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Abstract: This work proposes a stochastic process-based inversion to estimate hydrocarbon resistivity
based on multifrequency electromagnetic (EM) data. Currently, mesh-based algorithms are used for
processing the EM responses which cause high time-consuming and unable to quantify uncertainty.
Gaussian process (GP) is utilized as the alternative forward modeling approach to evaluate the EM
profiles with uncertainty quantification. For the optimization, gradient descent is used to find the
optimum by minimizing its loss function. The prior EM profiles are evaluated using finite element
(FE) through computer simulation technology (CST) software. For validation purposes, mean squared
deviation and its root between EM profiles evaluated by the GP and FE at the unobserved resistivities
are computed. Time taken for the GP and CST to evaluate the EM profiles is compared, and absolute
error between the estimate and its simulation input is also computed. All the resulting deviations
were significantly small, and the GP took lesser time to evaluate the EM profiles compared to the
software. The observational datasets also lied within the 95% confidence interval (CI) where the
resistivity inputs were estimated by the proposed inversion. This indicates the stochastic process-
based inversion can effectively estimate the hydrocarbon resistivity in the seabed logging.

Keywords: stochastic process; Gaussian process; seabed logging; electromagnetic data; gradient
descent; inversion; optimization; hydrocarbon resistivity

1. Introduction

Determining high resistive structures, such as hydrocarbon-saturated reservoirs with-
out wells drilling, is of crucial significance in oil and gas industry. In this context, the
traditional surveying technique, such as seismic method, has been employed. The method
utilizes sound waves to map the geological subsurface, but, according to Reference [1], the
seismic results can be uncertain. Therefore, researchers in Reference [2] introduced seabed
logging (SBL) to remotely determine the offshore hydrocarbon-saturated reservoirs and
become the complementary tool to the seismic method. Marine controlled-source electro-
magnetic (CSEM) technique (also known as SBL) employs low-frequency electromagnetic
(EM) energy sourced by a very powerful electric dipole, towed by a ship, to characterize
high resistive structures (e.g., hydrocarbon) beneath the seabed [3]. This frequency-domain
technique relies on a fact that hydrocarbon has higher electrical resistivity than its surround-
ings. Electrical resistivity of the hydrocarbon can approximately reach 30 to 500 Ωm, while
the resistivities of its surroundings, such as seawater and sediment, are approximately 0.5
to 2.0 Ωm and 1.0 to 2.0 Ωm, respectively. The property of the electrical resistivity (inversely
proportional to conductivity) plays an important role for the hydrocarbon exploration.
Main references of the SBL can be found in References [1–12].

Mathematics 2021, 9, 935. https://doi.org/10.3390/math9090935 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9090935
https://doi.org/10.3390/math9090935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9090935
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9090935?type=check_update&version=1


Mathematics 2021, 9, 935 2 of 24

Besides capable of detecting the hydrocarbon-saturated reservoirs remotely (i.e., with-
out well drilling), the numerical forward modeling methods used for processing the CSEM
data are also very powerful and reliable. Practically, the forward modeling is reliant on
an assumption that the property of the resistivity is known. Then, a few processes take
place in the forward solution, such as simulating the data based on the model, comparing
the simulation with the measured data, and updating the model. The surveying CSEM
technique usually employs finite element (FE) or finite difference (FD) methods for the data-
processing [13]. FE method is preferable due to its ability to support unstructured meshes
in order to represent the complex subsurface realistically. Note that these deterministic
numerical methods are mesh-based algorithms which involve complicated integrations
and linear system. Even though they are reliable, high computational efforts, in terms of
cost and time, are needed especially for solving the integrals and the linear equations [14].
In addition, inverse modeling is also very useful, especially to recover the physical property
(e.g., resistivity) of hydrocarbon; however, according to researchers in Reference [14], the
inversion scheme needs multiple forward solutions, hence high computational time being
required to solve the inversion scheme. Here, the corresponding forward modeling should
be able to do the simulation rapidly, especially for the repeated use of number of iterations.
SBL applications generate large volume of noisy data captured by all receivers located
on the seafloor. Researchers in Reference [1] stated that the CSEM data-processing has
become a challenging task to geophysicists. Therefore, quantification of uncertainty in
processing the CSEM data is very important in the SBL. The use of the differential equation
(DE) methods alone in the forward modeling is not capable of providing the quantification
of the uncertainty.

To address these problems, we propose a stochastic process-based inversion methodol-
ogy to estimate the electrical resistivity of hydrocarbon layer based on the multifrequency
SBL data. Gaussian process (GP) regression is a stochastic and nonparametric method
which is employed as the alternative forward modeling method that is able to provide the
uncertainty quantification. According to researchers in Reference [15], this elegant method
can perform very well in the nonlinear modeling problems. In the inverse modeling,
gradient descent (GD) method is utilized for the optimization purposes. We use mean
squared error (MSE) as the objective function (i.e., loss function) of the optimization. GD
acts as the minimizer finder by obtaining the optimal electrical resistivity of hydrocarbon
of the observational dataset. The novelty of this work can be described in three ways:
(i) making full use of the stochastic process as the EM forward modeling by utilizing
knowledge from computer simulation to reduce the computational effort involved in the
modeling, (ii) integrating the stochastic approach and the indirect search algorithm in one
inversion methodology to recover the hydrocarbon resistivity property, and (iii) applying
the proposed inversion to find the resistivity of the hydrocarbon in the SBL application
based on the multifrequency marine CSEM data with uncertainty justification. This work
could be very advantageous to the petroleum industry to reduce the computational efforts
involved in the ad hoc CSEM modeling. The literature reviews on the available methods
used in processing the CSEM data are discussed in Section 2.

2. Available Methods Used in Processing CSEM Data

For decades, controlled-source electromagnetic (CSEM) technology has been widely
employed in many land-based geophysical explorations [13]. Rising in oil and gas demand
has triggered a commercial interest to apply the CSEM technique in ocean-based subsurface
exploration [16]. The subsurface could be very complex due to a lateral variation of
the subsurface conductivity beneath the seafloor (i.e., sea-bottom sediments). In the
electromagnetic (EM) modeling, Maxwell’s equations are solved in a discretized form
to compute the propagation of the EM fields. In a 3-D scenario, the subsurface can be
discretized using either regular brick, hexahedral, or tetrahedron elements.

According to Reference [13], the electric and magnetic fields within each element can
be approximated by either linear or higher order polynomial functions. Researchers in
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Reference [17] used 3-D finite element (FE) method to compute the EM responses from the
reservoir that consists of a set of resistive hydrocarbons separated by conductors in ho-
mogeneous and inhomogeneous environments. The resulting computational experiments
showed that the presence of the resistive gaps gave a significant impact on the EM fields
recorded by the receivers. Researchers in Reference [13] employed linear edge-based FE
method for modeling the 3-D CSEM data in anisotropic conductive medium. Besides that,
researchers in Reference [18] introduced a new method for processing CSEM data based
on redatuming the observational data from the actual receivers into the virtual receivers.
To compute the EM fields in the virtual receivers, Stratton-Chu type integral transforma-
tion was used in the research study. Next, 2.5-D FE method was used by researchers in
Reference [19] as its forward modeling code for marine CSEM application in Niger Delta.
Adaptive FE method has been known as a robust numerical modeling approach in complex
environment. It adaptively refines the FE mesh using error estimator of a priori to produce
high quality of EM responses for all the refinements though it caused high computational
time. Researchers in Reference [20] used FE, namely linear edge FE method, for their com-
putational implementation of the CSEM application. Other than that, parallel edge-based
tool for geophysical EM modeling (PETGEM) was used by researchers in Reference [21] for
3-D CSEM forward modeling by employing Nédélec edge finite element method (EFEM).
The EFEM can support the unstructured tetrahedral meshes and offers a good compromise
between its accuracy and the number of degrees of freedom. To our knowledge, most
of the existing numerical EM modeling techniques are mesh-based algorithms. These
differential equation (DE) methods involve very large computational domain to satisfy
to the corresponding boundary condition in the modeling. Other than the DE methods,
some literature also reported the use of integral equation (IE) method for the EM modeling.
However, according to researchers in Reference [22], the matrix system involved in the IE
method needs significantly high computational effort in terms of time and memory.

3. Background of the Proposed Methodology

The proposed inversion methodology consists of two frameworks, which are Gaussian
process (GP) as the forward modeling method, and gradient descent (GD) used for the
optimization involved in the inversion scheme.

3.1. Stochastic Process–Gaussian Process

Gaussian process (GP) is a random function which consists of a collection of random
variables that are treated as Normal (i.e., gaussian) distribution [23,24]. A model of GP is
defined by a vector of its mean function, m(x), and a matrix composed by its covariance
function, k(x, x′). The distribution can be expressed as f (x) ∼ G(m(x), k(x, x′)). GP is a
probabilistic and nonparametric method which capable of fitting functional forms reliant
on the domain observations. According to Reference [25], this stochastic approach has a
property that differs from most of the other black-box identification approaches. It searches
for the correlations among the known knowledge rather than approximating the model by
trying to fit the basis function parameters. GP can provide the predictive mean (i.e., most
likely output) and predictive variance (i.e., confidence interval (CI)) through the Bayesian
inference. It places a prior on the function space f without parameterizing the function
and then generates posterior distribution over the function. Researchers in Reference [26]
stated that a GP model can be utilized as a surrogate model for intricate mathematical
model that needs high computational time to solve.

GP has been used in many applications due to its flexibility, such as in the engineering
fields, geo-statistics, electronics, machine learning, etc. Researchers in Reference [27]
mentioned that the GP is capable of decreasing the complexity of the computer vision with
a finer performance of reconstructions. In addition, researchers in Reference [28] compared
the performance of an improved GP model with other methods, such as multiple linear
regression (MLR) and artificial neural network (ANN), in predicting roadway broken road
zone. The results showed that the hybrid model gave the best performance in terms of
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coefficient of determination (R2), root mean squared error (RMSE), and variance accounted
for (VAF). In geophysics field, researchers in Reference [29] stated that GP can provide
reliable porosity and permeability information to the well analysis. Besides that, GP was
also fully utilized by researchers in Reference [30] in the seismic signal detection. The
study inferred that the GP was able to produce higher rate of detection and lower rate of
false alarm, especially for the weak seismic signals. Next, researchers in Reference [31]
proposed an improved methodology for active learning in the GP regression to predict the
black-box functions. The proposed method revealed better RMSE with a fewer number of
points compared to the other famous methods. Researchers in Reference [32] also enhanced
the GP regression for estimating the state-of-health (SOH), and the results showed that
the proposed method was capable of reducing the computational complexity with better
estimation accuracy.

3.2. Gradient Descent

Gradient descent (GD) is a famous iterative method used for updating parameters
of a function. GD updates the model by minimizing its objective function based on a first
derivative (i.e., slope) property. Determining the slope can inform the direction of the
model parameters (whether to decrease or increase), and it also could tell the step size that
should be taken by the model to reach the optimum point. GD is also known as steepest
descent method, where it optimizes the objective function by moving in negative direction
of the slope iteratively. In the GD method, the step size is called as learning rate, α. A
smaller α can learn the function area precisely since the slope is frequently recalculated.
But, if the α is not carefully parameterized, the optimization may require high processing
time to converge and reach the optimum point. Meanwhile, a bigger α can extend over
larger area of the function but overshooting the optimum point may occur. Thus, sensible
parameterization of the step size implies the efficiency of the GD optimization.

GD is a well-known method that is commonly used in optimization problems, such as
in the applications of machine learning. Researchers in Reference [33] exercised the GD
for the purpose of optimizing the vector centers of the consequent layer functions and
receptive field matrices in a neuro-fuzzy model. This study relied on the mean squared
error (MSE) criterion as its standard of the optimization. Besides that, researchers in
Reference [34] employed the GD method to establish nodes operation model for classifying
heart conditions based on a deep learning network. Next, researchers in Reference [35] also
used GD method to identify the aperture shape in the direct aperture optimization (DAO).
Furthermore, this optimization method was also utilized by researchers in Reference [36] to
solve the predicting student performance (PSP) by minimizing the error equation, which is
its loss function. The study updated the matrices of W1 and W2 in the optimization scheme.
In addition, researchers in Reference [37] employed GD to find the optimal parameters of
impedance control in an iterative learning control algorithm for the force/position hybrid
control to control the trajectory of the hexa-robot. The results revealed that the proposed
approach can successfully control the robot as expected. Researchers in Reference [38]
also used GD to obtain phase-only computer-generated holograms (CGHs). The study
concluded that the GD method needed low time to optimize the distribution of the phase-
only CGHs and obtained higher precision images compared to the results obtained when
using the Gerchberg-Saxton (GS) algorithm.

4. Methodology

In Section 4, five subsections are discussed, which are, Section 4.1. Developing
synthetic seabed logging (SBL) model, Section 4.2. Preprocessing computer simulation
outputs, Section 4.3. Developing two-dimensional (2-D) Gaussian process (GP) models,
Section 4.4. Electrical resistivity estimation, and Section 4.5. Validation of estimate and
GP model.
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4.1. Developing Synthetic Seabed Logging Model

A synthetic seabed logging (SBL) application is replicated using the computer simula-
tion technology (CST) software. According to Reference [39], CST Studio Suite® exclusively
employs finite element (FE) method as the solver of the electromagnetic (EM) simulation
in the low-frequency applications. The synthetic model has the same input parameters,
except for the conductivity (inversely proportional to the resistivity) of the hydrocarbon
layer and the frequency of the EM signal. The SBL model is replicated with three different
background layers, such as air, seawater, and sediment, with an isotropic hydrocarbon
layer inside, as depicted in Figure 1.

Figure 1. Representation of the synthetic seabed logging (SBL) model in the computer simula-
tion technology (CST) software. The total height, width, and length are 5000 m, 20,000 m, and
20,000 m, respectively.

Based on Figure 1, sediment layer located above the target layer (i.e., hydrocarbon) is
called as overburden, whereas sediment below the target layer is called as under burden.
The thickness of overburden (i.e., depth of hydrocarbon) is fixed at 500 m from the seafloor.
To make it simpler, all the input parameters of the simulation are summarized in Table 1.
Based on Table 1, five different transmission frequencies (i.e., multifrequency) and five
resistivities of isotropic target (e.g., 90, 180, 270, 360, and 450 Ωm) are simulated in the SBL
modeling. It means that for every frequency, five different EM profiles are generated and
these profiles act as the training CST datasets for the data-processing purposes. Note that
the set-up is fixed for the case of static source-receiver separation distances. The source
(i.e., transmitter) is placed in the seawater at the center of the model with coordinate of
(height = 1270 m, width = 10,000 m, length = 10,000 m), and the inline receivers are located
along the seafloor. Hence, all the generated CST datasets are symmetrical from the model
center to the right and left boundaries.
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Table 1. Input parameters of the computer simulation.

Input Parameters Numerical Values in Unit

Conductivity (Air) 1.00 × 10−11 Sm−1

Conductivity (Seawater) 1.63 S m−1

Conductivity (Sediment) 1.00 S m−1

Resistivity (Hydrocarbon)

90 Ωm
180 Ωm
270 Ωm
360 Ωm
450 Ωm

Frequency

0.0625 Hz
0.1250 Hz
0.2500 Hz
0.3750 Hz
0.5000 Hz

Hydrocarbon thickness 200 m

Current strength 1250 A

Length of source 270 m

Source depth (from seawater surface) 970 m

4.2. Preprocessing Computer Simulation Outputs

As discussed in Reference [40], the SBL data interpretation is based on an assumption
that the existence of target bodies can be preidentified by normalizing the magnitude
versus offset (MVO) between the target responses (with hydrocarbon) and the reference
responses (without hydrocarbon). The normalized MVO can be calculated by dividing the
target responses with the reference responses. The existence of the potential target bodies
can be detected if the ratio of normalization is greater than 1.0.

The same input parameters are used for replicating the reference model, as indicated in
Table 1 and presented in Section 4.1, but the hydrocarbon information is not included. After
generating the multifrequency reference model and preprocessing the electromagnetic
(EM) profiles by considering the normalized MVO and symmetricity of the model, only
93 datapoints per dataset are used for the GP modeling (discussed in the next subsection),
which are taken from source-receiver separation distances of 10,845.77–20,000 m.

4.3. Developing Two-Dimensional Gaussian Process Models

Gaussian process machine learning (GPML) MATLAB codes are used for the Gaussian
process (GP) regression. The GPML codes can be found in Reference [41]. As mentioned
earlier, the GP regression is employed to evaluate the EM profiles at various unobserved
resistivities of hydrocarbon. For every frequency, all five CST datasets, as expressed in
Equation (1), are treated as the GP training datasets.

D1, D2, . . . , D5 =
{(

xj, yj
)}M

j=1, (1)

where M = 93. The d-dimensional input vector and its corresponding output vector can
be simply written as xj ∈ X and yj ∈ Y, respectively. X indicates M-by-d matrix (i.e.,
x ∈ Rd=2), and Y indicates M-by-1 column vector (i.e., y ∈ Rd=1). In this work, the input is
bivariate, x = (a, b), where a stands for the source-receiver separation distance (i.e., offset),
and b is the electrical resistivity of the hydrocarbon layer, whereas the corresponding
output y is the magnitude of electric field (E-field).
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To evaluate the EM profiles at unobserved resistivity inputs conforming to the testing
input x∗ = (a∗, b∗), the posterior distribution is defined as in Equation (2):

(y∗|X, Y, x) ∼ G(µ, κ), (2)

where µ and κ are the predictive mean and variance, respectively. These two terms
are defined in Equations (3) and (4). Since the resistivity of hydrocarbon is the only
parameter that is varied, thus a∗ = a (i.e., remains unchanged). One hundred and sixteen
unobserved target resistivities, which are 93–447 Ωm with an increment of 3 Ωm each
(excluding the training input points), are set as the desired information. Therefore, for every
frequency, there are entirely 121 EM profiles (including the training datasets) evaluated in
the GP model.

µ = K(X, x∗)
TKε(X, X)−1Y, (3)

and
κ = k(x∗, x∗)− K(X, x∗)

TKε(X, X)−1K(X, x∗), (4)

where
Kε(X, X) = K(X, X) + σ2

M IM. (5)

Based on Equations (3)–(5), K(X, X) is an M-by-M covariance matrix amongst the
X, σ2

M IM is an M-dimensional noise covariance matrix, K(X, x∗) is an M-by-1 covariance
matrix between the X and x∗, and k(x∗, x∗) is a covariance matrix of x∗. Note that, in the
context of this work, all these covariance matrices are composed of the squared exponential
(SE) covariance function, where Equation (6) is utilized to compute every element of
the matrices.

k
(
x, x′

)
= σ2

f

[
exp

(
−|x− x′|2

2`2

)]
, (6)

where hyperparameters θ =
{
`, σf

}
. ` and σf represent the isotropic length scale and the

signal variance, respectively. Note that the SE covariance function is used to govern the GP
realizations smoothness which is dictated by the computer simulation outputs. According
to Reference [42], GP regression with the SE covariance function is infinitely differentiable.
This is an advantageous for any inversion scheme that relies on the derivative basis such
as the gradient descent (GD) method.

Here, Equations (2)–(6) need the computation of the hyperparameters θ. In the GP
regression, this θ is computed by minimization of the negative log marginal likelihood
(NLML) using the gradient-based approach. The equation of NLML is expressed in
Equation (7):

log[p(Y|X, θ)] =
1
2

[
Mlog(2π) + log|Kε(X, X)|+ YT [Kε(X, X)]−1Y

]
. (7)

Researchers in Reference [29] mentioned that the logarithmic identifier used in Equation (7)
is to simplify the expression of integrals involved in the marginal likelihood method.
Once the θ is successfully computed, the GP predictive distribution is defined by using
Equations (3) and (4). Here, the µ is the best estimate of y∗ (i.e., predictive mean) which
represents the magnitude of E-field at the x∗, and the κ represents the predictive variance
of the x∗ in terms of 95% confidence interval (CI) (±two standard deviations). This feature
expresses the reliability of the µ.

4.4. Electrical Resistivity Estimation

It must be noted here that the developed GP model is denoted as Yf it(a, b) where all the
EM profiles are evaluated at all training and testing input parameters. For every frequency,
Yf it(a, b) consists of 121 EM profiles observed at 93 points of offset from 10,845.77 m to
20,000 m with 121 different resistivities of hydrocarbon (90–450 Ωm, with a gap of 3 Ωm).
Assume that the observational dataset Yobs(a,�) is observed at M = 93 points of offset, and
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there is a potential target layer resides 500 m underneath the seafloor with “unknown”
resistivity. Then, the least square criterion is formed between the Yf it and the Yobs in order
to determine the target electrical resistivity of the Yobs. This work uses mean squared error
(MSE) as the objective function of the optimization scheme. Generally, MSE calculates the
mean amount of squared differences between the Yf it and Yobs. The objective function J(bi)
is defined in Equation (8).

{J(bi)}N
i=1 =

1
M

M=93

∑
j=1

[
Yf it

(
aj, bj

)
−Yobs

(
aj,�

)]2
, (8)

where N = 121. The objective function J(bi) is a function of b. Thus, Equation (8) is
minimized over the b, and the minimizer indicates the estimate of the target resistivity. For
every frequency, all the computed J(bi) are then plotted in order to observe the trend of
the function. From the trend, a random initial guess of target resistivity can be specified.
Since this is a minimization procedure, the decreasing trend of the function is the key idea
of choosing the suitable initial guess. To make the process runs efficiently, a point closes to
the minimum zero-gradient point is selected as the initial guess, and the iteration index i is
set to zero. Here, the initial minimizer is denoted as b0.

After specifying the initial guess, the first-partial derivative of the J(bi) is defined with
respect to bi, as derived in Equation (9).

J(bi) =
1
M

M
∑

j=1

[
Yf it −Yobs

]2
,

J′(bi) =
1
M

∂
∂bi

[
M
∑

j=1

[
Yf it −Yobs

]2
]

,

J′(bi) =
2
M

M
∑

j=1

[
Yf it −Yobs

]
∂

∂bi

[
Yf it −Yobs

]
,

J′(bi) =
2
M

M
∑

j=1

[
Yf it −Yobs

]
∂

∂bi
Yf it,

J′(bi) =
2
M

(
M
∑

J=1

[
Yf it −Yobs

])
Y′ f it,

(9)

where Y′f it is the first derivative of the GP model with respect to bi. As mentioned before,
the GP model is composed by the predictive mean µ, shown in Equation (3). Thus, the
derivative of the µ with respect to the bi is written in Equation (10).

µ′ = K′(X, x∗)
TKε(X, X)−1Y, (10)

where K′(X, x∗) is the derivative of the covariance matrix between X and x∗ with respect to
the x∗ (specifically with respect to bi). In order to find the K′(X, x∗), the derivative of the SE
covariance function with respect to x∗ is derived. The equation is shown in Equation (11):

k(x, x∗) = σ2
f

[
exp
(
−|x−x∗ |2

2`2

)]
,

k′(x, x∗) = σ2
f

∂
∂x∗

[
exp
(
−|x−x∗ |2

2`2

)]
,

k′(x, x∗) = σ2
f exp

(
−|x−x∗ |2

2`2

)(
2|x−x∗ |

2`2

)
,

k′(x, x∗) = σ2
f

(
|x−x∗ |

`2

)
exp
(
− |x−x∗ |2

2`2

)
.

(11)
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The next step is finding the update of the bi. Based on the GD method, the update can
be computed by using Equation (12).

bi+1 = bi − α·J′(bi), (12)

where α is the learning rate. To gain more knowledge about the learning rate, in the context
of this work, positive values of 10, 1, 0.1, 0.01, 0.001, and 0.0001 are used as the indicator
of which range of α can give the significant optimization. For the update, the changes
between the subsequent update (i.e., minimizer) and the total number of iterations are set
to be at most 0.05% and 100, respectively. Equation (13) is used to calculate the subsequent
changes of each updated minimizer:

Ci+1 =

∣∣∣∣ bi+1 − bi
bi

∣∣∣∣× 100%. (13)

For every iteration, GP regression is utilized to evaluate the EM profile at every update.
The new objective function between the Yf it and Yobs is computed using Equation (14):

J(bi+1) =
1
M ∑

[
Yf it(a, bi+1)−Yobs(a,�)

]2
. (14)

Besides identifying the subsequent changes of the update and the number of iterations,
the new objective function J(bi+1) for every iteration also needs to be verified. One criterion
is added as the threshold where the objective function must always converge. In other
words, J(bi+1) must be always smaller than J(bi). Each iteration must satisfy these stopping
criteria to continue the optimization process. The flow is repeated until the stopping
criteria (i.e., threshold) are neglected, then the iteration stops, and the optimal hydrocarbon
resistivity for the Yobs is concluded. The methodological flow of the proposed inversion is
depicted in Figure 2.

4.5. Validation of Estimate and Gaussian Process Model

To determine the reliability of the estimates of hydrocarbon resistivity obtained by the
inversion methodology, this work calculates the absolute error between the estimate and the
computer simulation input. The equation of the absolute error is shown in Equation (15).

Absolute Error = |btrue − bestimate|, (15)

where btrue indicates the simulation input, and bestimate is the target resistivity estimated by
the stochastic process-based inversion. Furthermore, the Gaussian process (GP) model is
also validated by calculating the mean squared deviation (MSD), and root mean squared
deviation (RMSD) between the electromagnetic (EM) profile evaluated by the GP model and
EM response modeled by the finite element (FE) method through the computer simulation
technology (CST) software at the unobserved input points. Note that the EM responses
modeled by the FE are assumed as the true EM values. The equations of the MSD and
RMSD are formulated in Equations (16) and (17), respectively.

MSD =
1
M ∑(yFE − yGP)

2, (16)

and

RMSD =
√

MSD =

√
1
M ∑(yFE − yGP)

2, (17)

where yFE and yGP represent the EM response modeled by the FE and GP methods, respectively.
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Figure 2. Methodological flow of the proposed methodology. In the context of this work, all the
simulation models are models with presence of the hydrocarbon. Thus, the step of determining the
target layer is not discussed in this work. w.r.t. indicates with respect to.
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5. Algorithms of the Proposed Methodology

Algorithm 1 shows the steps involved in the forward Gaussian process (GP) modeling,
whereas the process of the inversion scheme for each frequency developed in this work is
shown in Algorithm 2.

Algorithm 1 Forward Gaussian Process (GP) Modeling

Input:
Training input: Source-receiver separation distances (i.e., offsets) and hydrocarbon resistivities
Training output: Magnitude of electric field (E-field)
Steps:
1. Optimize the hyperparameters
2. Define the testing inputs (i.e., unobserved hydrocarbon resistivities)
3. Compute the covariance matrices
4. Evaluate the GP predictive distribution (i.e., predictive mean and variance)
Output:
Two-dimensional (2-D) GP model which consists of various electromagnetic (EM) profiles (i.e.,
magnitude of electric field) at the unobserved hydrocarbon resistivities

Algorithm 2 Stochastic process-based Inversion

Input:
Two-dimensional (2-D) GP models at various hydrocarbon resistivities (observed and
unobserved)
Observational dataset with “unknown’ resistivity of isotropic hydrocarbon
Steps:
1. Compute the objective function (i.e., mean squared errors (MSEs)) between the 2-D GP

model and the observational dataset
2. Plot all the MSEs
3. Define the initial guess (i.e., initial minimizer) and its respective MSE
4. Setindex iteration i = 0
5. Compute the derivative of the covariance function when i = 0
6. Define the learning rate
7. Define the maximum number of iterations (equal to 100) and the maximum percentage

change (equal to 0.05%)
8. Set index iteration i = 1
9. Evaluate the derivative of the GP predictive mean for the previous minimizer
10. Compute the derivative of the MSE for the previous minimizer
11. Calculate the new minimizer when i = 1
12. Define new testing point for the GP regression based on the new minimizer
13. Evaluate the new predictive mean (i.e., new GP model) based on the new minimizer
14. Compute the new MSE between the new GP model and the observational dataset
15. Calculate the subsequent change between the new minimizer and the previous minimizer
16. Return to step 8 by setting new index iteration i = i + 1 if the i is less than 100, the

percentage change is less than 0.05%, and the new MSE is smaller than the previous MSE. If
not, the iteration stops

Output:
The optimal electrical resistivity of hydrocarbon of the observational dataset

6. Results and Discussion

It must be noted here that all the training datasets were evaluated using the finite
element (FE) method, which was exclusively employed by the computer simulation technol-
ogy (CST) software to solve the low-frequency problems. All the multifrequency computer
simulation datasets are depicted in Figure 3.
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Figure 3. Magnitude of electric field (E-field) versus offset for five different hydrocarbon resistivities (90, 180, 270, 360, and
450 Ωm) for five different transmission frequencies: (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Based on Figure 3, the x- and y-axes indicate the source-receiver separation distance
and magnitude of E-field in logarithmic scale, respectively. In this work, we observed
93 points of offset, which were from 10,845.77 m to 20,000 m. In addition, we tested multiple
transmission frequencies to identify which frequency can give the best estimation of the
hydrocarbon electrical resistivity based on the proposed inversion methodology given
specific model conditions. To make the figure interpretable, the zoom-in scaled version of
Figure 3 at far source-receiver separation distances is provided and depicted in Figure 4.

Figure 4. Cont.



Mathematics 2021, 9, 935 13 of 24

Figure 4. The zoom-in scaled of magnitude of electric field (E-field) versus offset at far source-receiver separation distances
for five different transmission frequencies: (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

From Figure 4, we can see that, when using higher frequency (i.e., 0.5 Hz), the electro-
magnetic (EM) signals attenuate rapidly along the lower electrical resistivity of hydrocarbon
(i.e., 90 Ωm). Lower frequency gave better resolution of magnitude of E-field at far offset
distances especially when the hydrocarbon resistivities were higher than 90 Ωm. This
is because low-frequency of EM signals less attenuate along the high-resistive medium.
We believed that the property of multiple frequencies of EM signal in the seabed logging
could give unique clarification to each estimation made by the stochastic process-based
inversion methodology.

We utilized all the computer simulation datasets to be used as the training data-
points in the Gaussian process (GP) modeling. For every frequency, we developed a
two-dimensional (2-D) GP model which consisted of EM profiles at all training and testing
hydrocarbon resistivities. All the contour plots of the 2-D GP model are shown in Figure 5.
Based on Figure 5, the x- and y-axes indicate the 93 points of offset and 121 target resis-
tivities, respectively. The log 10 of magnitude of E-field is represented in the color codes.
We developed these multifrequency 2-D GP models to evaluate as many EM profiles as
possible by fully utilizing the computer simulation datasets. This information is very useful
for the inversion scheme. Note that generating all the multifrequency 121 EM profiles
using the CST software could consume high computational time, which is approximately
10 h. Meanwhile, the GP modeling only need around 25 min for the prior data acquisition
using the computer simulation and approximately less than 1 min to develop all the 2-D
GP models at the unobserved inputs. This proves that, in the context of this study, the
forward GP modeling can provide more “untried” information with lower computational
time compared to the time taken by the mesh-based modeling.

In order to validate the reliability of each of the 2-D GP models, we calculated the mean
squared deviation (MSD) and root mean squared deviation (RMSD) between the GP models
and the EM responses modeled by the finite element (FE) at eight random unobserved hy-
drocarbon resistivities chosen in this research work which were 120 Ωm, 150 Ωm, 210 Ωm,
240 Ωm, 300 Ωm, 330 Ωm, 390 Ωm, and 420 Ωm. The resulting MSDs and RMSDs for fre-
quencies of 0.0625, 0.125, 0.25, 0.375, and 0.5 Hz are tabulated in Tables 2 and 3, respectively.
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Figure 5. Two-dimensional (2-D) Gaussian process (GP) model with 121 different electromagnetic (EM) profiles for multiple
transmission frequencies; (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Table 2. Mean squared deviation (MSD) results.

Target Resistivity 0.0625 Hz 0.1250 Hz 0.2500 Hz 0.3750 Hz 0.5000 Hz

120 Ωm 3.78 × 10−6 8.45 × 10−6 1.94 × 10−5 3.00 × 10−5 3.92 × 10−5

150 Ωm 1.12 × 10−6 2.45 × 10−6 5.69 × 10−6 8.61 × 10−6 1.14 × 10−5

210 Ωm 2.55 × 10−7 5.48 × 10−7 1.32 × 10−6 1.96 × 10−6 2.69 × 10−6

240 Ωm 2.05 × 10−7 4.28 × 10−7 1.03 × 10−6 1.43 × 10−6 2.02 × 10−6

300 Ωm 1.47 × 10−7 3.06 × 10−7 7.42 × 10−7 1.05 × 10−6 1.48 × 10−6

330 Ωm 1.64 × 10−7 3.40 × 10−7 8.17 × 10−7 1.12 × 10−6 1.59 × 10−6

390 Ωm 2.32 × 10−7 4.87 × 10−7 1.13 × 10−6 1.70 × 10−6 2.31 × 10−6

420 Ωm 3.80 × 10−7 8.34 × 10−7 1.94 × 10−6 3.06 × 10−6 4.11 × 10−6

Based on Tables 2 and 3, we can see that all the MSD and RMSD values for every
frequency are very small. It shows that the EM profiles evaluated by the GP regression
are significantly close to its true values (i.e., EM responses modeled by the FE method).
This implies that the GP regression is capable of evaluating multifrequency EM profiles at
various unobserved input parameters accurately with low time consumption.
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Table 3. Root mean squared deviation (RMSD) results.

Target Resistivity 0.0625 Hz 0.1250 Hz 0.2500 Hz 0.3750 Hz 0.5000 Hz

120 Ωm 1.94 × 10−3 2.91 × 10−3 4.41 × 10−3 5.48 × 10−3 6.26 × 10−3

150 Ωm 1.06 × 10−3 1.57 × 10−3 2.38 × 10−3 2.93 × 10−3 3.38 × 10−3

210 Ωm 5.05 × 10−4 7.40 × 10−4 1.15 × 10−3 1.40 × 10−3 1.64 × 10−3

240 Ωm 4.53 × 10−4 6.54 × 10−4 1.02 × 10−3 1.20 × 10−3 1.42 × 10−3

300 Ωm 3.84 × 10−4 5.53 × 10−4 8.62 × 10−4 1.02 × 10−3 1.22 × 10−3

330 Ωm 4.05 × 10−4 5.83 × 10−4 9.04 × 10−4 1.06 × 10−3 1.26 × 10−3

390 Ωm 4.82 × 10−4 6.98 × 10−4 1.06 × 10−3 1.30 × 10−3 1.52 × 10−3

420 Ωm 6.17 × 10−4 9.13 × 10−4 1.39 × 10−3 1.75 × 10−3 2.03 × 10−3

In the context of this work, we generated three different multifrequency observation
datasets separately using the CST software which the resistivities of the hydrocarbon were
assumed to be “unknown”, i.e., 100 Ωm, 200 Ωm, and 400 Ωm. To avoid biased, we pur-
posely selected these “unknown” hydrocarbon resistivities since there was no information
of the resistivities in the developed forward GP model. As mentioned before, the goal
of this work was to find the best estimate of hydrocarbon resistivity of the observational
dataset by minimizing the mean squared error (MSE). A small MSE indicates that the GP
model gives the most likely EM responses for the observational dataset, thereby presenting
the best information of the hydrocarbon resistivity. Here, we provide plots of MSE versus
hydrocarbon resistivity for every frequency in Figure 6 (for 100 Ωm), Figure 7 (200 Ωm),
and Figure 8 (400 Ωm).

By referring to Figures 6–8, the x- and y-axes indicate the hydrocarbon resistivities
involved in the 2-D GP model and the computed MSE values, respectively. The blue points
are the 121 MSEs at the respective hydrocarbon resistivities, whereas the red points repre-
sent the optimized MSEs with respect to the updated minimizers. We also monitored the
status of the convergence for every optimization. Thus, Figures 9–11 show the plots of MSE
versus number of iterations for every observational dataset and transmission frequency.

In Figures 9–11, the x- and y-axes indicate the number of iterations and the computed
MSEs, respectively. Based on these figures, we can see that all the optimizations converged
to the smallest MSE with less than 100 iterations (maximum iterations number). Here, the
most important thing is all the optimizations converged and stopped at the smallest MSE
values and approaching to zero. It agrees the main goal of optimization scheme which
is to minimize the loss function. Next, in order to make all the figures obtained easier to
interpret, we tabulate all the resulting estimates, the validation results (i.e., absolute error),
and the learning rate used for every observational data and frequency in table below.

Figure 6. Cont.
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Figure 6. Mean squared error (MSE) versus hydrocarbon resistivity for multiple transmission frequencies (Observational
dataset 1 with “unknown” resistivity of 100 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Figure 7. Cont.
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Figure 7. Mean squared error (MSE) versus hydrocarbon resistivity for multiple transmission frequencies (Observational
dataset 2 with “unknown” resistivity of 200 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Figure 8. Mean squared error (MSE) versus hydrocarbon resistivity for multiple transmission frequencies (Observational
dataset 3 with “unknown” resistivity of 400 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.



Mathematics 2021, 9, 935 18 of 24

Figure 9. Mean squared error (MSE) versus number of iterations for multiple transmission frequencies (Observational
dataset 1 with “unknown” resistivity of 100 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Based on Table 4, all the number of iterations were less than 100 (i.e., the maximum
number of iterations). Different learning rate was used for every frequency of the ob-
servational dataset. From the table, we can see all the computed MSE were very small.
Moreover, for the frequency of 0.0625 Hz, only 72.289 s, 35.775 s, and 33.923 s were taken by
the stochastic process-based inversion to estimate 104.03 Ωm, 201.45 Ωm, and 402.22 Ωm,
respectively, whereas, for the frequency of 0.125 Hz, the inversion took 50.482 s, 44.682 s,
and 46.848 s to estimate 102.72 Ωm, 198.08 Ωm, and 404.34 Ωm, respectively. For the
frequency of 0.25 Hz, 63.797 s, 55.898 s, and 51.133 s were needed to estimate 102.17 Ωm,
197.51 Ωm, and 410.64 Ωm, respectively. Next, for the frequency of 0.375 Hz, the time taken
by the proposed methodology to yield 102.01 Ωm, 197.93 Ωm, and 383.43 Ωm were 57.818 s,
42.565 s, and 49.087 s, respectively. The last one, for the frequency of 0.5 Hz, only 68.353 s,
47.105 s and 65.238 s was needed by the inversion methodology to produce estimates of
101.91 Ωm, 198.20 Ωm, and 386.18 Ωm, respectively. On average, the GP-inversion only
took 52.333 s to obtain the optimal hydrocarbon resistivity. This indicates that the proposed
inversion methodology could solve the forward and inverse modeling rapidly. In addition,
to observe the trend of the hydrocarbon resistivity estimations based on the multifrequency
property, we plotted the calculated absolute errors versus the true resistivity for every
tested transmission frequency. The plot is depicted in Figure 12.
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Figure 10. Mean squared error (MSE) versus number of iterations for multiple transmission frequencies (Observational
dataset 2 with “unknown” resistivity of 200 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Figure 11. Cont.
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Figure 11. Mean squared error (MSE) versus number of iterations for multiple transmission frequencies (Observational
dataset 3 with “unknown” resistivity of 400 Ωm): (a) 0.0625 Hz, (b) 0.125 Hz, (c) 0.25 Hz, (d) 0.375 Hz, and (e) 0.5 Hz.

Table 4. The main stochastic process-based inversion results.

Dataset Iterations Number True Resistivity (Ωm) Estimate (Ωm) MSE Absolute Error

Frequency: 0.0625 Hz; Learning rate: 1.50
1 83 100 104.03 6.10 × 10−7 4.03
2 38 200 201.45 1.30 × 10−7 1.45
3 35 400 402.22 1.70 × 10−7 2.22

Frequency: 0.1250 Hz; Learning rate: 1.00
1 58 100 102.72 2.70 × 10−7 2.72
2 49 200 198.08 3.80 × 10−7 1.92
3 54 400 404.34 3.50 × 10−7 4.34

Frequency: 0.2500 Hz; Learning rate: 0.50
1 76 100 102.17 4.00 × 10−7 2.17
2 63 200 197.51 4.50 × 10−7 2.49
3 60 400 410.64 1.22 × 10−6 10.64

Frequency: 0.3750 Hz; Learning rate: 0.50
1 67 100 102.01 5.30 × 10−7 2.01
2 48 200 197.93 5.50 × 10−7 2.07
3 55 400 383.43 1.45 × 10−6 16.57

Frequency: 0.5000 Hz; Learning rate: 0.20
1 83 100 101.91 8.10 × 10−7 1.91
2 54 200 198.20 8.30 × 10−7 1.80
3 76 400 386.18 1.17 × 10−7 13.82

From Figure 12, the x- and y-axes indicate the true resistivity and absolute error,
respectively. Based on this figure, we can infer that the frequency of 0.5 Hz gave better
hydrocarbon resistivity estimation for the observational dataset 1 (true resistivity = 100 Ωm)
with the absolute error of 1.91 compared to the other absolute errors when using 0.0625 Hz,
0.125 Hz, 0.25 Hz, and 0.5 Hz. But, when the true resistivity increased, the frequency of
0.0625 Hz gave smaller absolute errors, which were 1.45 for the observational dataset 2
(true resistivity = 200 Ωm) and 2.22 for the dataset 3 (true resistivity = 400 Ωm) compared
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to the other absolute errors. This is because, in the seabed logging (SBL) applications,
lower transmission frequency is used to get far propagation of the EM signals. This feature
is normally employed when the location of the target bodies is deep from the seafloor.
Besides that, lower frequency also attenuates slowly along the high-resistive bodies, such as
hydrocarbon. Thus, far propagation of the EM signals beneath the seabed can be achieved
when the embedded bodies have high electrical resistivity. Since the depth of hydrocarbon
layer set in this work was fixed at 500 m from the seafloor, the frequency of 0.5 Hz gave
the best resistivity estimation when the resistivity of the hydrocarbon layer was 100 Ωm.
Meanwhile, when the hydrocarbon resistivity is 200 Ωm and above, the frequency of
0.0625 Hz gave the best estimation of the hydrocarbon resistivity.

Figure 12. Absolute error versus true resistivities of 100 Ωm, 200 Ωm, and 400 Ωm for multifre-
quency property.

Based on those results, its uncertainty quantifications produced by the GP modeling
also were investigated. In the context of this work, the uncertainty quantifications for
estimates of 101.91 Ωm (at frequency of 0.5 Hz), 201.45 Ωm (at frequency of 0.0625 Hz),
and 402.22 Ωm (at frequency of 0.0625 Hz) were examined. EM profiles for these three
estimates were evaluated by the GP regression separately, and the predictive variances
for each profile were computed in order to determine whether the observational datasets
lie within the 95% confidence interval (CI) of the respective GP model or not. If the
observational datasets (with 100, 200, and 400 Ωm) fail to fit in the CI of the respective
forward GP model, it means that the proposed methodology is unable to provide reliable
resistivity information. For the estimate of 101.91 Ωm, only 1.08% of the EM responses
over 93 datapoints per EM profile lied outside the 95% CI. Meanwhile, for the other two
estimates, only 4.30% of the EM responses lied outside its respective CI for both estimates.
By following the testing of significance for hypothesis testing, all the percentages were less
than the 5% level of significance. Thus, it can be inferred that the observational datasets
significantly lied within the 95% CI of the GP models where its hydrocarbon resistivity
inputs were estimated by the stochastic process-based inversion.

7. Conclusions

We proposed stochastic process-based inversion to estimate the electrical resistivity of
isotropic hydrocarbon layer based on multifrequency synthetic seabed logging (SBL) model.
Five different transmission frequencies were tested which were 0.0625, 0.125, 0.25, 0.375,
and 0.5 Hz to determine the effect of the multifrequency property of the SBL application
in estimating the hydrocarbon resistivity by using the proposed inversion methodology.
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We employed the stochastic process, namely Gaussian process (GP) regression, as the
alternative forward modeling method to evaluate the electromagnetic (EM) profiles at
various unobserved resistivities with uncertainty quantification by utilizing the prior
knowledge generated through the computer simulation technology (CST) software. Based
on the calculated deviations (presented in Tables 2 and 3), we proved that the GP was well-
fitted to evaluate the EM profiles even at the unobserved resistivity inputs. In addition to
that, GP also took significantly lower computational time (approximately 26 min including
the prior data acquisition) to evaluate the 121 EM profiles compared to the time that could
be taken by the software (approximately 10 h).

Next, for the inversion scheme, we proved that the proposed methodology can effi-
ciently estimate the electrical resistivity of the hydrocarbon layer with low time consump-
tion, with the average time of 52.333 s. The objective function also converged, and the
optimization stopped at the smallest mean squared error (MSE). The computed absolute
errors also agreed the nature or behavior of multifrequency EM data. For the case of the
observational dataset 1, the stochastic process-based inversion was significantly capable of
estimating the hydrocarbon resistivity when the transmission frequency used was 0.05 Hz,
while, for the case of the observational datasets 2 and 3, frequency of 0.0625 Hz gave better
hydrocarbon resistivity estimation. This is because lower frequency of EM signal attenuates
slower along the medium with higher resistivity. The choice of the transmission frequency
practiced in the SBL applications can be predetermined based on the prior knowledge of
the hydrocarbon resistivity. In addition, we also fully utilized the uncertainty quantification
feature (i.e., predictive variance) provided by the GP. By following the testing of significance
for hypothesis testing, all the percentages of the observational datapoints outside the 95%
confidence interval (CI) of the respective GP model were less than 5% level of significance.
This showed the observational datasets significantly lied within the uncertainty quantifi-
cation computed by the GP where the resistivity inputs were estimated by the inversion
methodology. Therefore, the stochastic process-based inversion methodology can be fully
utilized to effectively estimate the hydrocarbon resistivity in the SBL applications with low
computational efforts. This attempt is very useful for the EM data-processing, especially to
recover the electrical resistivity distribution of the hydrocarbon reservoir. Consequently,
this attempt could de-risk the offshore hydrocarbon exploration.
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