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Abstract: In this paper, we introduce a model-free algorithm, robust mode analysis (RMA), to
extract primary constituents in a fluid or reacting flow directly from high-frequency, high-resolution
experimental data. It is expected to be particularly useful in studying strongly driven flows, where
nonlinearities can induce chaotic and irregular dynamics. The lack of precise governing equations
and the absence of symmetries or other simplifying constraints in realistic configurations preclude
the derivation of analytical solutions for these systems; the presence of flow structures over a wide
range of scales handicaps finding their numerical solutions. Thus, the need for direct analysis of
experimental data is reinforced. RMA is predicated on the assumption that primary flow constituents
are common in multiple, nominally identical realizations of an experiment. Their search relies on
the identification of common dynamic modes in the experiments, the commonality established via
proximity of the eigenvalues and eigenfunctions. Robust flow constituents are then constructed by
combining common dynamic modes that flow at the same rate. We illustrate RMA using reacting
flows behind a symmetric bluff body. Two robust constituents, whose signatures resemble symmetric
and von Karman vortex shedding, are identified. It is shown how RMA can be implemented via
extended dynamic mode decomposition in flow configurations interrogated with a small number of
time-series. This approach may prove useful in analyzing changes in flow patterns in engines and
propulsion systems equipped with sturdy arrays of pressure transducers or thermocouples. Finally,
an analysis of high Reynolds number jet flows suggests that tests of statistical characterizations in
turbulent flows may best be done using non-robust components of the flow.

Keywords: fluid flows; reacting flows; vortex shedding; dynamic mode decomposition

1. Introduction

It is rarely known at sufficient detail that the operation of many technologically
important processes relying on strongly driven fluid or reacting flows can be controlled or
optimized through modeling. For example, due to chamber feedback and unsteady heat
release [1,2], it is difficult to establish a priori how the fuel efficiency and power output
of airplane engines or efficacy of industrial reactors can be enhanced while maintaining
their integrity. Attempts to reduce the fuel/air ratio in an airplane engine can cause flame
extinction [3]; strong driving of industrial reactors can initiate highly damaging, and
spontaneously forming “hot spots” [4]. The ability to establish the nature of such flows and
identify their changes can aid in design improvements to control or suppress undesirable
facets of the flows. Such an approach is outlined here.

A major difficulty in control is incomplete knowledge of the underlying systems [1].
Although the Navier-Stokes equations modeling fluid flows are known [5–8], reaction-
diffusion systems for combustion are typically only known approximately. Even in rare
instances when the underlying dynamics are known, the absence of symmetries or other
simplifying constraints in realistic configurations preclude the derivation of solutions.
Difficulties can originate from nonlinearity of the underlying equations and the resulting
sensitive dependence on initial conditions, as well as the preponderance of nonlinearly
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coupled flow constituents that permeate strongly driven flows [9]. The emergence of
structures, such as eddies and vortices, over a wide range of temporal and spatial scales
complicates numerical integration of the underlying systems as well.

Experimental studies of reacting flows have seen significant advancements through
recent developments in experimental techniques, such as particle-image-velocimetry (PIV),
planar laser-induced fluorescence (PLIF), and high-resolution chemiluminescence. In PIV,
the flow is seeded with light tracer particles, which are imaged to deduce flow velocity
fields [10,11]. In PLIF, light illuminates a medium which fluoresces; this signal is cap-
tured by a detector and inverted to yield quantitative characteristics of the medium [12].
Chemiluminescence uses light emission from atoms or molecules to establish the location
and density of products in reacting flows [13]. These techniques permit high-frequency,
high-resolution measurements of velocity, density, and temperature fields in a flow. The
question then is how flow characteristics can be extracted directly from experimental data.

One difficulty that emerges in such studies involves differentiating flow dynamics
from “noise”, by which we mean the content in the signal not directly inferred from
the underlying dynamical system. Examples of noise include measurement errors, un-
accounted long-range interactions, slow variations in the baseline due to changes (e.g.,
temperature) in the experimental or laboratory set-up, and so forth. In addition, the
near-translational invariance of large systems introduces “slosh dynamics” [14], that is,
low-frequency movements of the baseline. Typically, it is not known how such irregular
facets can be accounted for and eliminated from an experimental signal. In strongly-driven
fluid and combustion flows, their effects are compounded by nonlinearity, and the conse-
quent sensitive-dependence on initial conditions [9]. A priori, it is not clear how coupling
between dynamical modes, between dynamical modes and extraneous ones, or facets like
measurement errors can be dissociated.

The standard approach to analyzing fluid or combustion flows is its interpretation as
the collective evolution of a set of “coherent structures” {Φn(x)}, whereby the dynamics
of a flow field u(x, t) is decomposed as

u(x, t) = ∑ an(t)Φn(x). (1)

The most widely-used class of coherent structures is derived through proper orthog-
onal decomposition (POD) [15–19]. They are eigenfunctions of the matrix of pair-wise
correlations of the field at different sites, arranged in decreasing order of their contribution
to variations in the field. POD gives the most “efficient” decomposition in the sense that
at any level of truncation, no other class of coherent structures captures a larger fraction
of variations [16]. Typically, dynamics of an(t)’s are coupled due to nonlinearity of the
underlying system.

A second class of coherent structures is given by dynamic mode decomposition
(DMD) [20–24]. A dynamic mode is a spatial structure that oscillates at a fixed (com-
plex) frequency; that is, the coefficients in Equation (1) evolve as an(t) ∼ exp[iΛnt], for
Λn ∈ C. The spatio-temporal flow dynamics can be interpreted as the sum of oscillating
dynamic modes. Under appropriate conditions, DMD is a form of Koopman mode analysis,
originally constructed to explain the linearity of quantum mechanics even for classically
nonlinear systems [22–27]. Unlike for POD modes, the evolution of a dynamic mode is
independent of the others. In addition, dynamic modes are a natural class of coherent
structures to expand flows containing, for example, periodic vortex shedding.

DMD offers means to partially address the question posed earlier on delineating flow
dynamics from noise and other irregular facets. As in Fourier expansion of a noisy signal,
DMD expands all facets of the signal u(x, t), including noise, in periodically evolving
modes. The question then is which of these modes represent dynamical features of the
flow. Robust mode analysis (RMA) identifies them as dynamic modes common to multiple,
nominally identical, experimental realizations; the commonality is established through
proximity of the dynamic modes and the associated eigenvalues. The dynamic mode
decomposition and implementation of RMA are outlined in Section 2.
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RMA differs from robust principal components analysis (RPCA), whose intent is to
partition a spatio-temporal field into a low-rank constituent and one that consists of a
collection of “sparse” modes [28,29]. RPCA can, for example, separate rapid changes in a
traffic pattern from a slow varying background. In contrast, RMA does not require differ-
ences in time-scales or “energy content” to differentiate robust and non-robust features.
We will show through examples that robust modes are not necessarily those with the
highest energy.

Three applications of RMA are given in Sections 3–5. Section 3 analyzes PLIF data
from an experiment in a reacting flow past a single symmetric bluff body. At sufficiently
high Reynolds numbers, bluff-body flows exhibit symmetric vortex shedding, where pairs
of vortices are shed periodically from either side simultaneously [3]. In lean mixtures, the
flow also exhibits von Karman vortex shedding, where vortices are shed periodically from
alternate sides of the bluff body [30]. RMA yields a collection of robust dynamic modes,
which can be grouped by comparing downstream flow rates. The two classes so derived
are found to be symmetric and von Karman vortex shedding. The results in Section 3 were
adapted from the Ref. [31].

Section 4 re-analyzes reacting flows behind a single symmetric bluff body, now using
time-series from a small number of transducers, rather than through spatio-temporal fields.
Such analyses can prove important in following, for example, changes in flow patterns
within airplane engines or in industrial scale reactors. Their failure is often caused by the
(slow) progression of domains with micro-cracks or material degradation. Changes in
flow patterns may precede catastrophic failure. In contrast to PIV or PLIF which require
robust optical access, time-series measurements can be made continuously, since most
engines and propulsion systems are equipped with sturdy arrays of pressure transducers
and thermocouples. The analysis requires “enhancing” the spatial field using extended
DMD [24,27], which in this application, is made using Chebyshev polynomials. RMA,
implemented on the extended field, once again, yields one robust mode in rich mixtures and
two in lean mixtures. Time-series of projections of the first to pairs of symmetrically-placed
transducers can be used to infer that it is up-down symmetric (justifying its association
with symmetric vortex shedding), while the second is not (von Karman shedding).

The final application presented in Section 5 involves turbulent jet flows which are
quantified using statistical properties of the flow. The experimental data consist of high-
resolution, high-frequency (100 kHz), two-dimensional velocity fields in a plane of symme-
try. The flow data can be used to extract distributions of single-point fluctuations (which
are empirically found to be nearly Gaussian) and the variance-covariance matrix for ve-
locity fluctuations at two sites. Moments of structure functions between two points are
derived from this observation. The experimental flow fields are likely to be corrupted by
perturbations, such as acoustic reflections from the laboratory walls that are not included
in an analysis. We assume that perturbations extraneous to the experimental setup can
be identified through RMA. The remaining flow fields are those whose statistics should
be compared with predictions. In fact, we are able to show that structure functions of the
non-robust velocity fields more closely follow the computed one than the original flow.

Section 6 summarizes some implications of our findings.

2. Dynamic Mode Decomposition and Robust Mode Analysis
2.1. Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) [20–22,24] provides a class of coherent struc-
tures. In contrast to POD, which categorizes coherent structures according to correlations,
DMD assorts them through spatial structures that oscillate with a single (complex) fre-
quency. Hence, it is a natural approach to extract periodic flow constituents, such as
symmetric or von Karman vortex shedding. In addition, DMD has a theoretical basis in
the Koopman operator theory [23–25], and the dynamics of the modes are decoupled from
each other.
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We provide a summary of DMD: suppose spatio-temporal dynamics of a field at
time-step n is expressed as Un = u(x, tn), u being a field recorded at site x and the entire
“snapshot” is recorded at discrete time-points tn. The primary conjecture in DMD is that
the operation to transform from Un to Un+1 is independent of the “initial” state Un, and
hence that a sufficiently large number of snapshots can be used to find properties of the
underlying dynamics. (Note that snapshots obtained during a transition between two states
far-away in state space may not satisfy the requirement.) Under the assumption, when
snapshots are recorded at sufficiently short uniform time-intervals (so linear expansion
suffices), we could write

[U2, U3, . . . , UN+1] ≈ A[U1, U2, . . . , UN ], (2)

where A is a representation of the flow dynamics within the duration ∆t = tn+1− tn. When
N is sufficiently large, singular value decomposition is used to find the spectrum of A.
The coherent structures (dynamic modes) are the eigen-vectors Φn(x), which evolve as
an(t) = exp(Λn · t), (the generally complex) Λn being the associated eigenvalue. Thus,
each dynamic mode evolves periodically with a period 2π/Imag(Λn). The field u(x, t) can
be expanded in dynamic modes [20–22,24].

2.2. Robust Mode Analysis

Robust mode analysis (RMA) uses dynamic modes (1) to differentiate dynamical
features of a flow from noise and other irregular facets, and (2) to identify flow constituents.
Here, as in POD or Fourier analysis of a time-series, noise and other irregular (e.g., initial-
condition differences amplified by sensitive dependence on initial conditions) features
contribute to DMD as well. RMA is predicated on the expectation that while dynamical
features of the flow will retain their form (i.e., dynamic modes and eigenvalues, although
not necessarily the intensity) in different realizations of an experiment, irregular features
will differ between experiments. Under this scenario, robust flow modes are those common
to multiple realizations of an experiment.

To be specific, denote the dynamic modes and eigenvalues for the first experiment by
{Φn(x), Λn}, and those of the next set of experiments by {Φ(g)

n (x), Λ(g)
n }. Dynamic modes

from the different groups are assumed to be the same if they satisfy the following criteria:

• Imaginary parts of the eigenvalues from multiple groups should be sufficiently
close; specifically,

max
g

[∣∣∣Im(Λi)− Im(Λ(g)
j )
∣∣∣] ≤ δI , (3)

where δI is a cutoff.
• The real parts of an eigenvalue identified from the first condition should not vary

significantly among the subgroups; specifically,

max
g

[∣∣∣Re(Λi)− Re(Λ(g)
j )
∣∣∣] ≤ δR, (4)

for a cutoff δR. For work reported here, we limit consideration to δR = δI .
• Dynamic modes from the different groupings that satisfy Equations (3) and (4) should

be close. Specifically, if Φi(x) and Φ(g)
j (x) are normalized eigenfunctions associated

with proximate eigenvalues, then

max
g

{
min

θ

∣∣∣exp(iθ)Φi(x)−Φ(g)
j (x)

∣∣∣} ≤ ∆, (5)

for a cutoff ∆. The minimization over the phase θ is implemented to account for the
fact that eigenfunctions computed from different experimental realizations may differ
in phase.
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Robust mode analysis is conducted on the entire spatial field, which is typically a
few thousand measurements. The cutoff values δR, δI , and ∆ depend on properties of an
experimental system, including the level of noise, and need to be established heuristically.
We limit consideration to δR = δI in order to restrict the parameter search. We illustrate
the selection of the cutoff values using spatio-temporal flow fields in a turbulent jet flow
of Reynold’s number 21,000, described in Section 5. The data consist of axial and radial
velocity fields on a lattice of size N = 67× 51 at a rate of 100 kHz for a duration 0.08 s.

We note first that for unit vectors Φi(x) and Φ(g)
j (x), ∆ ≤

√
2. Furthermore, the

probability density function for the angle θ between two random vectors in N dimensions
satisfies P(θ) ∼ sinN−2 θ. Thus, for ∆ sufficiently smaller than

√
2, the likelihood of the left

side of the last inequality being satisfied with no underlying reason is minuscule. For fixed
δR, we search for robust modes beginning with a small ∆ (say∼ 0.5), and ascertain increases
in their number with increasing ∆. There is a proliferation of robust modes outside the
Nyquist range (i.e., |ImagΛ| > π) when ∆ increases beyond ∼0.85. Furthermore, no new
robust modes appear in (0.75, 0.85), motivating the choice of ∆ = 0.75. Next, we compute
how the number of robust modes increases with δR; this is shown in Figure 1. These
considerations suggest that there are 13 robust modes in the jet flow, three of which have
real Λ’s.

We studied the effect of noise on the choice of δR, δI , and ∆ by adding synthetic
Gaussian “noise” to the experimental data. The magnitude of the synthetic noise was
quantified using a measure of the inverse of the signal-to-noise ratio η, defined as the
ratio of the standard deviation of the Gaussian noise to that of the field. As η increases
beyond ∼0.3, the number of robust modes is found to decrease. The remaining modes can
be associated with those for the noise-free case through proximity of the eigenvalues. In
addition, some (although not all) of the robust modes lost on adding noise can be recovered
by increasing δR.

Note that cutoffs δR, δI , and ∆ do not depend on the (mean) magnitude of the exper-
imental data fields. Since the eigenfunctions are normalized, the difference in phases is
independent of the magnitude. In addition, since the eigenvalues of the matrix A are ex-
pressed as exp(Λ), the imaginary parts do not depend on the magnitude as well. Although
the real parts do depend on the mean magnitude, differences between pairs of eigenvalues
from different experiments are independent of the scale.

RMA is best used on data from a group of distinct experiments. However, we have
used the following approach in cases where only a single experimental recording is avail-
able. The full set of snapshots is assigned as Group 1. The remaining groups are constructed
using (1) the first half of snapshots, (2) the second half of snapshots, (3) even-numbered
snapshots, and (4) odd-numbered snapshots. We have established robust modes in com-
bustion flow behind a bluff body [31], in axisymmetric injector flow [32], and swirling
combustion flows [33] and found flow constituents consistent with prior studies. The
analysis also uncovered a novel broken-symmetry mode in injector flows [32]. Although
DMD is highly sensitive to noise and subsets of snapshots used for analysis [29,34,35],
we find that imaginary parts of eigenvalues of robust modes in different sub-groupings
typically do not change by more than a fraction of a percent.
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Figure 1. The number of robust modes found in the turbulent jet flow analyzed in Section 5 as a
function of δR when the cutoff ∆ is set at 0.75.

We finally consider the construction of a robust flow constituent. As an example, a
constituent may include a robust dynamic mode and its second harmonic, which itself
may be robust. Our goal is to select robust modes that should be associated with the same
flow constituent. For a given dynamic mode, we can use the evolution of the “phase” of
the coefficient an(t) of Equation (1) (i.e., tan−1(Im an(t)/Re an(t))) to quantify its motion.
However, we note that the phase of the second harmonic will advance at twice the rate of
that of the fundamental. In order to correct this difference, we note that geometric features
of the harmonic, such as the number of local peaks, will also be twice that of the primary
(as illustrated through examples in the Ref. [31]). Thus, we can associate a phase for each
robust mode via

θn(t) =
1
sn

tan−1
[

Im an(t)
Re an(t)

]
, (6)

where sn is the number of local peaks in the dynamic mode. The “flow rate” of the robust
mode is then defined as ωn = dθn(t)/dt. With this definition, the fundamental and its
harmonics will have the same flow rate. Once all robust modes with the same flow rate are
identified, the associated flow constituent is reconstructed via

Ψconst.(x, t) = ∑
const.

an(t)Φn(x). (7)

Applications in the use of the flow rate ωn(t) to construct flow constituents are given
in the next section [31].

3. Reacting Flows behind a Single Bluff Body
3.1. The Experiment

Experiments were conducted within an optically accessible, atmospheric-pressure
combustion test section that contains a bluff-body flame holder for flame stabilization. Air
is delivered into a 152 mm × 127 mm rectangular test section at a constant rate of 0.32 kg/s.
While the air rate is maintained constant, propane fuel is added and mixed upstream of the
flame holder, which is a v-gutter with a width of 38.1 mm and an angle of 35◦. Additional
facility details and flame-holder dimensions are provided in the Ref. [3].

The nature of instabilities in bluff-body flows depends on fractions of fuel and air in
the mixture. It is quantified using the equivalence ratio φ defined as the fuel/air ratio of the
mixture compared to that of its stoichiometric value (when all reactants are fully utilized).
Fuel-rich mixtures are those with larger equivalence ratios, while lean mixtures are those
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with smaller equivalence ratios. In our configuration, flame blow-off occurs when φ < 0.55
and our experiments are performed for equivalence ratios between 0.6 and 1.1. Symmetric
vortex shedding [36,37] is observed in the entire range of φ, while the asymmetric von
Karman vortices are only observed in a lean mixture (φ . 0.85) [3].

A schematic of the experimental setup is shown in Figure 2a [38], and two-dimensional
images of hydroxyl (OH) behind the bluff-body v-gutter were acquired utilizing planar
laser-induced fluorescence (PLIF), performed using a 10-kHz, diode-pumped, solid-state
Nd:YAG laser and a tunable dye laser. The 532 nm output of the Edgewave laser was used
to pump the dye laser for obtaining tunable laser output at ∼586 nm. This wavelength
was then frequency-doubled at ∼283 nm to excite the Q1(9) rovibrational transition in
the A2Σ+→ X2Π (1, 0) band of OH. The Q1(9) transition has a low Boltzmann-fraction
sensitivity between temperatures of 1000 and 2400 K, minimizing the need for a temperature
correction on Boltzmann distributions when extracting flame fronts. The PLIF signal of OH
was collected employing a LaVision dual-stage, high-speed UV intensifier (IRO) coupled
to a Photron SA-5 CMOS camera. The collected light was filtered using a Brightline
Semrock filter with ∼90% transmission between 300 and 340 nm. Each recording contained
8000 frames separated by 0.1 ms. Only the last 4000 frames were used for the DMD analysis.

Below, we summarize results from RMA on a flow at equivalence ratio φ = 0.8, when
both symmetric and von Kaman vortex shedding modes are active. These results were
previously reported in the Ref. [31].

Figure 2. (a) Schematic of the reacting flow behind a v-gutter bluff body (adapted from the Ref. [38]).
Schematics showing (b) symmetric and (c) von Karman vortex shedding behind a symmetric barrier.

3.2. Results from Robust Mode Analysis

Figure 3a shows the eigenvalues of DMD modes and Figure 3b, those of the robust
modes, which are identified using 2000-frame sections of the video. (Increasing the number
of frames further introduces numerical errors in singular value decomposition, as can
be inferred from emergence of a large number of eigenvalues with significantly different
magnitudes from 1.) We compare dynamic modes from this full sequence with those from
the first half, second half, odd-numbered snapshots, and even-numbered snapshots. The
real parts of the robust modes vary between the subgroups and we show the mean and
standard deviation for each robust mode. Note that the modes that remain past the decay
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of transients neither decay nor grow, and are thus expected to have zero real parts of their
eigenvalues [22,23]; this is seen to be the case for the robust modes in Figure 3b. The mode
numbers given in Figure 3b are ordered according to their energies.
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Figure 3. (a) The DMD spectrum for the reacting flow for a “lean” mixture with equivalence ratio
φ = 0.8 (adapted from the Ref. [31]). The flow exhibits symmetric vortex shedding, as well as von
Karman shedding at this equivalence ratio. (b) The mean and standard deviation for the robust
modes 4, 5, 38, 58, and 61.

Robust modes 4 and 5 are symmetric about the x-axis, and modes 38 and 58 show a
von Karman-like structure, as can be seen from Figure 4a,b, the real and imaginary parts of
Φ4(x), and Figure 4c,d, the real and imaginary parts of Φ38(x).

The phase dynamics of these five modes are shown in Figure 5. The angular velocities
ω4(t) and ω5(t) are approximately 0.073 and 0.078 radians/frame, respectively, suggesting
that they belong to a single flow constituent. The angular velocities ω38 and ω58(t) are
approximately 0.055 and 0.051 radians/frame, suggesting that they belong to a second
flow constituent. However, the difference in angular velocities between the two pairs of
modes (and the symmetry of the first pair and asymmetry of the second pair) implies
that the two constituents are distinct. The reproduction of the dynamics of Φ38 shows
that the constituent represents von Karman vortex shedding. The difference between the
downstream flow rates of the symmetric and von Karman vortices means that the overall
shedding is not periodic.

Finally, we present the reconstructions of the two flow constituents. The top row of
Figure 6 contains several snapshots from the original flow. The next two rows show recon-
structions of the symmetric and asymmetric constituents at the corresponding time-points.
These can be interpreted as symmetric and von Karman vortex shedding. Here, evidence
is found for the success of using DMD in separating the flow into distinct constituents.
The symmetries of the constituents and the properties of their dynamics (for example, that
the angular velocities are not identical) provide the information that is essential in the
development of accurate low-dimensional models for the flow.



Mathematics 2021, 9, 1057 9 of 19

Figure 4. (a) Real and (b) imaginary parts of Φ4(x), the symmetric mode with the largest energy, for
the reacting flow at φ = 0.8. (c) Real and (d) imaginary parts of Φ38(x), the asymmetric mode with
the highest energy. This figure was adapted from the Ref. [31].

Figure 5. Phase dynamics of robust modes for the reacting flow. “Angular velocities” ω4 ≈ 0.073 ra-
dians/frame and ω5 ≈ 0.078 radians/frame are nearly identical, suggesting that they belong to
the same flow constituent. (ω61 is slightly higher and is not used in the reconstruction.) Similarly,
ω38 ≈ 0.055 radian/frame and ω58 ≈ 0.051 radians/frame are close, suggesting that they form
a second constituent. Successive curves are shifted for clarity. This figure was adapted from the
Ref. [31].
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Figure 6. Several snapshots of the reacting flow at equivalence ratio φ = 0.8 (top row), reconstructions
of the symmetric (second row), and asymmetric (bottom row) flow constituents. This figure was
adapted from the Ref. [31].

Mode 61 has a slightly higher angular velocity and appears less symmetric than modes
4 ad 5. For this work, we have chosen to not include it in the first flow constituent.

4. Bluff Body Flow Assessed by Discrete Devices: Extended DMD

Here, we once again implement RMA on combustion flows behind a symmetric bluff
body, but using only pressure time-series from a small number of transducers. One of the
key requirements in DMD is that the space of measurements are sufficiently large that
eigenfunctions lie in their span. This is likely to fail when only measurements from a
small number of transducers is all that is available. Consequently, a pre-processing step
is implemented to extend [24,27,39] the “data-space”; we use Chebyshev polynomials of
measurements at each transducer for the task. Robust modes computed from the analysis
can be compared with those from Section 3 or derived from other approaches.

A broader goal belies these paradigmatic studies. Damage to engines or industrial
reactors are often initiated by localized weakening of material (due to cyclic loading)
through onset of microscopic fractures [40,41], which progress slowly until feedback-
induced acceleration precipitates catastrophic failure. New flow patterns may be expected
to emerge within a system prior to failure, and if so, techniques to identify them could
provide predictive signatures of failure.

4.1. The Experiment

Here, measurements of the flow in the experimental arrangement described in Section 3.1
are made using a set of pressure transducers located on at x = −17D, −8D, −4D,
0D, 1D, 5D, 7D, 8D, and at the exit 14D on the bottom surface and at 0D, 1D, and
5D on the top surface, where D = 38.1 mm is the width of the bluff body. Pressure
measurements in each transducer were made for 20 s at a rate of 20 kHz. Figure 7 shows
the arrangement schematically. The analysis below is for a combustion flow at 440 F of
equivalence ratios φ = 0.95, when only symmetric vortex shedding is observed, and at
φ = 0.85 when both symmetric and von Karman shedding are observed.
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Figure 7. Schematic of the bluff body combustion chamber with locations of pressure transducers.
The trailing edge of the symmetric bluff body is assigned to be at downstream locations being
positive. Note that transducers 7, 8, and 9 are placed opposite to 4, 5, and 6, respectively. A detailed
explanation of imaging optics and measurement techniques can be found in the Ref. [42]. Here, we
confine our analysis to measurements from transducers 1–9.

4.2. Extended DMD and Robust Mode Analysis

Time-series from transducers 1–9 are “extended” synthetically using Chebyshev poly-
nomials. The choice of Chebyshev polynomials is motivated by the fact that they provide
finer temporal resolutions while remaining finite. Further, their use is computationally
faster than the use of, for example, trigonometric functions. The number of polynomials
used for the extension is made as follows: evaluate robust eigenvalues with increasing
numbers of Chebyshev polynomials and search for convergence. For the bluff body data,
the eigenvalues converge when the number is ∼8. We used 10 Chebyshev polynomials in
our analysis. Such extensions, referred to as extended DMD, have been shown to success-
fully enhance the data space [24,27,39]; the spatial field is effectively enhanced to 90 sites.
Robust mode analysis is implemented using five sub-intervals, each of 10,000 time steps
(i.e., 500 ms), as distinct, nominally-identical experiments. Robust modes were identified
using the criteria outlined before.

Only a single pair of robust modes Λ = −0.002± 0.66i and period 10.5 ms, is found
in the first experiment, at the equivalence ratio φ = 0.95. Projections of the mean and the
standard deviation of the robust mode to the space of the signals from the nine transducers
are shown in Figure 8a. Observe that the values of the robust mode at transducers 4, 5
and 6 are nearly identical to those at transducers 7, 8, and 9 respectively. Since the pairs
of transducers (4, 7), (5, 8), and (6, 9) are at the identical axial locations, this near-equality
indicates the robust mode is up/down symmetric; that is, consistent with symmetric
vortex shedding.

The flow at φ = 0.85 is significantly more disordered and contains six robust modes
with periods 10.5, 6.3 and 3.0 ms. The last mode, whose projections to the space of signals
from the transducers are shown in Figure 8b, does not exhibit the up/down symmetry,
suggesting that the mode is not associated with symmetric vortex shedding.

To conclude, what we have shown in this section is that robust mode analysis of the
time-series from a set of appropriately placed transducers can be used to extract specific
details (in our case, the presence or absence of up/down symmetry) of flow constituents.
As already pointed out, these determinations are made directly from data, and do not rely
on theoretical considerations.
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Figure 8. (a) Symmetric robust mode: Projections of the single robust mode at φ = 0.95. The x-axis is
the transducer number, and the y-axis the magnitude of the robust mode at the site. Note that values
of the mode on sites 4, 5, and 6 are nearly identical to those at sites 7, 8, and 9. Pairs of transducers
(4, 7), (5, 8), and (6, 9) are at identical axis locations, thus indicating that the robust mode represents a
symmetric flow constituent. (b) Asymmetric robust mode: One robust modes of the flow at φ = 0.85.
Note that it does not have the symmetry between the values at transducer pairs (4, 7), (5, 8) and (6, 9)
seen in the mode of (a).

5. Non-Robust Constituents in Turbulent Jet Flow

Turbulent flows are characterized using statistical objects, such as time-delayed corre-
lation functions, structure functions, and spectral energy densities [5–8]. The final example
highlights that statistical features of turbulent fluid flows are closer to theoretical predic-
tions when robust modes are eliminated from the flow fields.

We analyze an axisymmetric jet flow of Reynolds number ≈21,000 measured using
particle image velocimetry (PIV). The PIV data permit us to compute velocity distributions
at individual sites empirically and to establish the variance-covariance matrix between
pairs of points. As shown below, we are thus able to compute structure functions of all
orders between two sufficiently far-away points. The agreement between the flow data
and an analytical expression is shown to improve when robust modes are eliminated from
the flow.

5.1. The Experiment

The critical technology that facilitated the resolution of the turbulent flow in both
spatial and temporal domains was the development of a long-duration (100-ms), high-
energy burst-mode laser capable of producing pairs of pulses at a high frequency [43,44]. It
permitted the extraction of two-dimensional velocity measurements through particle image
velocimetry (PIV) at a rate of 100 kHz and a resolution of flow features (both spatially and
temporally) down to the Taylor micro-scale. For example, at 100 kHz in the present study;
∼8500 snapshots of such velocity-fields were acquired. We report on a turbulent jet flow
of Re ≈ 21,000 emanating from a cylindrical inlet of diameter D = 4.7 mm. As it moved
downstream, the axisymmetric flow expanded (nearly) linearly. Velocity measurements
were made on a grid of 51× 67 of lattice size 0.268 mm placed symmetrically in an axial
plane approximately 13D downstream of the inlet, as shown in Figure 9a. Figure 9b
shows a snapshot of the flow velocity field. The PIV measurements were recorded once
it was determined that the flow had stabilized and the seed density was sufficiently high.
That statistical objects had converged was verified by computing them over different
sub-intervals.
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Figure 9. (a) Axisymmetric jet flow is generated by N2 gas ejected from cylinder of radius D = 4.7 mm.
Rectangular region of size 13.4 mm × 17.7 mm where velocity measurements were made is approxi-
mately 13D downstream of inlet. (b) Snapshot of velocity field for flow of Re ≈ 21,000.

The time average of the velocity field v(R; t) and its deviation from the mean are
denoted v̄(R) and v′(R; t), respectively, where R is measured from the center of the near-
boundary. Mean velocity fields and their fluctuations about the mean are found to be
neither homogeneous nor isotropic [45].

5.2. Robust Mode Analysis

Implementing RMA with δR = δI = 1.0 and ∆ = 0.75 gives 12 robust modes in addition
to the mean flow, which together contain approximately 16% of the energy. Figure 10 shows the
energy in the first 60 modes, illustrating that robust modes are not those with the highest
energy. In particular, this observation implies that POD [15–19] or other energy-based
modal decompositions cannot be used to identify robust modes. Flow patterns associated
with one of the robust modes whose period is T = 1.28 ms is shown in Figure 11.

Figure 10. The energy of the first 60 dynamic modes. Robust modes are shown in the dark color.
Note that robust modes are not those with the highest energy.
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The origin of the robust cyclic modes in a given configuration is difficult to gauge.
They may originate from the flow dynamics, details of the experimental setup, such as
imperfections in the inlet flow, or from extraneous factors, such as acoustic reflections from
laboratory walls. Our goal is to test whether they need to be eliminated from the turbulent
flow prior to computing statistical objects.

Figure 11. Flow patterns in the pair of robust modes 6 and 7 whose eigenvalues are −0.013± 0.489i
and whose period is T = 1.28 ms.

5.3. Velocity Fluctuations and Structure Functions

Theoretical studies on statistical properties of turbulent flows, derived on the basis of
general considerations such as energy transmission between scales, rely on the isotropy and
homogeneity of the flow [6,46–48]. Unfortunately, turbulent jet flows are inhomogeneous
and do not satisfy these scaling laws [45]. We derive a possible comparison that relies on
the empirical observation, illustrated in Figure 12, that point-wise velocity fluctuations in
the jet flow, both in axial and radial directions, are approximately Gaussian distributed.
We focus on axial velocity fluctuations, v′(R; t), which are distributed as

W(v′) ∼ N (0, σ(R)) ≡ 1√
2πσ(R)2

exp
(
−1

2
v′2

σ2

)
. (8)

Although standard deviations are location-dependent, the near-normality of point-
wise fluctuations is found at all sites.

Figure 12. Distributions of (a) radial, and (b) axial velocity fluctuations at a fixed location. The blue
lines are the best Gaussian fit to the data and red lines are deviations from the Gaussian.

The next step is to evaluate the joint distribution of v′1 ≡ v′(R; t) and v′2 ≡ v′(R′; t)
of axial velocity fluctuations at points R and R′. Although these velocity fluctuations are
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expected to be uncorrelated at large distances, this fails to hold for the short duration (∼6 ms)
of the experiment. However, the variance-covariance matrix for fluctuations between R
and R′ can be evaluated from the flow data. The joint distribution of v′1 and v′2 is found to
be nearly a centered bivariate normal distribution

W(v′1, v′2) ∼ N (2)(0, Σ) ≡ 1
2π|Σ| exp

(
−1

2
(v′1, v′2)Σ

−1(v′1, v′2)
T
)

, (9)

whose form is evaluated from the time-series v′1 and v′2.
Our goal is to compute structure functions [7,8,46] of all orders using the distribution of

the velocity difference (v′1(t)− v′2(t)). The first step toward this goal is the diagonalization
of the variance-covariance matrix. Denote the eigenvalues and eigenvectors of Σ by Λ1,2
and u1,2. The new variables are distributed on uncorrelated normal distributions with
variances Λ1 and Λ2. Next, let the angle between the original basis and the (orthonormal)
basis {u1, u2} be φ. The projections of a point (v′1, v′2) to the new eigen-basis are (v′1 cos φ +
v′2 sin φ, v′2 cos φ− v′1 sin φ). It can then shown that the difference

v′1(t)− v′2(t) ∼∼ N (0, α2
1Λ2

1 + α2
2Λ2

2), (10)

with α1 = cos φ− sin φ and α2 = − cos φ− sin φ.
Correlations between velocity fluctuations at neighboring sites are characterized using

the family of structure functions

Sζ

(
R, R′

)
=

〈|(v′(R; t)− v′(R′; t)) · e‖|ζ〉t
〈|v′(R; t) · e‖|ζ〉t + 〈|v′(R′; t) · e‖|ζ〉t

, (11)

where e‖ ≡ e‖(R′ −R) is the unit vector in the direction (R′ −R). Increasing ζ emphasizes
larger deviations from the mean. Structure functions are homogeneous on the symmetry
axis, that is, they do not depend on the “origin” R [45], as confirmed empirically. Our
computations of structure functions are implemented on a 60 ms (6000-frame) segment of
the flow. Using Equation (10), it is found that

Sζ(R, R′)→
(α2

1Λ2
1 + α2

2Λ2
2)

ζ/2

Σζ/2
11 + Σζ/2

22

, when |R− R′| → ∞. (12)

Any deviation from this expression is due to the slight differences from normality of
velocity fluctuations, see Figure 12.

Figure 13a shows structure functions for two points separated by 10.7 mm (40 lattice
points) along the symmetry axis. The computation is implemented for four such sets R and
R′. (For these points Σ11 = 27.16± 1.54, Σ22 = 24.34± 0.94, and Σ12 = 0.03± 0.01� 1.)
The diamonds in Figure 13a are the averages and the error bars are the associated standard
deviations of Sζ(R, R′). The data differ from the expression (12), shown by the dashed line.

The corresponding comparison for non-robust constituents of the jet flow is shown in
Figure 13b. Now we find excellent agreement. (The dashed line here is computed from the
non-robust flow.) This subtle test suggests the need to eliminate robust flow constituents
prior to testing statistical theories of turbulent flows.
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Figure 13. (a) The diamonds show Sζ(z) as a function of the moment ζ for z→ ∞ for the jet flow. The
dashed line is that given in Equation (12). (b) The corresponding comparison for the non-robust flow.

6. Discussion and Conclusions

We introduced a model-free methodology to extract, from experimental data, the
primary constituents in a flow. The methodology is expected to be particularly useful in
studying strongly driven fluid or combustion flows [1,2,5–8], where nonlinearities of the
underlying flow induce chaotic dynamics [9]. The lack of precise governing equations,
absence of symmetries or other simplifying constraints in realistic configurations, and the
presence of flow structures over a wide range of scales reinforce the importance of direct
analysis of experimental data.

The proposed approach was predicated on the assumption that primary constituents
in fluid or combustion flows are common in multiple, nominally identical realizations of
an experiment [31–33]. Further, it is assumed that these flow constituents are combinations
of dynamic modes that are common between the different experimental realizations, the
commonality established via proximity of the eigenvalues and eigenfunctions. Flow
constituents are constructed by summing over robust dynamic modes with the same phase
dynamics. It needs to be emphasized that, while evaluations of dynamic modes are often
fickle, depending sensitively on the precise collection of frames and sites selected for the
analysis [29,34,35], robust modes do not suffer this fate.

Robust cyclic facets of a flow may consist of measurement errors, and factors (acoustic
reflections from laboratory walls, etc.) extraneous to the system studied. In addition,
small-scale features like eddies may be assigned a non-robust designation as well when
their appearance, location, and dynamics depend on chaotic aspects of the global flow, that
is, they are not cyclical.

We illustrated the use of robust mode analysis (RMA) in a lean combustion flow
behind a v-shaped symmetric bluff body, where vortex shedding takes both symmetric and
von Karman forms. RMA yielded five robust modes from which two flow constituents were
constructed using their phase velocities. One constituent appears to describe symmetric
vortex shedding, and the other von Karman shedding. RMA analysis in rich mixtures
only yield the first constituent [31]. The approach outlined here was shown to be capable
of extracting known flow constituents in shear coaxial jets with and without transverse
acoustic driving [32] and in stable and unstable turbulent swirling reacting flows [33].

Difficulties in extracting spatio-temporal flow fields in working engines and reactors
motivate us to inquire if RMA can be implemented using time-series from a limited
number of point sources such as pressure transducers or temperature sensors, which are
implanted in many such systems. We used time-series from nine transducers to study,
once again, reacting flows behind a bluff body in lean and rich mixtures. The analysis
required synthetically extending the data space [24,27,39,49], in our case, using Chebyshev
polynomials. Once again, RMA yielded a single robust mode in rich mixtures and two
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in lean mixtures. Moreover, the values of one of the robust modes was (nearly) identical
at symmetrically-placed transducers, suggesting that the mode represents symmetric
vortex shedding.

The final issue we addressed pertains to turbulent flows, whose characterization
requires statical objects [5–8]. We analyzed velocity field data in an axisymmetric turbulent
jet flow of Reynolds number ≈21,000, which was shown to contain 13 robust modes.
The question we raised is whether statistical characterizations apply to the full flow field
or only to its non-robust constituents. We proposed a test that relied on an empirical
observation that joint velocity fluctuations were distributed on centered bivariate normal
distributions, from which the behavior of structure functions of all orders can be derived.
The expression shows closer agreement with non-robust flow fields than with the full
flow, suggesting that statistical comparisons of turbulent flows may be better tested on
non-robust flow constituents.

The ability to extract robust flow constituents directly from experimental data and to
identify their metamorphoses can have broad ranging applications, especially as a signature
of impending catastrophic failure in working engines or industrial reactors. It would prove
especially useful if the analysis can be implemented using data from easily embedded
pressure transducers or thermocouples. Further studies are needed to test if observable
changes in flow structures due to progressive material degradation/wear-and-tear precede
catastrophic failure of a system.
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