Characterization of Frequency Domains of Bandlimited Frame Multiresolution Analysis

Zhihua Zhang

Citation: Zhang, Z. Characterization of Frequency Domains of Bandlimited Frame Multiresolution Analysis. Mathematics 2021, 9, 1050. https://doi.org/10.3390/ math9091050

Academic Editor: Luca Gemignani

Received: 14 April 2021
Accepted: 29 April 2021
Published: 7 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

School of Mathematics, Shandong University, Jinan 250100, China; zhangzhihua@sdu.edu.cn

Abstract

Framelets have been widely used in narrowband signal processing, data analysis, and sampling theory, due to their resilience to background noise, stability of sparse reconstruction, and ability to capture local time-frequency information. The well-known approach to construct framelets with useful properties is through frame multiresolution analysis (FMRA). In this article, we characterize the frequency domain of bandlimited FMRAs: there exists a bandlimited FMRA with the support of frequency domain G if and only if G satisfies $G \subset 2 G, \bigcup_{m} 2^{m} G \cong \mathbb{R}^{d}$, and $\left(G \backslash \frac{G}{2}\right) \cap\left(\frac{G}{2}+2 \pi v\right) \cong \varnothing\left(v \in \mathbb{Z}^{d}\right)$.

Keywords: framelets; bandlimited multiresolution analysis; frequency domain

1. Introduction

Due to resilience to background noise, stability of sparse reconstruction, and the ability to capture local time-frequency information, framelets are becoming a powerful tool in applied analysis and data science. Let $\left\{h_{n}\right\}_{1}^{\infty}$ be a sequence in $L^{2}\left(\mathbb{R}^{d}\right)$. If there exist $A, B>0$ such that

$$
A\|f\|^{2} \leq \sum_{n=1}^{\infty}\left|\left(f, h_{n}\right)\right|^{2} \leq B\|f\|^{2} \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

then, $\left\{h_{n}\right\}_{1}^{\infty}$ is called a frame for $L^{2}\left(\mathbb{R}^{d}\right)$ with bounds A and $B[1,2]$. Let $\left\{\psi_{\mu}\right\}_{1}^{l} \subset L^{2}\left(\mathbb{R}^{d}\right)$ and

$$
\psi_{\mu, j, k}:=2^{\frac{j d}{2}} \psi_{\mu}\left(2^{j} \cdot-k\right), \quad \mu=1, \ldots, l ; j \in \mathbb{Z} ; k \in \mathbb{Z}^{d}
$$

If the affine system $\left\{\psi_{\mu, j, k}\right\}$ is a frame for $L^{2}\left(\mathbb{R}^{d}\right)$, then, the set $\left\{\psi_{\mu}\right\}_{1}^{l}$ is called a framelet [1,2].
The well-known approach to construct framelets is through frame multiresolution analysis (FMRA) [3-5]. In 1998, Benedetto and Li [3] introduced the theory of one-dimensional FMRA, which is a fundamental concept in framelet theory. In 2004, Mu et al. [4] further established the theory of high-dimensional FMRA. The structure of FMRA is as follows:

Let $\left\{V_{m}\right\}_{m \in \mathbb{Z}}$ be a sequence of subspaces of $L^{2}\left(\mathbb{R}^{d}\right)$ such that
(i) $V_{m} \subset V_{m+1}(m \in \mathbb{Z}), \quad \bar{\bigcup}_{m \in \mathbb{Z}} V_{m}=L^{2}\left(\mathbb{R}^{d}\right), \quad \bigcap_{m} V_{m}=\{0\}$;
(ii) $f(\mathbf{t}) \in V_{m}$ if and only if $f(2 t) \in V_{m+1}(m \in \mathbb{Z})$;
(iii) there exists a $\varphi(\mathbf{t}) \in V_{0}$ such that $\{\varphi(\mathbf{t}-\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^{d}}$ is a frame for V_{0}.

Then $\left\{V_{m}\right\}$ is called a frame multiresolution analysis (FMRA) and φ is called a frame scaling function.

If the Fourier transform of a frame scaling function φ is compactly supported (i.e., $\operatorname{supp} \widehat{\varphi}=G)$, then φ is said to be bandlimited. Furthermore, $f \in V_{0}$, since $\{\varphi(\mathbf{t}-\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^{d}}$ is a frame for V_{0}. When f is expanded into a frame series, $f(\mathbf{t})=\sum_{\mathbf{n}} d_{\mathbf{n}} \varphi(\mathbf{t}-\mathbf{n})$; then, taking Fourier transform of both sides, it follows that

$$
\widehat{f}(\boldsymbol{\omega})=\left(\sum_{\mathbf{n}} d_{\mathbf{n}} e^{-i(\mathbf{n} \cdot \boldsymbol{\omega})}\right) \widehat{\varphi}(\boldsymbol{\omega})
$$

It means that $f \in V_{0}$ is bandlimited. Since $\varphi \in V_{0}$, the support of frequency domain of any function in V_{0} is contained in G or equal to G. Therefore, such an FMRA is said to be a bandlimited FMRA with the support of frequency domain G.

Various framelets with nice properties are constructed by FMRAs [4-10]. Mu et al. [4] and Zhang [5] showed that the number of generators in framelets associated with FMRA is determined completely by the frequency domain of FMRAs. Zhang [6] discussed the convergence of a framelet series derived from FMRAs. Chui and He [7], Antolin and Zalin [8], and Atreasa et al. [9] constructed many examples on compactly supported framelets when FMRAs extend into general MRAs. Zhang [10] extended framelets derived by FMRAs into the case of framelet packets with finer time-frequency resolution.

Frequency domain of bandlimited FMRAs plays a key role when derived framelets are applied into narrowband signal processing and data analysis. A suitable frequency domain of bandlimited FMRAs can mitigate the effects of narrowband noises well, so the perfect reconstruction filter bank associated with a bandlimited FMRA can achieve quantization noise reduction simultaneously with reconstruction of a given narrowband signal [3]. This is a unique and key advantage of framelets over traditional wavelets [3]. However, until now, the structure of frequency domain of bandlimited FMRAs has not been investigated.

In this study, the frequency domain of bandlimited FMRA will be characterized. In Section 2, the necessary condition for G to be the support of frequency domain of bandlimited FMRA is given first. In Section 3, in order to obtain sufficient condition, a fine partition of any bounded region G is presented, satisfying

$$
G \subset 2 G, \quad \bigcup_{m} 2^{m} G \cong \mathbb{R}^{d}, \quad \text { and } \quad\left(G \backslash \frac{G}{2}\right) \cap\left(\frac{G}{2}+2 \pi v\right) \cong \varnothing\left(v \in \mathbb{Z}^{d}\right)
$$

Based on this partition, in Section 4, a bandlimited FMRA with the support of frequency domain G is directly constructed. With the help of it, for any given narrowband signal, one can choose the most suitable bandlimited FMRA to analyze it and, at the same time, mitigate noise effects.

2. Necessary Condition for the Support of Frequency Domain of Bandlimited FMRA

Let $\left\{V_{m}\right\}$ be an FMRA and φ be the corresponding frame scaling function. Since $\varphi \in V_{0}, \frac{1}{2^{d}} \varphi\left(\frac{t}{2}\right) \in V_{1} \subset V_{0}$, and $\{\varphi(\mathbf{t}-\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^{d}}$ is a frame for $V_{0}, \frac{1}{2^{d}} \varphi\left(\frac{\mathbf{t}}{2}\right)$ can be expanded into a frame series, $\frac{1}{2^{d}} \varphi\left(\frac{\mathbf{t}}{2}\right)=\sum_{\mathbf{n}} c_{\mathbf{n}} \varphi(\mathbf{t}-\mathbf{n})$. Take the Fourier transform of both sides, it follows that

$$
\widehat{\varphi}(2 \boldsymbol{\omega})=\left(\sum_{\mathbf{n}} c_{\mathbf{n}} e^{-i(\mathbf{n} \cdot \boldsymbol{\omega})}\right) \widehat{\varphi}(\boldsymbol{\omega})
$$

where $H(\boldsymbol{\omega})=\sum_{\mathbf{n}} c_{\mathbf{n}} e^{-i(\mathbf{n} \cdot \boldsymbol{\omega})}$ is a 2π-periodic function (i.e., $H \in L^{2}\left(T^{d}\right)$). From this, we have

$$
\widehat{\varphi}(2 \boldsymbol{\omega})=H(\boldsymbol{\omega}) \widehat{\varphi}(\boldsymbol{\omega})
$$

In this section, a necessary condition for the support of the frequency domain of bandlimited FMRA is given as follows.

Theorem 1. Let G be a bounded closed set in \mathbb{R}^{d}. If G is the support of the frequency domain of a bandlimited FMRA, then
(i) $G \subset 2 G$,
(ii) $\bigcup_{m} 2^{m} G \cong \mathbb{R}^{d}$, and
(iii) $\left(G \backslash \frac{G}{2}\right) \cap\left(\frac{G}{2}+2 \pi v\right) \cong \varnothing\left(v \in \mathbb{Z}^{d}\right)$ hold.

Proof. Since G is the support of the frequency domain of a bandlimited FMRA, the corresponding frame scaling function φ satisfies supp $\widehat{\varphi}=G$. Let $V_{m}=\overline{\operatorname{span}}\left\{\varphi\left(2^{m} \mathbf{t}-\mathbf{n}\right)\right.$, $\left.\mathbf{n} \in \mathbb{Z}^{d}\right\}$. Then, $V_{m} \subset V_{m+1}(m \in \mathbb{Z})$ and $\bar{\bigcup}_{m} V_{m}=L^{2}\left(\mathbb{R}^{d}\right)$, and $\left\{2^{\frac{m d}{2}} \varphi\left(2^{m} \mathbf{t}-\mathbf{n}\right)\right\}_{n \in \mathbb{Z}^{d}}$ is a frame of V_{m}. So, for any $f \in V_{m}, f$ can be expanded into a frame series as follows:

$$
f(\mathbf{t})=\sum_{\mathbf{n}} d_{m, \mathbf{n}} \varphi\left(2^{m} \mathbf{t}-\mathbf{n}\right)
$$

By taking the Fourier transform on both sides, it follows that

$$
\widehat{f}(\boldsymbol{\omega})=\left(\sum_{\mathbf{n}} 2^{-m d} d_{m, \mathbf{n}} e^{-i \frac{(\mathbf{n} \cdot \boldsymbol{\omega})}{2^{m}}}\right) \widehat{\varphi}\left(\frac{\boldsymbol{\omega}}{2^{m}}\right) .
$$

Furthermore, $\operatorname{supp} \widehat{f} \subset 2^{m} \operatorname{supp} \widehat{\varphi}(\boldsymbol{\omega})=2^{m} G\left(f \in V_{m}\right)$. Noticing that $\varphi\left(2^{m} \mathbf{t}\right) \in V_{m}$, it is clear that

$$
\bigcup_{f \in V_{m}} \operatorname{supp} \widehat{f}=2^{m} G, \quad \bigcup_{f \in V_{m+1}} \operatorname{supp} \widehat{f}=2^{m+1} G
$$

Again by $V_{m} \subset V_{m+1}$, it follows that $2^{m} G \subset 2^{m+1} G$, i.e., $G \subset 2 G$. Again, by $\bar{\bigcup}_{m} V_{m}=L^{2}\left(\mathbb{R}^{d}\right)$, it means that $\bigcup_{m} \bigcup_{f \in V_{m}} \operatorname{supp} \widehat{f}=\mathbb{R}^{d}$, and so, $\bigcup_{m} 2^{m} G=\mathbb{R}^{d}$.

For $\boldsymbol{\omega} \in G \backslash \frac{G}{2}, 2 \boldsymbol{\omega} \in 2 G \backslash G$, and so, $\widehat{\varphi}(2 \boldsymbol{\omega})=0$ and $\widehat{\varphi}(\boldsymbol{\omega}) \neq 0$. From this and $\widehat{\varphi}(2 \boldsymbol{\omega})=H(\boldsymbol{\omega}) \widehat{\varphi}(\boldsymbol{\omega})\left(H \in L^{2}\left(T^{d}\right)\right)$, it follows that $H(\boldsymbol{\omega})=0$ for $\boldsymbol{\omega} \in G \backslash \frac{G}{2}$. On the other hand, for $\boldsymbol{\omega} \in \frac{G}{2}$, by $2 \boldsymbol{\omega} \in G$ and $\frac{G}{2} \subset G$, it means that $\widehat{\varphi}(2 \boldsymbol{\omega}) \neq 0$ and $\widehat{\varphi}(\boldsymbol{\omega}) \neq 0$. Again, by $\widehat{\varphi}(2 \boldsymbol{\omega})=H(\boldsymbol{\omega}) \widehat{\varphi}(\boldsymbol{\omega})$, it follows that $H(\boldsymbol{\omega}) \neq 0\left(\boldsymbol{\omega} \in \frac{G}{2}\right)$. Since $H(\boldsymbol{\omega})$ is a periodic function with period $2 \pi \mathbb{Z}^{d}, H(\boldsymbol{\omega}) \neq 0\left(\boldsymbol{\omega} \in \frac{G}{2}+2 \pi v\left(v \in \mathbb{Z}^{d}\right)\right)$. Combining these results, it means that $\left(G \backslash \frac{G}{2}\right) \cap\left(\frac{G}{2}+2 \pi v\right) \cong \varnothing\left(v \in \mathbb{Z}^{d}\right)$.

3. Partition of the Support of Frequency Domain

Let G be a bounded closed set in \mathbb{R}^{d}, satisfying Theorem 1(i)-(iii). A fine partition of G will be given in this section. This partition will be used to further prove that there exists a bandlimited FMRA with the support of frequency domain G in Section 4, i.e., the converse of Theorem 1 holds.

Some notations are needed as follows: For $m=0,1, \ldots$,

$$
G_{0}^{*}=G \backslash \frac{G}{2}, \quad G_{m}^{*}=2^{-m} G_{0}^{*}, \quad G_{m}=2^{-m} G, \quad E_{m}^{*}=G_{m}^{*}+2 \pi \mathbb{Z}^{d}, \quad E_{m}=G_{m}+2 \pi \mathbb{Z}^{d}
$$

Noticing that G is bounded, one can choose a $k \in \mathbb{Z}_{+}$such that

$$
\begin{equation*}
G \subset\left[-2^{k} \pi, 2^{k} \pi\right]^{d} \tag{1}
\end{equation*}
$$

Lemma 1. If G satisfies (i) and (iii), then,
(a) $\left(E_{m}^{*} \backslash G_{m}^{*}\right) \cap G \cong \varnothing \quad(m \geq 0)$;
(b) $G \cap\left(G_{k}+2 \pi v\right) \cong \varnothing \quad(v \neq \mathbf{0})$.

Hereafter, $\boldsymbol{v} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}$ is written simply as $\boldsymbol{v} \neq \mathbf{0}$.
Proof. By (i), it follows that

$$
\begin{equation*}
G=\left(G \backslash \frac{G}{2}\right) \bigcup \frac{G}{2}=G_{0}^{*} \bigcup G_{1}^{*} \bigcup \frac{G_{2}}{4}=\cdots=\left(\bigcup_{m=0}^{k-1} G_{m}^{*}\right) \bigcup G_{k} \tag{2}
\end{equation*}
$$

and clearly, this is an union of $k+1$ disjoint point sets. So, $\frac{G}{2}=\left(\bigcup_{m=1}^{k} G_{m}^{*}\right) \cup G_{k+1}$, and so,

$$
\frac{G}{2}+2 \pi \mathbb{Z}^{d}=\left(\bigcup_{m=1}^{k}\left(G_{m}^{*}+2 \pi \mathbb{Z}^{d}\right)\right) \bigcup\left(G_{k+1}+2 \pi \mathbb{Z}^{d}\right)=\left(\bigcup_{m=1}^{k} E_{m}^{*}\right) \bigcup E_{k+1}
$$

For any $m(m \geq 0)$, by (iii), it follows that $2^{-m} G_{0}^{*} \cap\left(2^{-m-1} G+2 \pi 2^{-m} \boldsymbol{v}\right)=\varnothing\left(\boldsymbol{v} \in \mathbb{Z}^{d}\right)$. So,

$$
G_{m}^{*} \bigcap\left(G_{m+1}+2 \pi 2^{-m} v\right) \cong \varnothing \quad\left(v \in \mathbb{Z}^{d}\right)
$$

Let $\boldsymbol{v}=2^{m} \boldsymbol{\mu}\left(\boldsymbol{\mu} \in \mathbb{Z}^{d}\right)$. Then, $G_{m}^{*} \bigcap\left(G_{m+1}+2 \pi \mu\right) \cong \varnothing\left(\boldsymbol{\mu} \in \mathbb{Z}^{d}\right)$. Again, by $G_{n} \subset$ $G_{m+1}(m<n)$, it means that

$$
\begin{equation*}
\left(G_{m}^{*}+2 \pi \mathbb{Z}^{d}\right) \bigcap\left(G_{n}+2 \pi \mathbb{Z}^{d}\right) \cong \varnothing \quad(m<n) \tag{3}
\end{equation*}
$$

From this and $E_{n}^{*} \subset E_{n}$, it follows that

$$
\begin{equation*}
E_{m}^{*} \bigcap E_{n} \cong \varnothing \quad(m<n), \quad E_{m}^{*} \bigcap E_{n}^{*} \cong \varnothing \quad(m \neq n, m, n \geq 0) \tag{4}
\end{equation*}
$$

By $G_{n} \subset E_{n}$ and $G_{n}^{*} \subset E_{n}^{*}$, it follows that $\left(E_{m}^{*} \backslash G_{m}^{*}\right) \cap G_{n}^{*} \cong \varnothing(m, n \geq 0)$ and ($E_{m}^{*} \backslash$ $\left.G_{m}^{*}\right) \cap G_{n} \cong \varnothing(0 \leq m<n)$. Further, $\left(E_{m}^{*} \backslash G_{m}^{*}\right) \cap\left(\left(\cup_{n=0}^{l-1} G_{n}^{*}\right) \cup G_{l}\right) \cong \varnothing(0 \leq m<l)$. From this and (2), $\left(\bigcup_{n=0}^{l-1} G_{n}^{*}\right) \cup G_{l}=G$, and so,

$$
\left(E_{m}^{*} \backslash G_{m}^{*}\right) \bigcap G \cong \varnothing \quad(m \geq 0)
$$

By (1), $G_{k} \subset[-\pi, \pi]^{d}$. So $G_{k} \cap\left(G_{k}+2 \pi v\right) \cong \varnothing(v \neq \mathbf{0})$. On the other hand, by (3), $G_{m}^{*} \cap\left(G_{k}+2 \pi v\right) \cong \varnothing\left(m<k, v \in \mathbb{Z}^{d}\right)$. So, $\left(\left(\bigcup_{m=0}^{k-1} G_{m}^{*}\right) \cup G_{k}\right) \cap\left(G_{k}+2 \pi v\right) \cong \varnothing(v \neq \mathbf{0})$. From this and (2), it fol'lows that

$$
G \bigcap\left(G_{k}+2 \pi v\right) \cong \varnothing \quad(v \neq 0)
$$

Lemma 1 is proved.
Next, a decomposition of each $G_{m}^{*}(m \geq 0)$ is given. For arbitrarily, finitely, many distinct points $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}\left(\mathbf{0} \in\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r} \subset \mathbb{Z}^{d}\right)$, define a point set $F_{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}}^{m}$:

$$
\begin{equation*}
F_{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}}^{m}:=\left\{\boldsymbol{\omega} \in G_{m}^{*}: \boldsymbol{\omega}+\pi \boldsymbol{v} \in G_{m}^{*}\left(\boldsymbol{v} \in\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r}\right) \text { and } \boldsymbol{\omega}+\pi \boldsymbol{v} \notin G_{m}^{*}\left(\boldsymbol{v} \in \mathbb{Z}^{d} \backslash\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r}\right)\right\} \tag{5}
\end{equation*}
$$

Let $\omega \in G_{m}^{*}$. Note that $G_{m}^{*} \subset G$. Since G is bounded, there only exist finitely many $\boldsymbol{v} \in \mathbb{Z}^{d}$ such that $\boldsymbol{\omega}+\pi \boldsymbol{v} \in G_{m}^{*}$. So, $\boldsymbol{\omega}$ must lie in some $F_{\nu_{0}, \ldots, v_{r}}^{m}$, and so,

$$
\begin{equation*}
G_{m}^{*}=\bigcup_{r=0}^{\infty} \bigcup_{0 \in\left\{v_{l}\right\}_{l=0, \ldots, r} \subset \mathbb{Z}^{d}} F_{v_{0}, \ldots, v_{r}}^{m} \tag{6}
\end{equation*}
$$

and the right-hand side of (6) is a disjoint union. Let

$$
\begin{equation*}
P^{m}=:\left\{F_{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}}^{m}: \mathbf{0} \in\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r} \subset \mathbb{Z}^{d}, r \geq 0 \text { and } F_{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}}^{m} \neq \varnothing\right\} \tag{7}
\end{equation*}
$$

By (1) and $G_{m}^{*} \subset G$, if some \boldsymbol{v}_{l} in $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}\left(\mathbf{0} \in\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r} \subset \mathbb{Z}^{d}\right)$ satisfies $\left|\boldsymbol{v}_{l}\right|>2^{k+1} \sqrt{d}$, then, for any $\omega \in G_{m}$, it follows that $\omega+\pi v_{l} \notin G_{m}$. Again, by (5), it follows that $F_{\nu_{0}, \ldots, v_{r}}^{m}=\varnothing$. Therefore, P^{m} only consists of finitely many point sets.

Lemma 2. If $F_{\nu_{0}, \ldots, v_{r}}^{m} \in P^{m}$, then, $F_{\nu_{0}, \ldots, v_{r}}^{m}+\pi \boldsymbol{v}_{s} \in P^{m}(s=0, \ldots, r)$ and these point sets are disjoint.

Proof. For each $s, \boldsymbol{\omega} \in F_{\nu_{0}, \ldots, \boldsymbol{v}_{r}}^{m}+\pi \boldsymbol{v}_{s}$ is equivalent to $\boldsymbol{\omega}-\pi \boldsymbol{v}_{s} \in F_{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r}}^{m}$. Let $\alpha_{l, s}=$ $\boldsymbol{v}_{l}-\boldsymbol{v}_{s}(l=0, \ldots, r)$. Then, $\boldsymbol{\alpha}_{s, s}=\mathbf{0}$. So, $\mathbf{0} \in\left\{\boldsymbol{\alpha}_{l, s}\right\}_{l=0, \ldots, r} \subset \mathbb{Z}^{d}$. Again, by (5), it follows that $\omega-\pi \boldsymbol{v}_{s} \in F_{\nu_{0}, \ldots, \boldsymbol{v}_{r}}^{m}$ is equivalent to $\omega \in G_{m}^{*}$ and $\boldsymbol{\omega}+\pi \boldsymbol{v} \in G_{m}^{*}\left(\boldsymbol{v} \in\left\{\boldsymbol{\alpha}_{l, s}\right\}_{l=0, \ldots, r}\right)$, and $\omega+\pi \boldsymbol{v} \notin G_{m}^{*}\left(\boldsymbol{v} \in \mathbb{Z}^{d} \backslash\left\{\boldsymbol{\alpha}_{l, s}\right\}_{l=0, \ldots, r}\right)$. It means that $\boldsymbol{\omega} \in F_{\boldsymbol{\alpha}_{0, s}, \ldots, \boldsymbol{\alpha}_{r, s}}^{m}$, i.e.,

$$
F_{\nu_{0}, \ldots, \boldsymbol{v}_{r}}^{m}+\pi \boldsymbol{v}_{s}=F_{\alpha_{0, s,}, \ldots, \boldsymbol{\alpha}_{r, s}} \in P^{m}
$$

Let $s_{1} \neq s_{2}$. Then, $\boldsymbol{v}_{s_{1}} \neq \boldsymbol{v}_{s_{2}}$ and $\boldsymbol{\alpha}_{l, s_{1}} \neq \boldsymbol{\alpha}_{l, s_{2}}(l=0, \ldots, r)$. This implies that

$$
\left(F_{\nu_{0}, \ldots, v_{r}}^{m}+\pi v_{s_{1}}\right) \bigcap\left(F_{\nu_{0}, \ldots, v_{r}}^{m}+\pi v_{s_{2}}\right)==F_{\alpha_{0, s_{1}}, \ldots, \alpha_{r, s_{1}}} \bigcap F_{\alpha_{0, s_{2}}, \ldots, \alpha_{r, s_{2}}}=\varnothing .
$$

Lemma 2 is proved.
Lemma 3. There exist finitely many point sets $A_{j}^{m}:=F_{\nu_{0}^{(j)}, \ldots, v_{v_{j}}^{(j)}}^{m}(j=1, \ldots, \lambda)$ in P^{m}, where λ is some natural number, such that G_{m}^{*} is the following disjoint union

$$
G_{m}^{*}=\bigcup_{j=1}^{\lambda} \bigcup_{l=0}^{r_{j}}\left(A_{j}^{m}+\pi v_{l}^{(j)}\right)
$$

Proof. Take a point set $A_{1}^{m}=F_{\boldsymbol{v}_{0}^{(1)}, \ldots, \boldsymbol{v}_{r_{1}}^{(1)}}^{m} \in P^{m}$. By Lemma 2, the point sets $A_{1}^{m}+\pi \boldsymbol{v}_{l}^{(1)} \in P^{m}$ $\left(l=0, \ldots, r_{1}\right)$ and these point sets are disjoint. Denote

$$
S_{1}^{m}:=\left\{A_{1}^{m}+\pi \boldsymbol{v}_{l}^{(1)}\left(l=0, \ldots, r_{1}\right)\right\} .
$$

Let $P_{1}^{m}:=P^{m} \backslash S_{1}^{m}$. After that, take a point set $A_{2}^{m}=F_{\boldsymbol{v}_{0}^{(2)}, \ldots, \boldsymbol{v}_{r_{2}}^{(2)}}^{m} \in P_{1}^{m}$. Denote

$$
S_{2}^{m}=\left\{A_{2}^{m}+\pi v_{l}^{(2)}\left(l=0, \ldots, r_{2}\right)\right\} .
$$

Since P^{m} consists of finitely many nonempty point sets, repeating the above process, one can finally choose finitely many point sets $\left\{A_{j}^{m}\right\}_{j=1, \ldots, \lambda} \subset P^{m}$ (λ is some natural number) such that

$$
P^{m}=\left\{A_{j}^{m}+\pi v_{l}^{(j)}: l=0, \ldots, r_{j} ; j=1, \ldots, \lambda\right\} .
$$

By (6) and (7), Lemma 3 is proved.

4. Sufficient Conditions for the Support of Frequency Domains of Bandlimited FMRA

In this section, the converse of Theorem 1 will be proved:
Theorem 2. Let G be a bounded closed set in \mathbb{R}^{d} satisfying Theorem 1(i)-(iii), then, there exists a bandlimited FMRA with the support of frequency domain G.

Proof. Since G is bounded, one can choose a $k \in \mathbb{Z}_{+}$such that $G=\left[-2^{k} \pi, 2^{k} \pi\right]^{d}$. Two functions $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ and $H \in L^{\infty}\left(T^{d}\right)$ will be constructed such that $G=\operatorname{supp} \widehat{\varphi}$ and $\left(^{*}\right) \widehat{\varphi}(2 \boldsymbol{\omega})=H(\boldsymbol{\omega}) \widehat{\varphi}(\boldsymbol{\omega})\left(\boldsymbol{\omega} \in \mathbb{R}^{d}\right)$;
$\left.{ }^{(* *}\right) \sum_{v}|\widehat{\varphi}(\boldsymbol{\omega}+2 \pi v)|^{2}=\chi_{\Omega}(\boldsymbol{\omega})\left(\boldsymbol{\omega} \in \mathbb{R}^{d}\right)$, where $\Omega=G+2 \pi \mathbb{Z}^{d}$ and χ_{Ω} is the characteristic function of Ω.

The process is divided into four steps.
Step 1. Define $\hat{\varphi}(\boldsymbol{\omega})=0(\boldsymbol{\omega} \notin G)$.
Step 2. Define $\widehat{\varphi}(\boldsymbol{\omega})$ on G_{k}^{*} and $H(\boldsymbol{\omega})$ on E_{k+1}^{*}, in detail;
Define $\widehat{\varphi}(\boldsymbol{\omega})=1\left(\boldsymbol{\omega} \in G_{k}\right)$. For $\boldsymbol{\omega} \in G_{k}$, by Lemma $1(\mathrm{~b})$, it follows that $\boldsymbol{\omega}+2 \pi \boldsymbol{v} \notin$ $G(v \neq 0)$. So,

$$
\widehat{\phi}(\boldsymbol{\omega})= \begin{cases}0, & \boldsymbol{\omega} \in G_{k}+2 \pi v(v \neq 0) \tag{8}\\ 1, & \boldsymbol{\omega} \in G_{k}\end{cases}
$$

Furthermore, $\widehat{\varphi}$ has been defined on E_{k} and

$$
\sum_{v}|\widehat{\varphi}(\boldsymbol{\omega}+2 \pi \boldsymbol{v})|^{2}=|\widehat{\varphi}(\boldsymbol{\omega})|^{2}=1 \quad\left(\boldsymbol{\omega} \in G_{k}\right)
$$

i.e., Formula $\left({ }^{(* *}\right)$ holds for $\omega \in G_{k}$.

Define $H(\boldsymbol{\omega})=1\left(\boldsymbol{\omega} \in E_{k+1}\right)$. If $\boldsymbol{\omega} \in G_{k+1}$, then, $2 \boldsymbol{\omega} \in G_{k}$. By $G_{k+1} \subset G_{k}$ and (8), $\widehat{\varphi}(2 \boldsymbol{\omega})=\widehat{\varphi}(\boldsymbol{\omega})=1$. Hence, Formula $\left.{ }^{*}\right)$ holds for $\boldsymbol{\omega} \in G_{k+1}$. If $\boldsymbol{\omega} \in G_{k+1}+2 \pi \boldsymbol{v}(\boldsymbol{v} \neq \mathbf{0})$,
then, $2 \boldsymbol{\omega} \in G_{k}+4 \pi \boldsymbol{v}(\boldsymbol{v} \neq 0)$. From this and (8), $\widehat{\varphi}(2 \boldsymbol{\omega})=\widehat{\varphi}(\boldsymbol{\omega})=0$, Clearly, Formula ${ }^{*}$) holds for $\omega \in G_{k+1}+2 \pi v(v \neq 0)$. Thus, Formula $\left(^{*}\right)$ holds for $\omega \in E_{k+1}$.

Step 3. Based on Step 2, the idea of mathematics induction will be used. For $k \geq m>0$, assume that $\widehat{\varphi}(\boldsymbol{\omega})$ is defined on G_{m}^{*} and $H(\boldsymbol{\omega})$ is defined on E_{m+1}^{*} such that Formula (${ }^{*}$) holds on E_{m+1}^{*}, Formula (${ }^{* *}$) holds on G_{m}^{*}, and

$$
\begin{aligned}
& 0<C_{m} \leq \widehat{\varphi}(\boldsymbol{\omega}) \leq D_{m}<\infty, \quad \boldsymbol{\omega} \in G_{m}^{*} \\
& 0<\widetilde{C}_{m} \leq H(\boldsymbol{\omega}) \leq \widetilde{D}_{m}<\infty, \quad \boldsymbol{\omega} \in E_{m+1^{\prime}}^{*}
\end{aligned}
$$

where $C_{m}, D_{m}, \widetilde{C}_{m}$, and \widetilde{D}_{m} are constants.
Define $H(\boldsymbol{\omega})$ on G_{m}^{*}. By Lemma 3, one only needs to define $H(\boldsymbol{\omega})$ on each $A_{j}^{m}+\pi \boldsymbol{\nu}_{l}^{(j)}$.
Since $\widehat{\varphi}(\boldsymbol{\omega})$ has been defined on G_{m}^{*} and $C_{m} \leq \widehat{\varphi}(\boldsymbol{\omega}) \leq D_{m}$. Again, by Lemma 3:

$$
G_{m}^{*}=\bigcup_{j=1}^{\lambda} \bigcup_{l=0}^{r_{j}}\left(A_{j}^{m}+\pi \boldsymbol{v}_{l}^{(j)}\right)
$$

so, for each $\omega \in A_{j}^{m}$ and $l=0, \ldots, r_{j}$, the values of $\widehat{\varphi}\left(\boldsymbol{\omega}+\pi v_{l}^{(j)}\right)(j=1, \ldots, \lambda)$ have been defined and $C_{m} \leq \hat{\varphi}\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right) \leq D_{m}$. Write

$$
\begin{equation*}
\boldsymbol{v}_{l}^{(j)}=2 \mathbf{u}_{l}^{(j)}+\boldsymbol{\alpha}_{l}^{(j)} \quad\left(\mathbf{u}_{l}^{(j)} \in \mathbb{Z}^{d} ; \boldsymbol{\alpha}_{l}^{(j)} \in\{0,1\}^{d}\right) \tag{9}
\end{equation*}
$$

Noticing that the point sets $A_{j}^{m}+\pi \boldsymbol{\alpha}_{l}^{(j)}\left(l=0,1, \ldots, r_{j}\right)$ are disjoint, one can define $H(\boldsymbol{\omega}+$ $\left.\pi \boldsymbol{\alpha}_{l}^{(j)}\right)$ on A_{j}^{m} such that for $\boldsymbol{\omega} \in A_{j}^{m}$,

$$
\begin{equation*}
\sum_{l=0}^{r_{j}} b_{l}^{(j)}(\boldsymbol{\omega})\left|H\left(\boldsymbol{\omega}+\pi \boldsymbol{\alpha}_{l}^{(j)}\right)\right|^{2}=1 \tag{10}
\end{equation*}
$$

where $b_{l}^{(j)}(\boldsymbol{\omega})=\left|\widehat{\varphi}\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right)\right|^{2}$ and

$$
\begin{equation*}
0<\widetilde{\mathrm{C}}_{m-1}^{(j)} \leq H\left(\boldsymbol{\omega}+\pi \boldsymbol{\alpha}_{l}^{(j)}\right) \leq \widetilde{D}_{m-1}^{(j)}<\infty \quad\left(l=0, \ldots ., r_{j}\right) \tag{11}
\end{equation*}
$$

where $\widetilde{C}_{m-1}^{(j)}$ and $\widetilde{D}_{m-1}^{(j)}$ are constants.
By (9), for $j=1, \ldots, \lambda$, define

$$
\begin{equation*}
H\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right)=H\left(\boldsymbol{\omega}+\pi \boldsymbol{\alpha}_{l}^{(j)}\right) \quad\left(\boldsymbol{\omega} \in A_{j}^{m} ; l=0, \ldots, r_{j}\right) \tag{12}
\end{equation*}
$$

Due to the Lemma 3, $H(\boldsymbol{\omega})$ is defined on G_{m}^{*} and

$$
\widetilde{C}_{m-1} \leq H(\boldsymbol{\omega}) \leq \widetilde{D}_{m-1} \quad\left(\boldsymbol{\omega} \in G_{m}^{*}\right)
$$

where $\widetilde{\mathrm{C}}_{m-1}=\min _{1 \leq j \leq \lambda}\left\{\widetilde{\mathrm{C}}_{m-1}^{(j)}\right\}$ and $\widetilde{D}_{m-1}=\max _{1 \leq j \leq \lambda}\left\{\widetilde{D}_{m-1}^{(j)}\right\}$.
Below, we will prove that if $\boldsymbol{\omega} \in G_{m}^{*}$ and $\boldsymbol{\omega}+2 \pi \widetilde{v} \in G_{m}^{*}$ for some $\widetilde{v} \in \mathbb{Z}^{d}$, then $H(\boldsymbol{\omega}+2 \pi \widetilde{\boldsymbol{v}})=H(\boldsymbol{\omega})$.

By $\omega \in G_{m}^{*}$ and Lemma 3, there exist j and n such that

$$
\begin{equation*}
\omega=\omega_{0}+\pi v_{n}^{(j)} \tag{13}
\end{equation*}
$$

where $\boldsymbol{\omega}_{0} \in A_{j}^{m}$. Since $\boldsymbol{\omega}+2 \pi \widetilde{\boldsymbol{v}}=\boldsymbol{\omega}_{0}+\pi\left(2 \widetilde{\boldsymbol{v}}+\boldsymbol{v}_{n}^{(j)}\right) \in G_{m}^{*}$ and $\boldsymbol{\omega}_{0} \in A_{j}^{m}$, there is some $s\left(0 \leq s \leq r_{j}\right)$ such that

$$
\begin{equation*}
2 \widetilde{\boldsymbol{v}}+\boldsymbol{v}_{n}^{(j)}=\boldsymbol{v}_{s}^{(j)} \tag{14}
\end{equation*}
$$

By (12)-(14), it follows that

$$
\begin{align*}
& H(\boldsymbol{\omega})=H\left(\boldsymbol{\omega}_{0}+\pi \boldsymbol{v}_{n}^{(j)}\right)=H\left(\boldsymbol{\omega}_{0}+\pi \boldsymbol{\alpha}_{n}^{(j)}\right) \tag{15}\\
& H(\boldsymbol{\omega}+2 \pi \widetilde{\boldsymbol{v}})=H\left(\boldsymbol{\omega}_{0}+\pi\left(2 \widetilde{\boldsymbol{v}}+\boldsymbol{v}_{n}^{(j)}\right)\right)=H\left(\boldsymbol{\omega}_{0}+\pi \boldsymbol{v}_{s}^{(j)}\right)=H\left(\boldsymbol{\omega}_{0}+\pi \boldsymbol{\alpha}_{s}^{(j)}\right)
\end{align*}
$$

By uniqueness of decomposition in (9), it follows that $\boldsymbol{\alpha}_{n}^{(j)}=\boldsymbol{\alpha}_{s}^{(j)}$. It means that $H(\boldsymbol{\omega})=$ $H(\boldsymbol{\omega}+2 \pi \widetilde{\boldsymbol{v}})$ when $\boldsymbol{\omega} \in G_{m}^{*}$ and $\boldsymbol{\omega}+2 \pi \widetilde{\boldsymbol{v}} \in G_{m}^{*}$ for some $\widetilde{\boldsymbol{v}} \in \mathbb{Z}^{d}$.

Based on this fact, one can further define $H(\boldsymbol{\omega}+2 \pi \boldsymbol{v})=H(\boldsymbol{\omega})\left(\boldsymbol{\omega} \in G_{m}^{*}, \boldsymbol{v} \in \mathbb{Z}^{d}\right)$. So, $H(\boldsymbol{\omega})$ is well-defined on E_{m}^{*} and $\widetilde{C}_{m-1} \leq H(\boldsymbol{\omega}) \leq \widetilde{D}_{m-1}\left(\boldsymbol{\omega} \in E_{m}^{*}\right)$.

Now, define $\widehat{\varphi}(\boldsymbol{\omega})$ on G_{m-1}^{*}. Let

$$
\begin{equation*}
\widehat{\varphi}(2 \boldsymbol{\omega})=H(\boldsymbol{\omega}) \widehat{\varphi}(\boldsymbol{\omega}) \quad\left(\boldsymbol{\omega} \in G_{m}^{*}\right) . \tag{16}
\end{equation*}
$$

Then, $\widehat{\varphi}(\boldsymbol{\omega})$ is defined on $G_{m-1}^{*}\left(G_{m-1}^{*}=2 G_{m}^{*}\right)$ and

$$
C_{m-1} \leq \widehat{\varphi}(\boldsymbol{\omega}) \leq D_{m-1}, \text { where } C_{m-1}=C_{m} \widetilde{C}_{m-1} \text { and } D_{m-1}=D_{m} \widetilde{D}_{m-1}
$$

By Step 1 and Lemma 1(a), it follows that $\widehat{\varphi}(\boldsymbol{\omega})=0\left(\boldsymbol{\omega} \in \boldsymbol{E}_{m-\mathbf{1}}^{*} \backslash \boldsymbol{G}_{\boldsymbol{m}-\mathbf{1}}^{*}\right)$. So, $\widehat{\varphi}(\boldsymbol{\omega})$ is defined on E_{m-1}^{*}.

This will prove that Formula (*) holds on E_{m}^{*} : If $\omega \in G_{m}^{*}$, by (16), Formula (*) holds. If $\omega \notin G_{m}^{*}$, then, $\omega \in E_{m}^{*} \backslash G_{m}^{*}$. By Lemma 1(a), it follows that $\omega \notin G$. By $G \subset 2 G$, we get $2 \boldsymbol{\omega} \notin G$. So, $\widehat{\varphi}(2 \boldsymbol{\omega})=\widehat{\varphi}(\boldsymbol{\omega})=0$. Formula $\left(^{*}\right)$ also holds.

Finally, it will prove that Formula $\left(^{* *}\right)$ holds on G_{m-1}^{*}.
Let $\boldsymbol{\omega} \in A_{j}^{m}=F_{\nu_{0}^{(j)}, \ldots, \nu_{r_{j}}^{(j)}}^{m}$. Then,

$$
\begin{equation*}
\boldsymbol{\omega} \in G_{m}^{*}, \quad \boldsymbol{\omega}+\pi \boldsymbol{v} \in G_{m}^{*}\left(\boldsymbol{v} \in\left\{\boldsymbol{v}_{l}^{(j)}\right\}_{l=0, \ldots, r_{j}}\right), \quad \boldsymbol{\omega}+\pi \boldsymbol{v} \notin G_{m}^{*}\left(\boldsymbol{v} \notin\left\{\boldsymbol{v}^{(j)}\right\}_{l=0, \ldots, r_{j}}\right) . \tag{17}
\end{equation*}
$$

By $2 G_{m}^{*}=G_{m-1}^{*}$, it follows that $2 \boldsymbol{\omega} \in G_{m-1}^{*}$ and then, $2 \boldsymbol{\omega}+2 \pi v \in E_{m-1}^{*}\left(v \in \mathbb{Z}^{d}\right)$. Again, by (17), it follows that $2 \omega+2 \pi v \notin G_{m-1}^{*}\left(v \notin\left\{\boldsymbol{v}_{l}^{(j)}\right\}_{l=0, \ldots, r_{j}}\right)$. So, $2 \boldsymbol{\omega}+2 \pi v \in E_{m-1}^{*} \backslash$ $G_{m-1}^{*}\left(\boldsymbol{v} \notin\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r_{j}}\right)$. By Lemma 1(a), it means that $2 \boldsymbol{\omega}+2 \pi \boldsymbol{v} \notin G\left(\boldsymbol{v} \notin\left\{\boldsymbol{v}_{l}\right\}_{l=0, \ldots, r_{j}}\right)$. So, $\widehat{\varphi}(2 \boldsymbol{\omega}+2 \pi \boldsymbol{v})=0\left(\boldsymbol{v} \notin\left\{\boldsymbol{v}_{l}^{(j)}\right\}_{l=0, \ldots, r_{j}}\right)$, and so,

$$
\begin{equation*}
\sum_{v}|\widehat{\varphi}(2 \omega+2 \pi v)|^{2}=\sum_{l=0}^{r_{j}}\left|\widehat{\varphi}\left(2 \omega+2 \pi v_{l}^{(j)}\right)\right|^{2} \tag{18}
\end{equation*}
$$

By (9) and (16), it follows that

$$
\widehat{\varphi}\left(2 \boldsymbol{\omega}+2 \pi \boldsymbol{v}_{l}^{(j)}\right)=H\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right) \widehat{\varphi}\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right)=H\left(\boldsymbol{\omega}+\pi \boldsymbol{\alpha}_{l}^{(j)}\right) \widehat{\varphi}\left(\boldsymbol{\omega}+\pi \boldsymbol{v}_{l}^{(j)}\right)
$$

Again by (18) and (10), it follows that for $\omega \in A_{j}^{m}$,

$$
\begin{equation*}
\sum_{v}|\widehat{\varphi}(2 \omega+2 \pi v)|^{2}=1 \tag{19}
\end{equation*}
$$

Similar to the above process, it follows that (19) also holds for $\boldsymbol{\omega} \in A_{j}^{m}+\pi \boldsymbol{v}_{l}^{(j)}$. Again, by Lemma 3, (19) holds for $\boldsymbol{\omega} \in G_{m}^{*}$. Noticing that $2 G_{m}^{*}=G_{m-1}^{*}$, it means that $\sum_{v} \mid \widehat{\varphi}(\boldsymbol{\omega}+$ $2 \pi v)\left.\right|^{2}=1$ holds on G_{m-1}^{*}.

Step 4. From Steps $1-3, \widehat{\varphi}(\boldsymbol{\omega})$ is defined on G and $H(\boldsymbol{\omega})$ is defined on $\frac{1}{2} G+2 \pi \mathbb{Z}^{d}$. Now, define $H(\boldsymbol{\omega})=0\left(\boldsymbol{\omega} \in G_{0}^{*}+2 \pi \mathbb{Z}^{d}\right)$ and $H(\boldsymbol{\omega})=0\left(\boldsymbol{\omega} \in \mathbb{R}^{d} \backslash \Omega\right)$. By assumption (iii) in Theorem 2, it follows that

$$
\begin{align*}
& \left(G_{0}^{*}+2 \pi \mathbb{Z}^{d}\right) \cup\left(\frac{G}{2}+2 \pi \mathbb{Z}^{d}\right)=G+2 \pi \mathbb{Z}^{d} \cong \Omega \\
& \left(G_{0}^{*}+2 \pi \mathbb{Z}^{d}\right) \cap\left(\frac{G}{2}+2 \pi \mathbb{Z}^{d}\right) \cong \varnothing \tag{20}
\end{align*}
$$

It means that H has been well-defined on \mathbb{R}^{d} and $H \in L^{\infty}\left(T^{d}\right)$.
From Steps 1-3, Formula $\left(^{*}\right)$ holds on $\frac{G}{2}+2 \pi \mathbb{Z}^{d}$. For $\omega \in G_{0}^{*}+2 \pi \mathbb{Z}^{d}$, it follows that $2 \boldsymbol{\omega} \in 2 G_{0}^{*}+4 \pi \mathbb{Z}^{d}$. By (20), it follows that $\left(2 G_{0}^{*}+4 \pi \mathbb{Z}^{d}\right) \cap G \cong \varnothing$. Hence, $\widehat{\varphi}(2 \boldsymbol{\omega})=0$. Again, by $H(\boldsymbol{\omega})=0\left(\boldsymbol{\omega} \in G_{0}^{*}+2 \pi \mathbb{Z}^{d}\right)$, Formula $\left(^{*}\right)$ holds also on $G_{0}^{*}+2 \pi \mathbb{Z}^{d}$. Thus, by (20), Formula $\left(^{*}\right)$ holds for $\omega \in \Omega$. When $\omega \notin \Omega$, by assumption (i) in Theorem 2, it follows that $2 \omega \notin \Omega$, which means that Formula (*) also holds for $\omega \notin \Omega$. Therefore, Formula $\left(^{*}\right)$ holds on \mathbb{R}^{d}.

From Steps $1-3$, Formula $\left(^{(* *)}\right.$ holds on G. Since the sum $\sum_{v}|\widehat{\varphi}(\boldsymbol{\omega}+2 \pi \boldsymbol{v})|^{2}$ is a $2 \pi \mathbb{Z}^{d}$-periodic function, $\sum_{v}|\widehat{\varphi}(\boldsymbol{\omega}+2 \pi v)|^{2}=1$ holds on $G+2 \pi \mathbb{Z}^{d}=\Omega$. If $\boldsymbol{\omega} \notin \Omega$, then, for any $v \in \mathbb{Z}^{d}$, it follows that $\omega+2 \pi v \notin G$. So, $\sum_{v}|\widehat{\varphi}(\omega+2 \pi v)|^{2}=0$ on $\mathbb{R}^{d} \backslash \Omega$, and so, $\sum_{v}|\widehat{\varphi}(\boldsymbol{\omega}+2 \pi \boldsymbol{v})|^{2}=\chi_{\Omega}(\boldsymbol{\omega})\left(\boldsymbol{\omega} \in \mathbb{R}^{d}\right)$, i.e., Formula (${ }^{* *}$) holds on \mathbb{R}^{d}.

Up to now, the constructed $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ and $H \in L^{\infty}\left(T^{d}\right)$ satisfy Formulas (*) and $\left.{ }^{(* *}\right)$. Let $V_{m}=\overline{\operatorname{span}}\left\{\varphi\left(2^{m} \mathbf{t}-\mathbf{n}\right), \mathbf{n} \in \mathbb{Z}^{d}\right\}(m \in \mathbb{Z})$. Since H is a $2 \pi \mathbb{Z}^{d}$-periodic bounded function, $H(\boldsymbol{\omega})$ can be expanded into a Fourier series: $H(\boldsymbol{\omega})=\sum_{\mathbf{k}} c_{\mathbf{k}} e^{i(\mathbf{k} \cdot \boldsymbol{\omega})}$. By Formula $\left(^{*}\right)$, it follows that

$$
\widehat{\varphi}(2 \boldsymbol{\omega})=\sum_{\mathbf{k}} c_{\mathbf{k}} \widehat{\varphi}(\boldsymbol{\omega}) e^{i(\mathbf{k} \cdot \boldsymbol{\omega})}
$$

Taking the inverse Fourier transform on both sides, we have

$$
\frac{1}{2^{d}} \varphi\left(\frac{\mathbf{t}}{2}\right)=\sum_{\mathbf{k}} c_{\mathbf{k}} \varphi(\mathbf{t}-\mathbf{k})
$$

and so, $\varphi\left(2^{m} \mathbf{t}-\mathbf{n}\right)=2^{d} \sum_{\mathbf{k}} c_{\mathbf{k}} \varphi\left(2^{m+1} \mathbf{t}-(2 \mathbf{n}+\mathbf{k})\right) \subset V_{m+1}$. This implies that $V_{m} \subset V_{m+1}$.
By a known results in [1-2], Formula $\left.{ }^{* * *}\right)$ implies the system $\{\varphi(\cdot-\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^{d}}$ is a frame for $V_{0}=\overline{\operatorname{span}}\left\{\varphi(\cdot \mathbf{-}), \mathbf{n} \in \mathbb{Z}^{d}\right\}$. For any $f \in V_{m}$, it follows that $f\left(2^{-m} \cdot\right) \in V_{0}$. It can be expanded into a frame series with respect to $\{\varphi(\cdot-\mathbf{n})\}_{\mathbf{n}}$:

$$
f\left(2^{-m} \mathbf{t}\right)=\sum_{\mathbf{n}} d_{\mathbf{n}} \varphi(\mathbf{t}-\mathbf{n})
$$

Taking the Fourier transform on both sides, we have

$$
2^{m} \widehat{f}\left(2^{m} \boldsymbol{\omega}\right)=\left(\sum_{\mathbf{n}} d_{\mathbf{n}} e^{-i(\mathbf{n} \cdot \boldsymbol{\omega})}\right) \widehat{\varphi}(\boldsymbol{\omega})
$$

i.e., $\widehat{f}(\boldsymbol{\omega})=\tau(\boldsymbol{\omega}) \widehat{\varphi}\left(2^{-m} \boldsymbol{\omega}\right)$, where $\tau(\boldsymbol{\omega})=2^{-m} \sum_{\mathbf{n}} d_{\mathbf{n}} e^{-i(\mathbf{n} \cdot \boldsymbol{\omega}) / 2^{m}}$. So, $\operatorname{supp} \widehat{f} \subset \operatorname{supp} \widehat{\varphi}\left(2^{-m}.\right)$ for $f \in V_{m}$. Since $\varphi\left(2^{m}.\right) \in V_{m}$, it implies that

$$
\bigcup_{f \in V_{m}} \operatorname{supp} \widehat{f}=\operatorname{supp} \widehat{\varphi}\left(2^{-m} \cdot\right)
$$

By Assumption (ii), it follows that

$$
\bigcup_{m} \bigcup_{f \in V_{m}} \operatorname{supp} \hat{f}=\bigcup_{m} 2^{m} G=\mathbb{R}^{d}
$$

By a known result in [1,2], we have $\bigcup_{m} V_{m}=L^{2}\left(\mathbb{R}^{d}\right)$. Therefore, $\left\{V_{m}\right\}$ is a bandlimited FMRA with frequency domain G.

Example 1. Let $G=\Omega_{1} \cup \Omega_{2} \in \mathbb{R}^{2}$, where

$$
\begin{aligned}
& \Omega_{1}=\left\{(x, y):-\pi \leq x \leq \pi, \pi-\sqrt{\pi^{2}-x^{2}} \leq y \leq \pi\right\} \\
& \Omega_{2}=\left\{(x, y):-\pi \leq x \leq \pi,-\pi \leq y \leq-\pi+\sqrt{\pi^{2}-x^{2}}\right\}
\end{aligned}
$$

It is very clear that G satisfies
(i) $G \subset 2 G$,
(ii) $\bigcup_{m} 2^{m} G \cong \mathbb{R}^{2}$, and
(iii) $\left(G \backslash \frac{G}{2}\right) \cap\left(\frac{G}{2}+2 \pi v\right) \cong \varnothing\left(v \in \mathbb{Z}^{2}\right)$.

Theorem 2 shows that there exists a bandlimited FMRA with frequency domain $G=$ $\Omega_{1} \cup \Omega_{2}$.

Funding: This research was partially supported by European Commissions Horizon2020 Framework Program No 861584 and Taishan Distinguished Professor Fund.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 2008.
2. Zhang, Z.; Jorgenson, P.E.T. Frame Theory in Data Science; Springer: Berlin/Heidelberg, Germany, 2021.
3. Benedetto, J. J.; Li, S. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comp. Harmon. Anal. 1998, 5, 389-427. [CrossRef]
4. Mu, L.; Zhang, Z.; Zhang, P. On the Higher-dimensional Wavelet Frames. Appl. Comput. Harmon. Anal. 2004, 16, 44-59.
5. Zhang, Z. Fourier supports of scaling functions determine cardinalities of wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 2012, 10, 1250011. [CrossRef]
6. Zhang, Z. Pointwise convergence and uniform convergence of wavelet frame series. Acta Math. Sin. 2006, 22, 653-658. [CrossRef]
7. Chui, C.K.; He,W. Compactly supported tight frames associated with refinable function. Appl. Comput. Harmon. Anal. 2000, 8, 293-319. [CrossRef]
8. Antolin, A.S.; Zalik, R.A. Compactly supported Parseval framelets with symmetry associated to E(2)d(Z) matrices. Appl. Math. Comput. 2018, 325, 179-190.
9. Atreasa, N.; Karantzasb, N.; Papadakisb, M.; Stavropoulosc, T. On the design of multi-dimensional compactly supported Parseval framelets with directional characteristics. Linear Algebra Appl. 2019, 582, 1-36. [CrossRef]
10. Zhang, Z. Splitting of framelets and framelet packets. Mathematics 2021, 9, 697. [CrossRef]
