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Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing
at least a transcendental function. Solutions involving transcendental equations are often problematic,
particularly in the form of a system of equations. This challenge has limited the number of equations,
with inter-related multi-functions and multi-variables, often included in the mathematical modelling
of physical systems during problem formulation. Here, we presented detailed steps for using a code-
based modelling approach for solving SoTEs that may be encountered in science and engineering
problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to
illustrate the steps. Parametric studies were performed to visualize how a change in the variables
affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to
x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic
and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new
opportunities for including more functions and variables in numerical models of systems, which will
ultimately lead to a more robust representation of physical systems.

Keywords: system of transcendental equation; computational solutions; code-based modelling ap-
proach; numerical analysis; Sine-Gordon equations; photovoltaics; thermophotovoltaics; solar energy

1. Introduction

The advent of the computer has made explicit solution and visualization of transcen-
dental equations (TE) easier [1]. Computing has, indeed, expanded the possibilities of
modelling and simulation of complex phenomena, processes, and systems [2]. However,
encountering non-zero TE of the form f(x) = g(x) in science and engineering poses chal-
lenges, particularly when the TE is included in a system of equations to create a system of
transcendental equations (SoTE). A TE may have many roots which may require explicit
method to find their roots using Cauchy’s integral theorem [3]. The computational solution
to SoTE may result in a single output in a case where some functions act as functions of
the output function. The output function can be represented graphically to visualize and
analyze how it changes with respect to some system variables or functions in the SoTE.

In order to increase the number of variables and parameters of a physical system
captured during numerical modelling, multi-functions may be required to be solved
simultaneously. Consequently, more methods/techniques for solving SoTEs are required
to facilitate numerical solutions of physical systems involving TE. Over the years, the need
to solve problems involving TEs or SoTEs caused scientists and engineers to use different
methods/techniques to find solutions to them [4]. For instance, Artificial Neural Network
(ANN) has been proposed for solving SoTEs [5]. A Chebyshev series has been added
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to a transcendental equation to convert it into a polynomial equation so that it can be
truncated and solved [6]. A decomposition technique has also been applied to solve TEs [7].
Lagrange inversion theorem and Pade approximation were used by Luo [8] to solve TEs
encountered in physics. Furthermore, Ruggiero [9] adopted a computational iteration
procedure to solve a TE involving wave propagations in elastic plates. The iterative process
has also been applied to solve a fourth order transcendental nonlinear equation of the
form f(x) = 0 [10]. There have been some specific attempts to solve physical problems
involving SoTEs. For instance, Falnes [11] demonstrated that the electrical impedance of
a semiconductor supporting two waves contains an entire transcendental function of the
form f(z) = exp(−z) − l − cz. Danhua et al. [12] studied a perturbed Sine-Gordon equation
with impulsive forcing to describe non-linear oscillations. They highlighted the various
application of the Sine-Gordon equations in science and engineering.

Computational methods have been applied to solve non-linear wave equations [13].
Recently, a code-based modelling (CBM) approach is an example of computational ap-
proach proposed for solving SoTEs applicable to photovoltaic and thermophotovoltaic
systems [14–16]. Although the CBM approach appears to be robust in achieving numerical
solutions to SoTEs, there are no clear steps for formulating and solving of scientific and
engineering problems involving SoTE. Therefore, the aim of this paper is to present detailed
steps of how CBM approach can be implemented to solve SoTEs. To achieve this aim, the
specific objectives are to:

1. Describe the steps for using the CBM approach for solving SoTEs.
2. Demonstrate how the CBM approach is used to solve a hypothetical SoTE including

Sine-Gordon equations.
3. Perform parametric analysis of wavelength and amplitude in Objective 2.
4. Discuss the application of the CBM approach for modelling and simulation of photo-

voltaic and thermophotovoltaic systems.

The originality of this study is realized in being the first paper to present detailed
steps for applying the CBM approach to facilitate numerical/computational solutions to
SoTEs. Although the steps are proposed for problems that may be encountered in science
and engineering, there is no doubt that any researcher from any field can adopt/adapt
the steps. The major contribution of this paper is to demonstrate how the CBM approach
can allow scientists and engineers more degrees of freedom to overcome the limitations
of including multi-functions and multi-variables during model representation of physical
systems involving SoTEs. Henceforth, Section 2 presents detailed steps for formulating
SoTEs including Sine-Gordon functions. Section 3 presents the results generated from the
simulations of the SoTE formulated in Section 2. Then, Section 4 discusses the application
of the CBM approach for solving SoTE related to photovoltaics and thermophotovoltaics,
while Section 5 concludes the study.

2. Detailed Steps for Implementing the CBM Approach

The mathematical model of a system facilitates the predictable physical behaviors
which can allow scientists or engineers to investigate the system using simulations. The
functions describing the system may include linear or/and non-linear equations and can
be solved as a system of equations. This means that the mathematical formulation of
physical problems is critically important for capturing the crucial parameters and variables
of the system under study [17]. Since any parameter excluded from the model cannot be
accounted for, robust formulation becomes a necessary step in accurate representation
of any physical system or phenomena. Once the problem is adequately formulated with
all the possible dependent and independent variables, computing can facilitate solutions
faster and accurately. As algorithms continue to facilitate the application of the computer
in different facets of human existence [18], CBM approach appears compatible with code-
based algorithms for solutions to SoTEs.

Figure 1 summarizes the steps for solving SoTEs using the CBM approach. Although
the steps may vary depending on the nature and complexity of the problem, the steps in
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the flowchart are further described to show how the approach can be adopted for finding
numerical solutions to SoTEs. Where applicable, illustrations were used to explain the
applicability of the steps.
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Step 1: Define the scope and hierarchy of the system to be modelled. It is not always possible
to capture all the parameters and variables affecting a system in a single equation. This step
is crucial for defining the aspects of the system that would be included in the CB model.
It might be helpful to recognize that more parameters and functions can be added once
the basic model is established so that the decision space can be expanded. The idea is to
start from a simple model, and then increase the complexity of the model to capture more
parameters and variables.

Step 2: Formulate the SoTE representing the model of the system. This step may not
require entirely new equations. Established equations in the field of study can be used.
As an example, solar exergy equation by Petela [19] was used as solar exergy input into a
numerical integration of solar, thermal, and electrical exergies of photovoltaic module [14].
Since electrical exergy involves a SoTE, the integrated model remained a SOTE. However,
for situations where there are no extant equations, a formulation of new equations from the
first principle, statistical modelling, or through experimental study can be considered. For
instance, in order to determine the optimal location for a large-scale photovoltaic power
generation, new thermodynamic indices were formulated and combined with a SoTE [15].
In formulating a SoTE, inter-relationships among the equations in the system of equation
is fundamental in order to reach a point of convergence. Depending on the scope of the
modelling, a SoTE may include as many functions as may be required.

Step 3: Check for inter-relatedness of the equations. Without an inter-relationship between
the equations, the requirement for solving a SoTE simultaneously may prove elusive. There-
fore, any convergence reached when the equations are not inter-related does not exactly
represent a solution to a SoTE. Thus, properly linked equations to interact simultaneously
directly or indirectly during computational iteration is crucial in solving SoTEs. To achieve
direct or indirect inter-relationships, an equation may be rearranged to make the required
dependent variable the subject of the equation. In direct inter-relationship, the total output
of a function is substituted into another function, thereby creating a function of a function
relationship. A function can be decomposed during coding, where possible, to make the
algorithm easier to implement. On the other hand, indirect inter-relationship exists when
two or more functions share the same parameter or variable. The shared parameter or vari-
able by two or more functions in a SoTE may affect the output of the functions differently.
For instance, in formulating the net temperature of a body undergoing heating and cooling
simultaneously, the temperature of the body will exist in the heating and cooling functions.
Nonetheless, whilst heating tends to increase the temperature of the body, cooling tends to
reduce it.

Step 4: Write the CB model of the SoTE. In this step, each function is written as a code
in accordance with the syntax/structure of the software used. The codes can be written
and tested step-by-step instead of attempting to run the SoTEs after integrating them. By
testing preceding codes before integrating more functions, troubleshooting, or debugging
of the CB model would be enhanced because errors can be traced from the latest step. The
algorithm used for implementing SoTE codes are important because it determines how
many results that can be generated from a SoTE. CBM approach can be implemented in
software such as MATLAB, Python, Mathematica, etc. MATLAB [16] appears to be very
useful for creating CB models because it is easy to integrate the functions and visualize the
effects of the change of the independent variable on the dependent variables. In MATLAB,
an input function is presented before the output function. The algorithm is also designed
to generate visualizations of the outputs from the SoTE.

Step 5: Simulate the SoTE to visualize the training case. Testing of the CB model involves
validation tests against experimental results and training cases. The model should predict
the training cases with a reasonable accuracy and significant precision for the model to be
applied further. The model can be optimized at this stage if the accuracy of prediction is
unacceptable.

Step 6: Choose a range of the parameter to be investigated. The nature of non-zero TEs (i.e.,
f(x) = g(x)) means that it cannot be solved explicitly like linear, quadratic, or polynomial
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equations with roots when f(x) = 0. For non-zero SoTEs, a range of value of a parameter
or variable can be simulated. The solution may require an iterative process [20] with a
range of values of the parameters and variables of the system. The parameters or variables
chosen depend on the aspect of the system under investigation.

Step 7: Perform parametric studies and virtual experimentation. Parametric studies are
important during model-based studies because they allow different scenarios that can affect
the system to be simulated and analyzed. It also helps to investigate optimal solutions as
well as carryout “what if” analysis. In a study [16], after validating the CB model of a PV
module, parametric studies were used to study the effect of solar radiation, temperature,
ideality factor, number of solar cells, and number of modules in parallel on the maximum
power point. Model-based parametric study is useful for gaining deep insights without
necessarily committing excessive resources in experimental studies. Yet, results from
parametric studies may inform the ultimate design of experimental studies.

Virtual experimentation is a novel computational approach for gaining deeper insights
into direct and indirect relationships between variables or a variable and other functions in
the SoTE. This is an advanced application of CBM approach. Virtual experimentation, as
the name implies, is a virtual implementation of steps similar to the steps performed in
the laboratory. It allows some parameters of the system to be kept constant while other
variables change. The effect of the changes on the system are then analyzed. There are
studies that have discussed how virtual experimentation can be implemented [14,16]. For
instance, if solar radiation increases, it may be of interest to investigate how power and
heat generation evolve in a PV module [14]. However, this may require incorporating
an additional user defined function and/or algorithm to the CB model. For instance, to
model solar photovoltaic and thermophotovoltaics, the input radiation function is the solar
radiation function in the case of solar photovoltaic systems, whilst the input radiation
function is the radiative heat flux in the case of thermophotovoltaic system. Although solar
radiation or thermal heat flux can cause the photovoltaic process in PV cells, parametric
study may reveal more insights into how they specifically differ during power generation.

Step 8: Analyze and report results. This step involves a critical analysis of the results from
Step 7 and reporting them in the required format. Reporting may encompass generating
internal reports for decision-making as well as reporting in scholarly publications. The
detailed steps for using CBM approach for solving SoTEs have satisfied the first objective
of this study.

A Hypothetical SoTE Including a Sine-Gordon Equation

Sine wave functions are applied in physics and engineering, particularly in oscilla-
tions, vibrations, and signal processing. As an example, TE is encountered in transverse
and longitudinal wave diffraction [21]. A study by Sun [22] proposed an exact solution
to Sine-Gordon equations with transcendental characteristics. Here, hypothetical Sine-
Gordon equations (utt = uxx + Sin(u)) [22,23], linear, and quadratic functions are solved
simultaneously. The SoTE including Sine-Gordon equations simulates how interferences
affect the output wavelength, frequency, and amplitude of the resultant wave function. The
SoTE expressed in Equation (1) composed of the six functions expressed in f1 to f6 where
f6 represents the output function, while f1 to f5 represent the input functions. Since f1,
a linear function, is a TE (i.e., f(x) = g(x)), solving it alongside other equations creates a
SoTE. f1 can be transmitted through the system and visualized through f6. Likewise, a
change in the parameters in f1 to f5 can be visualized in the output function. Here, the
functions are formulated to have inter-relationships in order to facilitate convergence so
that the output function ( f6) can predict the behavior of the wave as a function of the input
functions, parameters, and variables. The CB model of the SoTE represented in f1 to f6 is
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written with MATLAB codes. The output wave ( f6) is simulated for x1 ∈ R+ between 1
and 100 within which the input and output functions are visualized.

f1 = x1 = v1x1.
f2 = x2 = k1x1

2.
f3 = x3 = −100x2 +

K2
K3

.
f4 = x4 = k4 + v2Sin(x1).
f5 = x5 = k5 – v3Sin(x4).

f6 = x6 = x2 x4.

(1)

where v1, v2 and v3 are variables, k1 to k5 are constants and x1 to x6 represents the functions
f1 to f6, respectively.

3. Results and Discussions

The results from simulating the CB model of the SoTE are presented in this section.
The variables v1 = 10, v2 = 50, v3 = 20, 000, and constants k1 = 2000, k2 = 15, 000, k3 = 10,
k4 = 20, and k5 = 20 for x1 = 1:0.5:100 was simulated so that individual functions can
be observed, as well as their overall effect on the output function. Figure 2a–e shows the
relationship between x1 with x2, x3, x4, x5, and x6. Considering that f1 is a TE, a possible
solution to it is that v1 = 1. However, suppose that the mathematical model represents a
process in which the parameter x1 undergoes a process change but it is expected that its
index should remain as unity. Then the input value of x1 into the process must be equal to
the output value of x1. f1 is satisfied if the value of x1, before and after the process change
remains the same. By this condition, the value of x1 can be an integer, decimal, or indices
since it will yield an index of 1 (i.e., v1 = x1

x1
= 1). Later, it will be shown that changing v1

in f1 affects the frequency of the Sine-Gordon wave f4.
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Figure 2. Simulation of the CB model of SoTE for x1 = 1:0.5:100. (a)input quadratic function, (b) input quadratic function,
(c) resultant polynomial function, (d) induced interference (e) output wave function.
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A parametric study is performed to observe how a change in the variables affect the
output of the Sine-Gordon wave model. The variables v1 = 10, v2 = 50, v3 = 20, 000
and constants k1 = 2000, k2 = 15, 000, k3 = 10, k4 = 20, and k5 = 20 for x1 = 1:0.5:100
were maintained while the division of the scale of the wavelength was reduced from
x1= 1:0.5:100 to x1 = 1:5:100 to observe how the characteristics of the output wave would
change. Based on the result of the simulations, the outputs of f4, f5, and f6 significantly
changed, as shown in Figure 3c–e. f5 appears to have introduced the highest interference,
as shown in Figure 3d, although it was superimposed at the output, as shown in Figure 3e.
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Figure 3. Simulation of the CB model of SoTE for x1 = 1:5:100. (a)input quadratic function, (b) input quadratic function, (c)
resultant polynomial function, (d) induced interference (e) output wave function.

Again, the variables v1 = 10, v2 = 50, v3 = 20, 000 and constants k1 = 2000,
k2 = 15, 000, k3 = 10, k4 = 20, and k5 = 20 for x1 = 1:0.5:100 were maintained while the
scale of the divisions of the wavelength was increased from x1 = 1:0.5:100 to x1 = 1:0.0005:100
to observe how the characteristics of the output wave would change over a larger scope.
There was a significant increase in the frequency of the wave, as shown in the outputs of
f4, f5, and f6 as visualized in Figure 4c–e. Still, the amplitude of the wave was virtually
bounded by the two quadratic functions (Figure 4a,b) with the resultant amplitude increas-
ing progressively, as shown in Figure 4e. This implies that the resultant discontinuity of
the two quadratic functions, when visualized from the relationship between x1 and x6, did
not eliminate their effects as they constrained the amplitude of the output wave even in
their discontinuous states.
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Figure 4. Simulation of the CB model of SoTE for x1 = 1:0.0005:100. (a)input quadratic function, (b) input quadratic function,
(c) resultant polynomial function, (d) induced interference (e) output wave function.

In addition to changing the wavelength of the sine functions over the range of x1,
other parameters can be adjusted so that their effects can be visualized. With x1 = 1:0.5:100,
v1 = 100, v2 = 5000, v3 = 20, 000, and k1 = 2000, k2 = 15, 000, k3 = 10, k4 = 20, k5 = 20,
the effect of the change in v1 and v2 in the characteristics of the wave was visualized.
Although the scale of the wavelength in Figures 2 and 5 were the same, the output waves
in Figures 2e and 5e differ significantly in their frequency when v1 and v2 changed. Based
on the analysis of the outputs, the reduced frequency was caused by the effects seen in
Figures 2c and 5c, due to f4. In all the cases, there was an increasing amplitude because of
the two quadratic input functions.

From the foregoing analysis in this section, the CBM approach has been used to
demonstrate how a hypothetical SoTE including the Sine-Gordon equation was solved to
the satisfaction of research objective 2. Also, parametric analysis, which showed how the
wavelength and the amplitude responds to the change in the variables, satisfy the research
objective 3.
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Figure 5. Simulation of the CB model of SoTE for x1 = 1:0.5:100 with variation in v1 and v2. (a)input quadratic function,
(b) input quadratic function, (c) resultant polynomial function, (d) induced interference (e) output wave function.

4. Application of SoTE in Photovoltaic and Thermophotovoltaic Modelling
and Simulation

This section presents the application of the CBM approach for modelling and sim-
ulation of photovoltaic and thermophotovoltaic systems, pursuant the achievement of
objective 4. The photovoltaic and thermophotovoltaic modelling and simulation involves
a SoTE because the computation of the output voltage of the PV cells involves a tran-
scendental function [16,24,25]. Equation (2) presents the functions that have been used to
create a predictive model for power generation characteristics of the PV module. The inter-
relationships between the equations are further highlighted. Bandgap function

(
Eg
)

[26] is
an input function in calculating the saturation current function (Is) [27]. The photocurrent
function (Iph) [28] is an input function for calculating the output current of the PV (I0). The
typical problem that qualifies this to be a SoTE is that the output voltage (V0) is within
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the function I0 which is already defining the output current [29]. In order to compute the
output power of PV (Po), the function is iterated over a range of the voltage (V0) [16].

Eg = Eg(0)− αT2

T+ β .
Iph = ( Isc + KI (Tcell − Tref )× G

Gref
.

Is = Is,ref

[
Tcell
Tref

]3
exp

[
1
k

(
Eg

Tref
− Eg

Tcell

)]
.

I0 = IphNp − IsNp

[
exp

(
qV0

ANskT

)
− 1
]
.

Po = Io × Vo.

(2)

As an example, the effect of increasing number of solar cells in series (Ns) from 36 to
72 cells is simulated and presented in Figure 6. The open circuit voltage increased as the
number of cells increases leading to an increased maximum power point of the system.
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Furthermore, the SoTE in Equation (2) which represents solar photovoltaic generation
can be utilized to create a thermophotovoltaic model [14]. The insolation (G) can be
replaced by Steffan–Boltzmman’s radiation, where the thermal heat flux is from an artificial
source with unique radiation surface characteristics. The utility of the CBM approach is
the opportunity to adapt the algorithm for implementing SoTE to the specific problem
under investigation. In the instant case of the application of CBM approach to implement
a numerical solution for SoTE encountered in photovoltaics, two illustrations are hereby
highlighted. Equation (2) acted as the power output in the integration of solar, thermal,
and electrical exergies of a photovoltaic module, as shown in Equation (3).

.
Qloss =

[
G × Acell × τglass

(
1− 4

3
T

Tsun
+

1
3

(
T

Tsun

)4
)]
−
(

IphNp − IsNp

[
exp

(
qVpv

ANskT

)
− 1

] )
× Vpv . (3)

Apart from using solar radiation to generate excitation in PV cells, there are increasing
research efforts to use sources of heat to generate radiative heat transfer that can cause
excitations in PV cells. Regardless, thermophotovoltaic systems still depend on the physics
of photovoltaic power generation except that thermophotovoltaic systems are not limited
by the risks associated with the intermittency of solar radiation [30]. Equation (4) shows a
numerical integration of radiative heat transfer, power density output, and thermal losses
in the core of a thermophotovoltaic system [31].

.
Qlosses =

[
n2εσFAR

(
T4

rad − T4
pv

) ]
−
(

IphNp − IsNp

[
exp

(
qVpv

ANskTpv

)
− 1

] )
× Vpv . (4)
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Both Equations (3) and (4) are SoTEs and their solutions were facilitated by using
CBM approach. The two models are crucial models for investigating the thermodynamics
of photovoltaics and thermophotovoltaics.

5. Conclusions

This study provides detailed steps on how the CBM approach can be used to solve
SoTE with multi-functions and multi-variables. To formulate the steps, a hypothetical SoTE
including Sine-Gordon equations was used to illustrate the steps for solving a SoTE. Also,
a parametric analysis was performed to investigate how a change in the variables affected
the superposition of the waves, the wavelength, and the amplitude. From the results of
the simulations, the amplitude, wavelength, and frequency of the output wave reflects the
changes in the parameters and variables of the SoTE. This means that the properties of
the Sine-Gordon wave were altered when the variables and parameters in the CB model
of the waves were adjusted. The application of the CBM approach in the modelling and
simulation of photovoltaic and thermophotovoltaic systems was presented as practical
application of CBM approach in solving a complex SoTE. In conclusion, more functions and
variables of physical systems or phenomena can be added during mathematical modelling
of problems exhibiting the characteristics of a SoTE, using the steps outlined in this study.
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Nomenclature

A ideality constant
CBM code-based modelling
CB code-based
Eg bandgap energy
I0 output current of PV module
Iph photocurrent
Is saturation current of PV module
Isc short circuit current of PV module
k Boltzmann’s const. (1.38 × 10−23 J/K)
MPP maximum power point
Ns number of solar cells in series
Np number of solar cells in parallel
P0 output power of PV module
PV photovoltaic
q electron charge (1.602 × 10−19 C)
SoTE system of transcendental equations
STC standard test condition (25 ◦C, 1000 W/m2, AM 1.5)
T temperature
TE transcendental equation
Voc open circuit voltage
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Greek symbols
α solar cell material constant
β solar cell material constant
Subscripts
cell solar cell
ph photon
pv photovoltaic
ref reference
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