

where Jm(Am, Bm, Cm) is given by

Jm(Am, Bm, Cm) =

∥∥∥∥[ Ψm,k+1
Yk

]
−
[

Am Bm
Cm 0

][
Ψm,k
Uk

]∥∥∥∥2

F
.

The solution to Problem 5 directly gives system matrices (Am, Bm, Cm) of plant model PM.

4.2. Data-Driven IMC with L2 Gain Guarantee

In this subsection, the data-driven modeling of filterQ is addressed and a data-driven
IMC is designed. As stated in Remark 1, an optimal Q is given by inverse plant model PM,
namely, Q = P−1

M . Aiming to find a proper and stable Q, data-driven “inverse” modeling
is addressed: Q ≈ P−1

M is found based on (Uk, Yk), which is the same dataset utilized for
plant modeling in Section 4.1. In other words, given dataset (Uk, Yk), plant model PM and
filter Q are simultaneously designed to constitute IMC.

The model of filter Q is given by

Q :
{

ψq(k + 1) = Aqψq(k) + Bq(r(k)− {y(k)− ym(k)}),
u(k) = Cqψq(k),

(21)

where ψq(k) ∈ RNq is the Nq-dimensional lifted state given by

ψq(k) := ψq(u(k)) :=


u(k)

ψq,1(u(k))
...

ψq,N−1(u(k))

 ∈ RNq ,

and Aq, Bq, and Cq are the constant matrices. In addition, it is assumed that ψq(0) = 0
holds. Due to the definition of ψq(u(k)), Cq must be

Cq =
[

I 0 · · · 0
]
.

As stated in Proposition 1, a requirement imposed on Q is its L2 stability. In addition,
noting that modeling errors in PM, given in Section 4.1, inevitably exist, Qmust be robust
against the modeling error. In the following discussion, assume that the error in plant
model PM is characterized by the L2 gain such that ‖P − PM‖L2 ≤ γp for some γp. Then,
the L2 gain-preserving model, given in Section 3, is applied to the design of Q such that Q
is L2 stable and ‖Q‖L2 ≤ 1/γp holds.
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For simplicity of notation, we further define the data matrices based on Uk

Ψq,k :=
[
ψq(k) · · · ψq(k + M− 1)

]
∈ RNq×M,

Ψq,k+1 :=
[
ψq(k + 1) · · · ψq(k + M)

]
∈ RNq×M.

The problem of data-driven modeling to construct filter (21) where a L2 gain specifica-
tion is imposed as ‖Q‖L2 ≤ γq is formulated as follows.

Problem 6. Given a positive constant γq and data matrices
(

Yk, Ψq,k, Ψq,k+1

)
, we solve the

following optimization problem:

min
Pq,Aq,Bq

Jq(Aq, Bq)

sub to Pq � 0[
Aq Bq
I 0

]>[ Pq 0
0 −Pq

][
Aq Bq
I 0

]
+

[
C>q Cq 0

0 −γ2
q I

]
≺ 0, (22)

where

Jq(Aq, Bq) :=
∥∥∥∥Ψq,k+1 −

[
Aq Bq

][ Ψq,k
Yk

]∥∥∥∥2

F
. (23)

The solution to Problem 6 gives system matrices
(

Aq, Bq, Cq
)

for filterQ, and ‖Q‖L2 ≤
γq holds. Note that Problem 6 is in the class of non-convex optimization and is numerically
intractable. In the same manner as the study in Section 3, a computationally efficient
algorithm is applicable to the problem.

In summary, the overall controller is constructed based on the solutions to Problems 5
and 6. The following proposition states the robust stability of the overall control system.

Proposition 6. Suppose that ‖P − PM‖L2 ≤ γp holds, and consider that filter Q is designed by
the solution to Problem 6. Then, the IMC-based control system, illustrated in Figure 4, is L2 stable
if γpγq < 1 holds.

5. Numerical Experiment

In this section, we demonstrate the procedure for designing a data-driven robust IMC.
Let us consider a plant system described by the nonlinear state-space equation:

P :


ẋ1(t) = x2(t) + u(t),
ẋ2(t) = −2x2(t) + 3x1(t) cos(2x1(t)),
y(t) = x2(t).

(24)

System (24) possesses stable equilibria such as (x1, x2, u) = ( 1
4 π + πs, 0, 0) for some

integar s. In this demonstration, we design a feedback controller to further improve the
output regulation performance. To this end, the data-driven IMC is constructed by the
following stages. (1) Data-driven modeling of plant system (24) is addressed to construct
a plant Koopman model PM. The details of this stage are given in Section 4.1. (2) Data-
driven modeling of the inverse plant system is addressed to construct filter Q. In filter
construction, aiming to guarantee the stability of the control system, L2 gain-preserving
modeling is applied to Q. The details of the modeling method are stated in Section 4.2.

At Stage 1, the time series of x(t), u(t), and y(t) are sampled at each 0.01 time period
from plant system (24), which are denoted by {x(k)}, {u(k)}, and {y(k)}, respectively.
Input series {u(k)} is the sine wave given by c sin(0.02πk), and amplitude c is randomly
chosen from {0.1, 0.2, · · · , 5}. Then, its corresponding state and output series {x(k)} and
{y(k)} are measured and collected. In total, the data of 50,000 samples are obtained. Note
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that the computational cost for the data-driven modeling presented in this paper does not
largely depend on data volume, but it strongly depends on the dimension of the lifted
state-space, determined by the users.

Let lifting function ψm(x(k)) be composed of state x(k) = [ x1(k), x2(k) ]> and thin
plate spline radial basis functions ψm,i(x(k)), i ∈ {1, 2, . . . , 8}, described by

ψm,i(x(k)) = ‖x(k)− rm,i‖2
2 ln ‖x(k)− rm,i‖2,

where the values of rm,i are selected randomly from the uniform distribution on the unit
box. In other words, lifting function ψm(x(k)) is given by

ψm(x(k)) = [ x(k) ψm,1(x(k)) · · · ψm,8(x(k)) ]> ∈ R2+8.

By applying the data-driven modeling presented in Section 4.1 to the data, we obtain
plant Koopman model PM. The coefficient matrices of constucted PM are given as follows.

Am =



1.00 0.01 0 0 0 0 0 0 0 0
0.07 0.98 0 0.04 −0.02 −0.13 0.02 0.01 0.02 0.08
0.10 −0.07 1.00 0.06 −0.01 −0.25 −0.05 0 0.05 0.16
−0.14 0.08 0 0.96 0.03 0.05 0 0.03 −0.06 −0.02
0.12 −0.07 0 0.07 0.98 −0.27 −0.04 0 0.05 0.19
−0.08 0.04 0.01 −0.01 0.02 0.94 0.01 0.02 −0.04 0.05
0.06 −0.08 0.02 0.03 −0.03 −0.09 0.96 −0.03 0.03 0.08
−0.17 0.09 0.01 −0.03 0.04 −0.05 −0.01 1.03 −0.08 0.07
0.04 0.02 0.01 0.11 −0.04 −0.41 0.01 0.03 0.99 0.29
−0.05 0.01 0.01 −0.01 0.01 −0.06 0 0.01 −0.02 1.05


,

Bm =
[

0.01 0 0.02 0.01 0.01 0.02 0 0.03 −0.01 0.02
]>,

Cm =
[

0 1.00 0 0 0 0 0 0 0 0
]
.

For a comparative study, a linear state-space model is constructed, where the lifting
function of PM is replaced by x(t).

The modeling result is illustrated in Figures 5 and 6, where the state response with
respect to the Gaussian noise input is shown. The state response for Koopman model PM,
linear state space model, and plant system P are depicted by the red, solid; blue, dashed;
and black, dotted lines, respectively. We see that the plant Koopman model PM accurately
expresses the nonlinear behavior generated by complex system (24), while the linear model
cannot.

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Koopman model

state space model

nonlinear system

Figure 5. State x1 of the Koopman model, the linear state-space model, and the plant system.
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Figure 6. State x2 of the Koopman model, the linear state-space model, and the plant system.

At Stage 2, based on flipped input–output data {y(k), u(k)}, we design filter Q such
that any desired L2 gain specification is satisfied. In the same manner as the plant modeling,
let lifting function ψq(u(k)) be composed of input u(k) and thin plate spline radial basis
functions ψq,i(u(k)), i ∈ {1, 2, . . . , 4}, where ψq,i(u(k)) is given by

ψq,i(u(k)) = ‖u(k)− rq,i‖2
2 ln ‖u(k)− rq,i‖2

and the values of rq,i are selected randomly from the uniform distribution in the unit box.
Then, lifting function ψq(u(k)) is described by

ψq(u(k))=
[
u(k) ψq,1(u(k)) · · · ψq,4(u(k))

]> ∈ R1+4. (25)

L2 gain-preserving inverse modeling is applied to design filter Q. As implied in
Section 4.2, the modeling method requires us to assume the modeling error in PM such
that ‖P − PM‖L2 ≤ γp and to impose the L2 gain constraint on Q such that ‖Q‖L2 ≤ γq
with γq = 1/γp. In general, it is difficult to estimate γp, and we cannot determine γq
in a systematic manner. In practice, γq is a tunable parameter, determined by the users
depending on their design aims. A small value of γq, which imposes a severe constraint on
Q, improves the robustness and stability margin for the controlled system, while a large
value tends to improve the nominal control performance. In this demonstration, we set
γp = 0.5 to priorize robustness.

The modeling problem was solved in a computationally efficient manner by using
YALMIP [37] and SeDuMi [38] to construct filterQ. For example, it took 12.26 s to solve the
LMIs in Problem 3 with a laptop (CPU: Core i7-8665U 1.90 GHz). The coefficient matrices
of constructed Q are given as follows.

Aq =


0.45 0.04 0.01 0 −0.05
−1.07 0.94 0.10 −0.05 −0.03
−0.71 0.08 0.91 −0.04 0.02
0.19 0.24 −0.34 0.95 0.11
1.59 −0.14 −0.01 −0.02 1.14

,

Bq =
[

0 1.34 1.43 1.55 1.34
]>,

Cq =
[

1.00 0 0 0 0
]
.

Then, PM and Q constitute a nonlinear IMC, the structure of which is illustrated in
Figure 4.
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For a comparative study, another filter Q is designed with no L2 gain constraint,
and its corresponding nonlinear IMC is constructed. The controller with unconstrained
Q can have high gain, which tends to improve the nominal control performance while
deteriorating the robustness. In addition, a data-driven linear IMC is constructed with no
L2 gain constraint, where the lifting functions of PM and Q are replaced by x(t) and u(t),
respectively.

The simulation of regulation control achieved by the controllers is illustrated in
Figures 7 and 8. In the figures, the state trajectory achieved by the proposed constrained
nonlinear IMC, unconstrained nonlinear IMC, and unconstrained linear IMC are drawn by
the red, solid; red, dotted; and blue, dashed lines, respectively. We see that the proposed
constrained IMC robustly achieves output regulation, i.e., x2(t) converges to the origin
under the presence of the modeling error, while the others cannot. This concludes that the
proposed gain-constrained IMC contributes to robust stability for the control system.
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-5

0
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15

20

robust nonlinear IMC

nonlinear IMC

linear IMC

Figure 7. Controlled state x1 achieved by the proposed IMC, the nonlinear IMC, and the linear IMC.
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Figure 8. Controlled state x2 achieved by the proposed IMC, the nonlinear IMC, and the linear IMC.

6. Conclusions

This paper addressed data-driven modeling of a nonlinear dynamical system, de-
scribed by the Koopman operator while incorporating a priori known information about
the L2 gain. Then, a L2 gain-preserving data-driven model was formulated, and its LMI-
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based solution method was presented. The modeling method was applied to the design of
a data-driven robust nonlinear IMC, and its design demonstration was presented.

The presented data-driven IMC can be a fundamental control technique and can
be extended in various directions. These directions include pursuing H2/H∞ control
performance and adaptating it for filter Q.
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