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Abstract: We prove the logarithmic convergence rate of the families of usual and modified iterative
Runge-Kutta methods for nonlinear ill-posed problems between Hilbert spaces under the logarith-
mic source condition, and numerically verify the obtained results. The iterative regularization is
terminated by the a posteriori discrepancy principle.
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1. Introduction

Let X and Y be infinite-dimensional real Hilbert spaces with inner products 〈·, ·〉 and
norms ‖ · ‖. Let us consider a nonlinear ill-posed operator equation

F(w) = g, (1)

where F : D(F) ⊂ X → Y is a nonlinear operator between the Hilbert spaces X and Y. We
assume that (1) has a solution w+ for exact data (which need not be unique). We have
approximate data gε with

‖gε − g‖ ≤ ε, ε > 0. (2)

Besides the classical Tikhonov–Phillips regularization, a plethora of interesting variational
and iterative approaches for ill-posed problems can be found, e.g., in Morozov [1], Tikhonov
and Arsenin [2], Bakushinsky and Kokurin [3], and Kaltenbacher et al. [4]. We focus here
on iterative methods, as they are also very popular and effective to use in applications.
The simplest iterative regularization is the Landweber method—see, e.g., Hanke et al. [5],
where the analysis for convergence rates is done under Hölder-type source condition. A
more effective method often used in applications is the Levenberg–Marquardt method

wε
k+1 = wε

k + (αk I + F′(wε
k)
∗F′(wε

k))
−1F′(wε

k)
∗(gε − F(wε

k)). (3)

This was investigated in [6–8] under the Hölder-type source condition (HSC) and a
posteriori discrepancy principle (DP). Jin [7] proved optimal convergence rates for an a
priori chosen geometric step size sequence αk, whereas Hochbruck and Hönig [6] showed
convergence with the optimal rate for quite general step size sequences including the
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geometric sequence. Later, Hanke [8] avoided any constraints on the rate of decay of the
regularization parameter to show the optimal convergence rate.

Tautenhahn [9] proved that asymptotic regularization, i.e., the approximation of
problem (1) by a solution of the Showalter differential equation (SDE)

d
dt

wε(t) = F′(wε(t))∗[gε − F(wε(t))], 0 < t ≤ T, wε(0) = w̄, (4)

where the regularization parameter T is chosen according to the DP under the HSC, is a
stable method to solve nonlinear ill-posed problems.

Solving SDE by the family of Runge-Kutta (RK) methods delivers a family of RK-type
iterative regularization methods

wε
k+1 = wε

k + τkbT(δ + τk AF′(wε
k)
∗F′(wε

k))
−1
1F′(wε

k)
∗(gε − F(wε

k)), k ∈ N0, (5)

where 1 denotes the (s× 1) vector of identity operators, while δ is the (s× s) diagonal
matrix of bounded linear operators with identity operator on the entire diagonal and zero
operator outside of the main diagonal with respect to the appropriate spaces. The parameter
τk = 1/αk in (5) is the step-length, also called the relaxation parameter. The (s× s) matrix
A and the (s × 1) vector b are the given parameters that correspond to the specific RK
method, building the so-called Butcher tableau (succession of stages). Different choices of
the RK parameters generate various iterative methods.

Böckmann and Pornsawad [10] showed convergence for the whole RK-type family
(including the well-known Landweber and the Levenberg–Marquardt methods). That
paper also emphasized advantages of using some procedures from the mentioned family,
e.g., regarding implicit A-stable Butcher tableaux. For instance, the Landweber method
needs a lot of iteration steps, while those implicit methods need only a few iteration steps,
thus minimizing the rounding errors.

Later, Pornsawad and Böckmann [11] filled in the missing results on optimal conver-
gence rates, but only for particular first-stage methods under HSC and using DP.

Our current study considers further the unifying RK-framework described above,
as well as a modified version presented below, showing optimality of the RK-regularization
schemes under logarithmic source conditions.

An additional term αk(wε
k− ξ), as in the iteratively regularized Gauss–Newton method

(see, e.g., [4]),

wε
k+1 = wε

k − (F′(wε
k)
∗F′(wδ

k) + αk I)−1(F′(wε
k)
∗(F(wε

k)− gε) + αk(wε
k − ξ)),

was added to a modified Landweber method. Thus, Scherzer [12] proved a convergence
rate result under HSC without particular assumptions on the nonlinearity of operator
F. Moreover, in Pornsawad and Böckmann [13], an the additional term was included to
the whole family of iterative RK-type methods (which contains the modified Landweber
iteration),

wε
k+1 = wε

k + τkbTΠ−1
1F′(wε

k)
∗(gε − F(wε

k))− τ−1
k (wε

k − ζ), (6)

where ζ ∈ X and Π = δ + τk AF′(wε
k)
∗F′(wε

k). Using a priori and a posteriori stopping
rules, the convergence rate results of the RK-type family are obtained under HSC if the
Fréchet derivative is properly scaled.

Due to the minimal assumptions for the convergence analysis of the modified iterative
RK-type methods, an additional term was added to SDE

d
dt

wε(t) = F′(wε(t))∗[gε − F(wε(t))]− (wε(t)− w̄), 0 < t ≤ T, wε(0) = w̄. (7)

Pornsawad et al. [14] investigated this continuous version of the modified iterative
RK-type methods for nonlinear inverse ill-posed problems. The convergence analysis yields
the optimal rate of convergence under a modified DP and an exponential source condition.
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Recently, a second-order asymptotic regularization for the linear problem Âx = y was
investigated in [15]

ẍ(t) + µẋ(t) + Â∗ Âx(t) = Â∗yδ, x(0) = x̄, ẋ(0) = ˙̄x

under HSC using DP.
Define

ϕ = ϕp, ϕp(λ) :=

{(
ln e

λ

)−p for 0 < λ ≤ 1
0 for λ = 0

(8)

with p > 0 and the usual logarithmic sourcewise representation

w+ − w0 = ϕ
(

F′(w+)∗F′(w+)
)
v, v ∈ X, (9)

where ‖v‖ is sufficiently small and w0 ∈ D(F) is an initial guess that may incorporate a
priori knowledge on the solution.

In numerous applications—e.g., heat conduction, scattering theory, which are severely ill-
posed problems—the Hölder source condition is far too strong. Therefore, Hohage [16] proved
convergence and logarithmic convergence rates for the iteratively regularized Gauss–Newton
method in a Hilbert space setting, provided a logarithmic source condition (9) is satisfied and
DP is used as the stopping rule. Deuflhard et al. [17] showed some convergence rate result
for the Landweber iteration using DP and (9) under a Newton–Mysovskii condition on the
nonlinear operator. Sufficient conditions for the convergence rate, which is logarithmic in
the data noise level, are given.

In Hohage [18], a systematic study of convergence rates for regularization methods
under (9) including the case of operator approximations for a priori and a posteriori stopping
rules is provided. A logarithmic source condition is considered by Pereverzyev et al. [19] for
a derivative-free method, by Mahale and Nair [20] for a simplified generalized Gauss–
Newton method, and by Böckmann et al. [21] for the Levenberg–Marquardt method
using DP as stopping rule. Pornsawad et al. [22] solved the inverse potential problem,
which is exponentially ill-posed, employing the modified Landweber method and proved
convergence rate under the logarithmic source condition via DP for this method.

To the best of our knowledge, for the first time, convergence rates are established both
for the whole family of RK-methods and for the modified version, when applied to severely
ill-posed problems (i.e., under the logarithmic source condition).

The structure of this article is as follows. Section 2 provides assumptions and technical
estimations. We derive the convergence rate of the RK-type method (5) in Section 3 and of
the modified RK-type method (6) in Section 4 under the logarithmic source conditions (8)
and (9). In Section 5, the performed numerical experiments confirm the theoretical results.

2. Preliminary Results

Lemma 1. Let K be a linear operator with ‖K‖ ≤ 1. For k ∈ N with k > 1, e0 := ϕ(λ)v with ϕ
given by (8) and p > 0, there exist positive constants c1 and c2 such that∥∥∥(I − K∗K)ke0

∥∥∥ ≤ c1(ln(k + e))−p‖v‖ (10)

and ∥∥∥K(I − K∗K)ke0

∥∥∥ ≤ c2(k + 1)−1/2(ln(k + e))−p‖v‖. (11)

Proof. By spectral theory (8), and (A1) and (A2) in [22], we have
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∥∥∥(I − K∗K)ke0

∥∥∥ ≤ ‖(I − K∗K)k ϕ(K∗K)‖‖v‖

≤ sup
λ∈(0,1]

|(1− λ)k(1− ln λ)−p|‖v‖

≤ c1(ln(k + e))−p‖v‖, (12)

for some constant c1 > 0. Similarly, spectral theory (8), and (A3) and (A4) in [22], provides∥∥∥K(I − K∗K)ke0

∥∥∥ ≤ ‖(I − K∗K)k(K∗K)1/2 ϕ(K∗K)‖‖v‖

≤ sup
λ∈(0,1]

|(1− λ)kλ1/2(1− ln λ)−p|‖v‖

≤ c2(k + 1)−1/2(ln(k + e))−p‖v‖, (13)

for some constant c2 > 0.

Assumption 1. There exist positive constants cL, cr, and ĉR and a linear bounded operator Rw :
Y → Y such that for w ∈ Bρ(w0), the following conditions hold

F′(w) = RwF′(w+) (14)

‖Rw − I‖ ≤ cL
∥∥w− w+

∥∥ (15)

‖Rw‖ ≤ cr (16)

|‖Rw‖ − ‖I‖| ≥ ĉR, (17)

where w+ is the exact solution of (1).

Let ek := w+ − wε
k be the error of the kth iteration wε

k, Sk := F′(wε
k) and S := F′(w+).

Proposition 1. Let the conditions (14) and (15) in Assumption 1 hold. Then,

∥∥F(wε
k)− F(w+)− F′(w+)(wε

k − w+)
∥∥ ≤ 1

2
cL‖ek‖‖Sek‖ (18)

for w ∈ Bρ(w0).

The proof is given in [22] using the mean value theorem.

Assumption 2. Let K be a linear operator and τ be a positive number. There exist positive
constants D1 and D2 such that

‖I − τ f (−τKK∗)‖ ≤ D1 (19)

and
‖I + τ f (−τKK∗)‖ ≤ D2, (20)

with f (t) := bT(I − At)−1
1.

We note that the explicit Euler method provides ‖I − τ f (−τKK∗)‖ ≤ |1− τ| and
‖I + τ f (−τKK∗)‖ ≤ |1 + τ|. Thus, the conditions (19) and (20) hold if τ is bounded.
For the implicit Euler method, we have

‖I − τ f (−τKK∗)‖ ≤ sup
0<λ≤λ0

|1− τ(1 + τλ)−1|

and
‖I + τ f (−τKK∗)‖ ≤ sup

0<λ≤λ0

|1 + τ(1 + τλ)−1|,
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for some positive number λ0. We observe from Figure 1 that the conditions (19) and (20)
hold for τ > 0.

(a) (b)

Figure 1. Plots of (a) z = |1 − τ(1 + τλ)−1| and (b) z = |1 + τ(1 + τλ)−1| for 0 < λ ≤ 1 and
0 < τ ≤ 500.

Finally, we need a technical result for the next two sections.

Lemma 2. Let Assumptions 1 and 2 hold for the operator S := F′(w+). Then, there exists a
positive number cR such that

i) ‖I − τkR∗wε
k

f (−τkSkS∗k )‖ ≤ cR‖w+ − wε
k‖ (21)

and
ii) ‖(1− αk)I − τkR∗wε

k
f (−τkSkS∗k )‖ ≤ cR‖w+ − wε

k‖. (22)

Proof. (i) Following the proof technique of Theorem 1 in [22] and using (17), we have

1 ≤ ĉ−1
R ‖Rw − I‖ (23)

and
‖I + R∗w‖ ≤ ĉ−1

R ‖I − R∗w‖‖I + R∗w‖. (24)

Using Assumption 2; the estimates in Equations (15), (16), (19), (20), (24); and the
triangle inequality, we obtain

‖I − τkR∗wε
k

f (−τkSkS∗k )‖

=

∥∥∥∥1
2

[
(I + R∗wε

k
)(I − τk f (−τkSkS∗k ))

]
+

1
2

[
(I − R∗wε

k
)(I + τk f (−τkSkS∗k ))

]∥∥∥∥
≤1

2
‖I + R∗wε

k
‖‖I − τk f (−τkSkS∗k )‖+

1
2
‖I − R∗wε

k
‖‖I + τk f (−τkSkS∗k )‖

≤1
2

[
ĉ−1

R D1‖I + R∗wε
k
‖+ D2

]
‖I − R∗wε

k
‖

≤cR‖w+ − wε
k‖, (25)

with positive number cR = 1
2

[
ĉ−1

R D1(‖I‖+ cr) + D2

]
cL.

(ii) Denote Ak = τkR∗wε
k

f (−τkSkS∗k ). We have

‖(1− αk)I − Ak‖ ≤
1
2
‖[1− (1 + αk)](I + Ak) + [1 + (1− αk)](I − Ak)‖

≤ |αk|
2
‖I + Ak‖+

|2− αk|
2
‖I − Ak‖. (26)
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Part (i) ensures an upper bound for the second term of the last formula. Hence, a
similar upper bound for ‖I + Ak‖ remains to be determined. To this end, we will use
the inequality I + PQ = 1

2 [(I − P)(I − Q) + (I + P)(I + Q)] applied to P = R∗wε
k

and

Q = τk f (−τkSkS∗k ). Thus, by using (19) and (20), we obtain

‖I + Ak‖ ≤
1
2
[(I − R∗wε

k
)(I − τk f (−τkSkS∗k )) + (I + R∗wε

k
)(I + τk f (−τkSkS∗k ))]

≤ D1

2
‖I − R∗wε

k
‖+ D2

2
‖I + R∗wε

k
‖

≤ c‖w+ − wε
k‖,

for some positive c, where the last inequality follows as in (24) and (25). Now, (26) combined
with part (i) and the last inequality yield (22).

3. Convergence Rate for the Iterative RK-Type Regularization

To investigate the convergence rate of the RK-type regularization method (5) under
the logarithmic source condition, the nonlinear operator F has to satisfy the local property
in an open ball Bρ(w0) of radius ρ around w0∥∥F(w)− F(w̃)− F′(w)(w− w̃)

∥∥ ≤ η‖F(w)− F(w̃)‖, η <
1
2

, (27)

with w, w̃ ∈ Bρ(w0) ⊂ D(F). In addition, the regularization parameter k∗ is chosen ac-
cording to the generalized discrepancy principle, i.e., the iteration is stopped after k∗
steps with ∥∥∥gε − F(wε

k∗)
∥∥∥ ≤ γε < ‖gε − F(wε

k)‖, 0 ≤ k < k∗, (28)

where γ > 2−η
1−η is a positive number. Note that the triangle inequality yields

1
1 + η

∥∥F′(w)(w− w̃)
∥∥ ≤ ‖F(w)− F(w̃)‖ ≤ 1

1− η

∥∥F′(w)(w− w̃)
∥∥. (29)

In the sequel, we establish an error estimate that will be useful in deriving the loga-
rithmic convergence rate.

Theorem 1. Let Assumptions 1 and 2 be valid. Assume that problem (1) has a solution w+ in
B ρ

2
(w0) and gε fulfills (2). Furthermore, assume that the Fréchet derivative of F is scaled such

that ‖F′(w)‖ ≤ 1 for w ∈ B ρ
2
(w0) and the source conditions (8) and (9) are fulfilled. Thereby,

the iterative RK-type regularization is stopped according to the discrepancy principle (28). If ‖v‖
is sufficiently small, then there exists a constant c depending only on p and ‖v‖ such that for any
0 ≤ k < k∗, ∥∥w+ − wε

k
∥∥ ≤ c(ln k)−p (30)

and

‖gε − F(wε
k)‖ ≤ 4c(k + 1)−1/2(ln k)−p.
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Proof. Using (5), we can show that

ek+1 =w+ − wε
k + τk f (−τkS∗k Sk)F′(wε

k)
∗(F(wε

k)− gε)

=(I − S∗S)ek + S∗Sek + τk f (−τkS∗k Sk)F′(wε
k)
∗(F(wε

k)− gε)

=(I − S∗S)ek + S∗[F(wε
k)− F(w+)− S(wε

k − w+)]

+ S∗[F(w+)− gε + gε − F(wε
k)] + τk f (−τkS∗k Sk)F′(wε

k)
∗(F(wε

k)− gε)

=(I − S∗S)ek + S∗[F(wε
k)− F(w+)− S(wε

k − w+)] + S∗(g− gε)

+ S∗[gε − F(wε
k)] + τk f (−τkS∗k Sk)F′(wε

k)
∗(F(wε

k)− gε)

=(I − S∗S)ek + S∗[F(wε
k)− F(w+)− S(wε

k − w+)] + S∗(g− gε)

+ [S∗ − τk f (−τkS∗k Sk)F′(wε
k)
∗](gε − F(wε

k)). (31)

Using the spectral theory and (14), we have

f (−τkS∗k Sk)F′(wε
k)
∗ = F′(wε

k)
∗ f (−τkSkS∗k ) = S∗R∗wε

k
f (−τkSkS∗k ). (32)

Consequently, Equation (31) can be rewritten as

ek+1 =(I − S∗S)ek + S∗[F(wε
k)− F(w+)− S(wε

k − w+)] + S∗(g− gε)

+ S∗[I − τkR∗wε
k

f (−τkSkS∗k )](gε − F(wε
k))

=(I − S∗S)ek + S∗(g− gε) + S∗zk, (33)

where

zk = F(wε
k)− F(w+)− S(wε

k − w+) + [I − τkR∗wε
k

f (−τkSkS∗k )](gε − F(wε
k)). (34)

By recurrence and Equation (33), we obtain

ek = (I − S∗S)ke0 +
k

∑
j=1

(I − S∗S)j−1S∗(g− gε) +
k

∑
j=1

(I − S∗S)j−1S∗zk−j. (35)

Moreover, it holds that

Sek = (I − SS∗)kSe0 +
k

∑
j=1

(I − SS∗)j−1SS∗(g− gε) +
k

∑
j=1

(I − SS∗)j−1SS∗zk−j. (36)

We will prove by mathematical induction that

‖ek‖ ≤ c(ln(k + e))−p (37)

and
‖Sek‖ ≤ c(k + 1)−1/2(ln(k + e))−p (38)

hold for all 0 ≤ k < k∗ with a positive constant c independent of k. Using the discrepancy

principle (28), triangle inequality, and γ >
2− η

1− η
, we can show that

‖gε − F(wε
k)‖ ≤ 2‖gε − F(wε

k)‖ − γε ≤ 2‖g− F(wε
k)‖ ≤

2
1− η

‖Sek‖. (39)
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Using Proposition 1, Lemma 2, (34), and (39), it follows that

‖zk‖ ≤‖F(wε
k)− F(w+)− S(wε

k − w+)‖+ ‖I − τkR∗wε
k

f (−τkSkS∗k )‖‖g
ε − F(wε

k)‖

≤1
2

cL‖ek‖‖Sek‖+
2cR

1− η
‖ek‖‖Sek‖

≤ĉ1‖ek‖‖Sek‖, (40)

with ĉ1 ≥ 1
2 cL +

2cR
1−η .

By assumption ‖S‖ ≤ 1 (see Vainikko and Veterennikov [23], as cited in Hanke et al. [5]),
we have ∥∥∥∥∥k−1

∑
j=0

(I − S∗S)jS∗
∥∥∥∥∥ ≤ √k (41)

and ∥∥∥(I − S∗S)jS∗
∥∥∥ ≤ (j + 1)−1/2, j ≥ 1. (42)

Therefore, ∥∥∥∥∥ k

∑
j=1

(I − S∗S)j−1S∗(g− gε)

∥∥∥∥∥ =

∥∥∥∥∥k−1

∑
j=0

(I − S∗S)jS∗(g− gε)

∥∥∥∥∥
≤
√

kε (43)

and ∥∥∥∥∥ k

∑
j=1

(I − S∗S)j−1S∗zk−j

∥∥∥∥∥ =

∥∥∥∥∥k−1

∑
j=0

(I − S∗S)jS∗zk−j−1

∥∥∥∥∥
≤

k−1

∑
j=0

(j + 1)−1/2‖zk−j−1‖. (44)

Using Lemma 1, (40), (43), and (44), Equation (35) becomes

‖ek‖ ≤c1(ln(k + e))−p‖v‖+
√

kε +
k−1

∑
j=0

(j + 1)−1/2‖zk−j−1‖

≤c1(ln(k + e))−p‖v‖+
√

kε + ĉ1

k−1

∑
j=0

(j + 1)−1/2‖ek−j−1‖‖Sek−j−1‖. (45)

Employing the assumption of the induction in Equations (37) and (38) into the third
term of (45), we obtain

k−1

∑
j=0

(j + 1)−1/2‖ek−j−1‖‖Sek−j−1‖

≤c2
k−1

∑
j=0

(j + 1)−1/2(k− j)−1/2(ln(k− j− 1 + e))−2p

=c2
k−1

∑
j=0

(
j + 1
k + 1

)−1/2( k− j
k + 1

)−1/2
(ln(k− j− 1 + e))−2p

(
1

k + 1

)

≤c2(ln(k + e))−p
k−1

∑
j=0

(
j + 1
k + 1

)−1/2( k− j
k + 1

)−1/2( 1
k + 1

)[
ln(k + e)

ln(k− j− 1 + e)

]2p
. (46)
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Similar to Equation (45) in [22], we have

ln(k + e)
ln(k− j− 1 + e)

≤E
(

1 + ln
(

k + 1
k− j− 1 + e

))
(47)

with a generic constant E < 2, which does not depend on k ≥ 1. Using (47), we can
estimate (46) as

k−1

∑
j=0

(j + 1)−1/2‖ek−j−1‖‖Sek−j−1‖

≤c2E2p(ln(k + e))−p
k−1

∑
j=0

(
j + 1
k + 1

)−1/2( k− j
k + 1

)−1/2( 1
k + 1

)(
1 + ln

(
k + 1

k− j− 1 + e

))2p

≤c2E2p(ln(k + e))−p
k−1

∑
j=0

(
j + 1
k + 1

)−1/2( k− j
k + 1

)−1/2( 1
k + 1

)(
1− ln

(
k− j
k + 1

))2p
. (48)

The sum ∑k−1
j=0 · is bounded because the integral

∫ 1−s

s
x−1/2(1− x)−1/2(1− ln(1− x))2pdx

is bounded with s := 1
2(k+1) from above by a positive constant Ep independent of k.

Thus, (45) becomes

‖ek‖ ≤c1(ln(k + e))−p‖v‖+
√

kε + ĉ1c2E2pEp(ln(k + e))−p

=
[
c1‖v‖+ cpc2

]
(ln(k + e))−p +

√
kε, (49)

with cp = ĉ1E2pEp.
By assumption ‖S‖ ≤ 1 (see Vainikko and Veterennikov [23] as cited in Hanke et al. [5]),

we have ∥∥∥∥∥k−1

∑
j=0

(I − SS∗)jSS∗
∥∥∥∥∥ ≤ ‖I − (I − SS∗)k‖ ≤ 1 (50)

and
‖(I − SS∗)jSS∗‖ ≤ (j + 1)−1. (51)

Thus, ∥∥∥∥∥ k

∑
j=1

(I − SS∗)j−1SS∗(g− gε)

∥∥∥∥∥ =

∥∥∥∥∥k−1

∑
j=0

(I − SS∗)jSS∗(g− gε)

∥∥∥∥∥ ≤ ε (52)

and ∥∥∥∥∥ k

∑
j=1

(I − SS∗)j−1SS∗zk−j

∥∥∥∥∥ =

∥∥∥∥∥k−1

∑
j=0

(I − SS∗)jSS∗zk−j−1

∥∥∥∥∥
≤

k−1

∑
j=0

(j + 1)−1‖zk−j−1‖. (53)

Using Lemma 1, (40), (52), and (53), Equation (36) can be estimated as

‖Sek‖ ≤c2(k + 1)−1/2(ln(k + e))−p‖v‖+ ε + ĉ1

k−1

∑
j=0

(j + 1)−1‖ek−j−1‖‖Sek−j−1‖. (54)



Mathematics 2021, 9, 1042 10 of 15

Using (47) and the assumption of the induction in Equations (37) and (38) into the
third term of (54), we obtain

k−1

∑
j=0

(j + 1)−1‖ek−j−1‖‖Sek−j−1‖

≤c2
k−1

∑
j=0

(j + 1)−1(k− j)−1/2(ln(k− j− 1 + e))−2p

=c2(k + 1)−1/2(ln(k + e))−p

×
k−1

∑
j=0

(
j + 1
k + 1

)−1( k− j
k + 1

)−1/2( ln(k + e)
ln(k− j− 1 + e)

)2p
(ln(k + e))−p 1

k + 1

=c2E2p(k + 1)−1/2(ln(k + e))−p

×
k−1

∑
j=0

(
j + 1
k + 1

)−1( k− j
k + 1

)−1/2(
1− ln

(
k− j
k + 1

))2p 1
k + 1

. (55)

The summation in (55) is bounded because, with s := 1
2(k+1) , the integral

∫ 1−s

s
x−1(1− x)−1/2(1− ln(1− x))2pdx ≤ Ẽp,

for some positive constant Ẽp independently of k. Thus, (54) becomes

‖Sek‖ ≤c2(k + 1)−1/2(ln(k + e))−p‖v‖+ ε + ĉ1c2E2pẼp(k + 1)−1/2(ln(k + e))−p

=[c2‖v‖+ c̃pc2](k + 1)−1/2(ln(k + e))−p + ε (56)

with c̃p = ĉ1E2pẼp. Setting c∗ = max{c1, c2}, we have

‖ek‖ ≤ [c∗‖v‖+ cpc2](ln(k + e))−p +
√

kε (57)

and
‖Sek‖ ≤ [c∗‖v‖+ c̃pc2](k + 1)−1/2(ln(k + e))−p + ε. (58)

The discrepancy principles (28) and (29) provide

γε ≤ ‖gε − F(wε
k)‖ ≤ ε +

1
1− η

‖Sek‖, 0 ≤ k < k∗ .

Using (58), we obtain

(1− η)(γ− 1)ε ≤ ‖Sek‖ ≤ [c∗‖v‖+ c̃pc2](k + 1)−1/2(ln(k + e))−p + ε, 0 ≤ k < k∗ . (59)

Setting ω = (1− η)(γ− 1)− 1 > 0, (59) leads to

ε ≤ 1
ω

[
c∗‖v‖+ c̃pc2

]
(k + 1)−1/2(ln(k + e))−p, 0 ≤ k < k∗ . (60)

Applying (60) to (57), we obtain

‖ek‖ ≤
(

1 +
1
ω

)[
c∗‖v‖+ ĉpc2

]
(ln(k + e))−p, 0 ≤ k < k∗ (61)

with ĉp = max{cp, c̃p}.
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Applying (60) to (58), we obtain

‖Sek‖ ≤
(

1 +
1
ω

)[
c∗‖v‖+ ĉpc2

]
(k + 1)−1/2(ln(k + e))−p, 0 ≤ k < k∗ . (62)

We choose a sufficiently small ‖v‖ such that
(

1 + 1
ω

)[
c∗‖v‖+ ĉpc2] ≤ c. Thus, the in-

duction is completed. Using (37), we can show that

‖ek‖ ≤ c
(

ln k
ln(k + e)

)p
(ln k)−p ≤ c(ln k)−p. (63)

The second assertion is obtained by using (39) as follows:

‖gε − F(wε
k)‖ ≤

2
1− η

c(k + 1)−1/2
(

ln k
ln(k + e)

)p
(ln k)−p

≤ 4c(k + 1)−1/2(ln k)−p. (64)

We are now in a position to show the logarithmic convergence rate for the iterative
RK-type regularization under a logarithmic source condition, when the iteration is stopped
according to the discrepancy principle (28).

Theorem 2. Under the assumptions of Theorem 1 and for 1 ≤ p ≤ 2, one has

k
1
2∗ (ln(k∗))p = O(1/ε), (65)

‖ek∗‖ = O((− ln ε)−p). (66)

Proof. From (60), it follows that

ε ≤ c(k + 1)−1/2(ln(k + e))−p ≤ c(k + 1)−1/2(ln(k + 1))−p, 0 ≤ k < k∗, (67)

for some positive constant c. By taking k∗ = k − 1, one obtains (65). Furthermore,

Lemma (A4) in [22] applied to (65) yields k∗ = O
(
(− ln ε)−2p

ε2

)
. For showing the second

inequality, we use e0 = ϕ(S∗S)v in (30) and proceed as in the proof of Theorem 2 in [22].

4. Convergence Rate for the Modified Version of the Iterative RK-Type Regularization

The paper [13] contains a study of the modified iterative Runge-Kutta regulariza-
tion method

wε
k+1 = wε

k + τkbTΠ−1
1F′(wε

k)
∗(gε − F(wε

k))− τ−1
k (wε

k − ζ), (68)

where ζ ∈ D(F) and Π = δ + τk AF′(wε
k)
∗F′(wε

k). More precisely, it presents a detailed
convergence analysis and derives Hölder-type convergence rates.

The aim in this section is to show convergence rates for (68) with the natural choice
ζ = w0. We consider here the logarithmic source condition (9) with ϕ defined by (8), where
‖v‖ is small enough. That is, we deal with the following method:

wε
k+1 = wε

k + τkbTΠ−1
1F′(wε

k)
∗(gε − F(wε

k))− τ−1
k (wε

k − w0). (69)

We work further under assumptions (27) and (28) with an appropriately chosen
constant γ—compare inequality (2.10) in [13]. For the sake of completeness, we recall
below the convergence result adapted to the choice ζ = w0 (compare to Proposition 2.1
and Theorem 2.1 in [13]).
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Theorem 3. Let w+ be a solution of (1) in B ρ
8
(w0) with w0 = wε

0 and assume that gε fulfills (2).

If the parameters αk, ∀k ∈ N0 with
∞

∑
k=0

αk < ∞ are small enough and if the termination index is

defined by (28), then wε
k∗ → w† as ε→ 0.

We state below a result on essential upper bounds for the errors in (69).

Theorem 4. Let Assumptions 1 and 2 hold for the operator S := F′(w†). Assume that problem (1)
has a solution w+ in B ρ

8
(w0) and gε fulfills (2). Assume that the Fréchet derivative of F is scaled

such that ‖F′(w)‖ ≤ 1 for w ∈ B ρ
8
(w0) and that the parameters αk, ∀k ∈ N0 with

∞

∑
k=0

αk < ∞ are

small enough. Furthermore, assume that the source condition (9) is fulfilled and that the modified
RK-type regularization method (69) is stopped according to (28). If ‖v‖ is sufficiently small, then
there exists a constant c depending only on p and ‖v‖ such that for any 0 ≤ k < k∗,∥∥w+ − wε

k
∥∥ ≤ c(ln k)−p (70)

and

‖gε − F(wε
k)‖ ≤ 4c(k + 1)−1/2(ln k)−p. (71)

Proof. First, we deduce an explicit formula for ek = w+ − wε
k. We proceed similarly to

the proof in Theorem 1, but this time, we need to take into account the additional term
−αk(wε

k − w0). Thus, the proof steps are as follows.
I. We establish an explicit formula for the error ek:

ek+1 =ek + τk f (−τkS∗k Sk)F′(wε
k)
∗(F(wε

k)− gε) + αk(wε
k − w0)

=(1− αk)ek + τk f (−τkS∗k Sk)F′(wε
k)
∗(F(wε

k)− gε) + αk(w+ − w0)

=(1− αk)(I − S∗S)ek + (1− αk)S∗[F(wε
k)− F(w+)− S(wε

k − w+)]

+(1− αk)S∗(g− gε) + (1− αk)S∗(gε − F(wε
k)) + αk(w+ − w0)

− τk f (−τkS∗k Sk)F′(wε
k)
∗(gε − F(wε

k))

=(1− αk)(I − S∗S)ek + (1− αk)S∗qk

+(1− αk)S∗(g− gε) + S∗(I − τkR∗wε
k

f (−τkSkS∗k ))(gε − F(wε
k))

+αkS∗(F(wε
k − gε)) + αk(w+ − w0), (72)

where the last equality follows from (32). We denoted qk = F(wε
k)− F(w+)− S(wε

k − w+).
Thus, (72) can be shortly rewritten as

ek+1 = (1− αk)(I − S∗S)ek + (1− αk)S∗(g− gε) + S∗zk + αk(w+ − w0) (73)

with
zk = (1− αk)qk + [(1− αk)I − τkR∗wε

k
f (−τkSkS∗k )](gε − F(wε

k)). (74)

Therefore, we obtain the following closed formula:

ek =

[
k−1

∏
j=0

(1− αj)(I − S∗S)k +
k−1

∑
j=0

αk−j−1(I − S∗S)j
j

∏
l=1

(1− αk−l)

]
e0

+

[
k

∑
j=1

(I − S∗S)j−1
j

∏
l=1

(1− αk−l)

]
S∗(y− yε)

+
k−1

∑
j=0

k−1

∏
l=k−j

(1− αl)(I − S∗S)jS∗zk−j−1. (75)
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From Proposition 1, (34), Lemma 2, (39), and (74), it follows that

‖zk‖ ≤ ĉ‖ek‖‖Sek‖,

for any 0 ≤ k ≤ k∗, where ĉ is a positive constant.
II. Following the technical steps of the proof of Theorem 1 in [22], one can similarly

show by induction that there is a positive number c, such that the following inequalities
hold for any 0 ≤ k ≤ k∗:

‖ek‖ ≤ c(ln(k + e))−p, (76)

‖Sek‖ ≤ c(k + 1)−1/2(ln(k + e))−p. (77)

Then, one can eventually obtain (70) and (71) as in the mentioned proof. Note that
Theorem 1 in [22] is based on Proposition 1 in [22], which requires small enough parameters

αk, such that
∞

∑
k=0

αk < ∞ and αn−k+1 ≤
(

ln(k+e)
ln(k+1+e)

)p
, for all n > k ≥ 1 (compare to (16)

on page 4 in [22]). Since the smallest value of ln(k+e)
ln(k+1+e) is about 0.84 (when k = 1), one

can clearly find αk ∈ (0, 1) small enough so as to satisfy the imposed inequalities, e.g., a
harmonic-type sequence such as αk = 1/(k + 2)r for some r > 1.

One can show convergence rates for the modified Runge-Kutta regularization method,
as done in the previous section for the unmodified version.

Theorem 5. Under the assumptions of Theorem 4 and for 1 ≤ p ≤ 2, one has

k
1
2∗ (ln(k∗))p = O(1/ε),

‖ek∗‖ = O((− ln ε)−p).

5. Numerical Example

The purpose of the following numerical example is to verify the error estimates shown
above. Define the nonlinear operator F : L2[0, 1]→ L2[0, 1] as

[F(w)](s) = exp
∫ 1

0
k(s, t)w(t)dt, (78)

with the kernel function

k(s, t) =
{

s(1− t) if s < t;
t(1− s) if t ≤ s.

(79)

The noisy data is given by gε(s) = exp(sin(πs)/π2) + ε cos(100s), s ∈ [0, 1], and the
exact solution is w∗(t) = sin(πt). In order to demonstrate the results in Theorems 1 and
4, we consider Landweber, Levenberg–Marquardt (LM), Lobatto IIIC, and the Radau IIA
methods, see Table 1 for the Butcher tableau.

The implementation in this section is the same as the one reported in [10,13]. The num-
ber of basis functions is 65 and the number of equidistant grid points is 150, while the
parameter τk is the harmonic sequence term (k + 1)1.1. As expected, the results in Figure 2
show that the curve of ln ‖w+ − wε

k‖ lies below a straight line with slope −p, as suggested
by (30) in Theorem 1 and (70) in Theorem 4.

Table 1. Butcher tableau for (a) explicit Euler or Landweber, (b) implicit Euler or Levenberg–
Marquardt, (c) Lobatto IIIC, and (d) Radau IIA methods.

0 1
2 − 1

2
1
3

5
12 − 1

12
0 0 1 1 1 1

2
1
2 1 3

4
1
4

1 1 1
2

1
2

3
4

1
4

(a) (b) (c) (d)
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(a) (b)

(c) (d)

Figure 2. The plot of ln ‖w+ − wε
k‖ versus ln(ln(k)) for (a) one−step RK methods and (b) for

two−step methods with ε = 10−3. (c,d) Results with ε = 10−4. The parameters γ are (a) 1.1, (b) 25,
(c) 1.1, and (d) 100. For (a–d), a harmonic sequence τk = (k + 1)1.1 and w0 = εw∗ are used.

6. Summary and Outlook

Up to now, the logarithmic convergence rate under logarithmic source condition
has only been investigated for particular examples, namely, the Levenberg–Marquardt
method (Böckmann et al. [21]) and the modified Landweber method (Pornsawad et al. [22]).
Here, we extended the results to the whole family of Runge-Kutta-type methods with and
without modification. For the future, it is still open to prove the optimal convergence rate
under Hölder source condition for the whole family without modification.
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