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Abstract: A modified explicit hybrid method with four stages is presented, with the first stage
exactly integrating exp(wx), while the remaining stages exactly integrate sin(wx) and cos(wx). Special
attention is paid to the phase properties of the method during the process of parameter selection.
Numerical comparisons of the proposed and existing hybrid methods for several second-order
problems show that the proposed method gives high accuracy in solving the Duffing equation and
Kramarz’s system.
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1. Introduction

Many problems that arise in modelling physical phenomena in engineering and
applied sciences are in the form of second ordinary initial value problems

y′′ (t) = f (t, y(t)), y(t0) = y0, y′(t0) = y′0

where the first derivative does not appear explicitly. These problems are often solved by
using numerical methods such as Runge–Kutta–Nystrom methods, multistep methods, and
hybrid methods (see [1–4]). The numerical methods can be grouped into two categories: (1)
methods with constant coefficients and (2) methods with variable coefficients. The methods
with variable coefficients require prior knowledge of the frequency of the problem, in
contrast to the methods with constant coefficients in which the frequency of the problem is
not needed. In this paper, our purpose is to derive a modified hybrid method with variable
coefficients for solving the special second-order initial value problems by paying special
attention to the phase properties of the methods.

Consider the class of hybrid methods proposed by Kalogiratou et al. [5]:

yn+1 = 2σs+1yn − µs+1yn−1 + h2
s

∑
j=1

bj f (tn + cjh, gj) (1)

with gi = σi(1 + ci)yn − µiciyn−1 + h2
s
∑

j=1
aij f (tn + cjh, gj), i = 1, . . . , s. It is noted that if

σi = 1 and µi = 1 for i = 1, . . . , s + 1 then the above class of hybrid methods is reduced to
the class of hybrid methods as stated in [6]:

yn+1 = 2yn − yn−1 + h2
s

∑
j=1

bj f (tn + cjh, gj) (2)

with gi = (1 + ci)yn − ciyn−1 + h2
s
∑

j=1
aij f (tn + cjh, gj).
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Coefficients of this class of methods are as shown in Butcher tableau notation below:

c A
bT

with cT = ( c1 c2 · · · cs ), bT = ( b1 b2 · · · bs ), and A = [aij]s×s.

2. Phase Lag and Stability Analysis

The standard equation
y′′ (t) = −λ2y(t), λ > 0 (3)

with exact solution y(t) = C1 exp(iλt) + C2 exp(−iλt) is usually used to study the stability
of numerical methods in solving second-order ordinary differential equations. Applying
the hybrid methods defined in (1) with coefficients depending on v = wh, where w is the
frequency of the problem and h is the step-size, to the differential Equation (3) gives us

yn+1 − S(H2, v)yn + P(H2, v)yn−1 = 0 (4)

where H = λh, e = ( 1 1 · · · 1)T , σ(v) = (σ1σ2 · · · σs)T , µ(v) = ( µ1 µ2 · · · µs )
T ,

S(H2, v) = 2σs+1−H2bT(I + H2 A)
−1

σ(v)× (e+ c), P(H2, v) = µs+1−H2bT(I + H2 A)
−1

µ(v)× c and the symbol “×” denotes component-wise multiplication. The characteristic
polynomial associated with the difference Equation (4) is given by

π(ς) = ς2 − S(H2, v)ς + P(H2, v) (5)

The following definition gives a condition to be satisfied by the region of absolute
stability of hybrid methods (refer to [5]).

Definition 1. For hybrid methods corresponding to Equation (5), a region of absolute stability is
the region of the H-v plane throughout which

∣∣P(H2, v)
∣∣ < 1 and

∣∣S(H2, v)
∣∣ < 1 + P(H2, v).

The phase properties of hybrid methods are given by these definitions (refer to [7]).

Definition 2. For hybrid methods corresponding to Equation (5), the phase-lag or dispersion
error is given by φ(H2, v) = H − arccos

(
S(H2, v)/2

√
P(H2, v)

)
and the phase-lag order is q if

φ(H2, v) = cφ Hq+1 + O(Hq+3).

Definition 3. For hybrid methods corresponding to Equation (5), the amplification or dissipation
error is given by d(H2, v) = 1−

√
P(H2, v) and the dissipation order is u if d(H2, v) = cdHu+1 +

O(Hu+3). The method is called zero dissipative if d(H2, v) = 0

3. Derivation of the New Method

Consider the coefficients of a class of four-stage explicit hybrid methods defined in (1)
as stated in Table 1.

Table 1. Coefficients of a class of four-stage explicit hybrid methods defined in (1).

0 0 0 0 0 0 0
1 σ2 µ2 a21 0 0 0
c3 σ3 µ3 a31 a32 0 0
c4 σ4 µ4 a41 a42 a43 0

σ5 µ5 b1 b2 b3 b4



Mathematics 2021, 9, 1028 3 of 7

Using these coefficients, P(H2, v) is given by

P(H2, v) = −H2µ2((H2a43)b4 − b3)(H2a32) + H2(H2a43)b4c3µ3 + H2(H2a42)b4µ2+
(−b3c3µ3 − b4c4µ4 − b2µ2)H2 + µ5

Setting b1 = 0, a32 = 0, a42 = 0, and a43 = 0, then solving the order conditions for
fourth-order hybrid method as listed in [6]

b1 + b2 + b3 + b4 = 1
b2 + b3c3 + b4c4 = 0
b2 + b3c2

3 + b4c2
4 = 1

6
b2a21 + b3a31 + b3a32 + b4a41 + b4a42 + b4a43 = 1

12
b2 + b3c3

3 + b4c3
4 = 0

b2a21 + b3c3a31 + b3c3a32 + b4c4a41 + b4c4a42 + b4c4a43 = 1
12

b3a32 + b4a42 + b4a43c3 = 0

yields

b2 =
6c2

4 − 1
6(−1 + c4)(7c4 + 2)

, b3 =
216c3

4 + 108c2
4 + 18c4 + 1

6(7c4 + 2)(6c2
4 + 2c4 + 1)

, b4 = − 5
6(−1 + c4)(6c2

4 + 2c4 + 1)

a31 =
−2− 5c4 + 7c2

4 + a21(2− 12c2
4)

2(1 + 6c4)
2 ,

a41 = − 7
10

c2
4 +

6
5

c2
4a21 +

1
2

c4 +
1
5
− 1

5
a21,

c3 = − c4 + 1
1 + 6c4

where c4 and a21 are free parameters. By experiment, we choose c4 = − 1
2 to make P(H2, v)

as close as possible to 1 as v→ 0 . In order to obtain a21, σi and µi, we associate each stage
formula of the method with linear operator L[y(t)] as follows:

L1[y(t)] = y(t + h)− 2σ2y(t) + µ2y(t− h)− h2a21y′′ (t)
L2[y(t)] = y(t + c3h)− σ3(1 + c3)y(t) + µ3c3y(t− h)− h2(a31y′′ (t) + a32y′′ (t + h))

L3[y(t)] = y(t + c4h)− σ4(1 + c4)y(t) + µ4c4y(t− h)− h2(a41y′′ (t) + a42y′′ (t + h) + a43y′′ (t + c3h))
L4[y(t)] = y(t + h)− 2σ5y(t) + µ5y(t− h)− h2(b1y′′ (t) + b2y′′ (t + h) + b3y′′ (t + c3h) + b4y′′ (t + c4h))

Assume that v = wh. Setting L1[ewx] = 0, L1[sin(wx)] = 0 and L1[cos(wx)] = 0 results
in

a21 =
e2v − 2ev + 1

evv2 , σ2 =
e2v + 2 cos(v)ev − 2ev + 1

2ev , µ2 = 1

This implies a31 = −(e2v−2ev+1)
8evv2 + 9

32 and a41 = − 9
40 + e2v−2ev+1

10evv2 . Finally, by setting

L2[sin(wx)] = 0, L2[cos(wx)] = 0, L3[sin(wx)] = 0, L3[cos(wx)] = 0, L4[sin(wx)] = 0, and L4[cos(wx)] = 0

we have

σ3 =
1

40 sin(v)ev (9evv2 sin(v) + 32 cos(v/4) sin(v)ev + 32 sin(v/4) cos(v)ev − 4 sin(v)e2v + 8 sin(v)ev − 4 sin(v))

σ4 =
1

20 sin(v)ev (−9evv2 sin(v) + 40 cos(v/2) sin(v)ev − 40 sin(v/2) cos(v)ev + 4 sin(v)e2v − 8 sin(v)ev + 4 sin(v))

σ5 = 1
27 sin(v) (cos(v) sin(v)v2 + 8 cos(v) sin(v/4)v2 − 5 cos(v) sin(v/2)v2 + 8 sin(v) cos(v/4)v2+

5 sin(v) cos(v/2)v2 + 27 cos(v) sin(v))
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µ3 =
4 sin(v/4)

sin(v)
, µ4 =

2 sin(v/2)
sin(v)

,

µ5 =
1

27 sin(v)
(v2 sin(v) + 16v2 sin(v/4)− 10v2 sin(v/2) + 27 sin(v))

The resulting method is denoted by MEHM. This method has the following quantities:

P(H2, v) =
(−2H2 + 2v2 + 54) cos3(v/4) + (6H2 − 6v2 − 27) cos(v/4)− 4H2 + 4v2

54 cos3(v/4)− 27 cos(v/4)

S(H2, v) = 1
108(2 cos3(v/4)−cos(v/4)) (128 cos7(v/4)v2 + 3456 cos7(v/4)− 192 cos5(v/4)v2 + 256 cos4(v/4)v2

−5184cos5(v/4) + 80 cos3(v/4)v2 − 192 cos2(v/4)v2 + 2160 cos3(v/4) + 12 cos(v/4)v2 + 16v2 − 216 cos(v/4)+
(−128 cos7(v/4) + 192 cos5(v/4)− 18 cos3(v/4)v2 − 256 cos4(v/4)− 80 cos3(v/4) + 9 cos(v/4)v2+
192 cos2(v/4)− 12 cos(v/4)− 16)H2 + (18 cos3(v/4)− 9 cos(v/4))H4)

It is also noted that lim
v→0

P(H2, v) = 1 and lim
v→0

S(H2, v) = −H2 + 1
12 H4 + 2, with S(H2,v)

2

being the rational approximation for the cosine as v→ 0. The method is considered to
be zero dissipative whenever v→ 0. Solving −H2 + 1

12 H4 + 2 < 2 for H > 0, we obtain
H < 2

√
3. It is also observed that the local truncation error is O(h6) as v→ 0. The region of

absolute stability of this method depicted using Maple 2020 software is shown below in
Figure 1.

Figure 1. Region of absolute stability of the proposed method.

4. Results

The new and existing codes are abbreviated as follows.
MEHM: The modified explicit hybrid method with four stages derived in this paper.
EHM5IIPA: The phase-fitted and amplification-fitted explicit hybrid method with four

stages derived in [8]. This method was derived based on the fifth-order hybrid method of
the form (2).
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Several problems are used to provide numerical comparisons in a constant step-size
setting. Maximum global errors produced by each method are tabulated in Tables 2–5. All
numerical computations have been done in Maple 2020 software with 20 precision digits.

Problem 1 (Prothero–Robinson problem)

Source: D’Ambrosio et al. [9]

y′′ (t) = −(y(t)− e−µt)) + µ2e(−µt), y(0) = 1, y′(0) = −µ, 0 ≤ t ≤ 10

Exact solution: y(t) = e−µt. We use v = h in computing the numerical solutions for µ =
1, with MEHM and EHM5IIPA codes.

Table 2. Maximum global error in solving Problem 1.

Step-Size MEHM EHM5IIPA

0.4 8.12463 × 10−6 3.03912 × 10−5

0.2 4.72859 × 10−7 1.19831 × 10−6

0.1 2.80407 × 10−8 4.23368 × 10−8

0.05 1.69979 × 10−9 1.41116 × 10−9

0.025 1.04445 × 10−10 4.55621 × 10−11

Problem 2 (Duffing equation)

Source: Yusufoğlu [10]

y′′ (t) + 3y(t)− 2y3(t) = cos(t) sin(2t), y(0) = 0, y′(0) = 1, 0 ≤ t ≤ 20

Exact solution:y(t) = sin(t). For MEHM and EHM5IIPA codes, v = h was used.

Table 3. Maximum global error in solving Problem 2.

Step-Size MEHM EHM5IIPA

0.4 2.48225 × 10−14 1.02736

0.2 5.51845 × 10−13 2.71483 × 10−1

0.1 2.95522 × 10−13 8.20955 × 10−2

0.05 3.76672 × 10−12 2.97346 × 10−3

0.025 4.66915 × 10−12 9.77418 × 10−5

Problem 3 (The well-known two-body problem)

Source: Franco [11]

y′′1 = − y1

(y2
1 + y2

2)
(3/2)

, y1(0) = 1− e, y′1(0) = 0,y′′2 = − y2

(y2
1 + y2

2)
(3/2)

, y2(0) = 0, y′2(0) =
√

1 + e
1− e

, 0 ≤ t ≤ 20

Exact solution:y1(t) = cos(R)− e, y2(t) =
√

1− e2 sin(R), where R satisfies the Ke-
pler’s equation t = R− e sin(R) and e is the eccentricity of the orbit. In this numerical
experiment, we consider the case e = 0.03. For MEHM and EHM5IIPA codes, v = h.
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Table 4. Maximum global error in solving Problem 3.

Step-Size MEHM EHM5IIPA

0.4 1.42361 × 10−2 2.29762 × 10−1

0.2 9.29187 × 10−4 1.98607 × 10−3

0.1 6.00156 × 10−5 1.82083 × 10−4

0.05 3.81442 × 10−6 6.89947 × 10−6

0.025 2.40430 × 10−7 2.27004 × 10−7

Problem 4 (Kramarz’s system)

Source: D’Ambrosio et al. [12]

y′′ (t) =
(

µ− 2 2µ− 2
1− µ 1− 2µ

)
y(t), y(0) =

(
2
−1

)
, y′(0) =

(
0
0

)
where µ = 2500 and 0 ≤ t ≤ 5.

Exact solution: y1(t) = 2 cos(t), y2(t) = − cos(t). For both codes, v = h is used.

Table 5. Maximum global error in solving Problem 4.

Step-Size MEHM EHM5IIPA

0.05 1.16031 × 10−16 1.74602 × 10−16

0.025 1.72165 × 10−16 1.67037 × 10−15

0.0125 5.41637 × 10−15 5.97021 × 10−16

0.00625 7.41002 × 10−15 1.49427 × 10−14

0.003125 2.45548 × 10−14 5.03433 × 10−14

5. Discussion and Conclusions

In this paper, a modified explicit hybrid method with four stages was proposed. The
derivation of the method is based on the modified formula of hybrid method given in
(1) while taking into consideration lim

v→0
P(H2, v). For this method, it was our intention to

achieve lim
v→0

P(H2, v) = 1 in such a way that S(H2,v)
2 is the rational approximation for the

cosine, as studied by Coleman [13]. Moreover, the first stage of the modified formula
is imposed to exactly integrate ewx, while the remaining stages are imposed to exactly
integrate sin(wx) and cos(wx) where w ∈ C. The maximum global errors of the new method
were tabulated and compared with that of the phase-fitted and amplification fi-ted hybrid
method in [8]. From the numerical results, the new method was observed to achieve
high accuracy in solving the Duffing equation and Kramarz’s system. Furthermore, the
new method performs with better accuracy for bigger step-sizes than that of the existing
method for solving both the Prothero and Robinson and the two-body problems. Hence,
this study offers evidence that, by taking into account lim

v→0
P(H2, v), the resulting modified

explicit hybrid method is capable of solving second-order ordinary differential equations
y′′ (t) = f (t, y).
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