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Abstract: A high-accuracy numerical method based on a sixth-order combined compact difference
scheme and the method of lines approach is proposed for the advection–diffusion transport equa-
tion with variable parameters. In this approach, the partial differential equation representing the
advection-diffusion equation is converted into many ordinary differential equations. These time-
dependent ordinary differential equations are then solved using an explicit fourth order Runge–Kutta
method. Three test problems are studied to demonstrate the accuracy of the present methods. Nu-
merical solutions obtained by the proposed method are compared with the analytical solutions and
the available numerical solutions given in the literature. In addition to requiring less CPU time, the
proposed method produces more accurate and more stable results than the numerical methods given
in the literature.

Keywords: advection–diffusion; variable parameters; solute transport; combined compact difference
scheme; method of lines; Runge–Kutta scheme

1. Introduction

The transport of solutes by water takes place in a large variety of environmental,
agricultural, and industrial conditions. An accurate prediction of the pollutant transport is
crucial to the effective management of these systems [1]. In the deterministic approach with
constant transport parameters with respect to time and position the advection–diffusion
equation (ADE) is linear and explicit closed-form solutions can generally be derived.
Because of the large variability of flow and transport properties in the field, the often
transient nature of the flow regime, and the non-ideal nature of applicable initial and
boundary conditions, the usefulness of analytical solutions is often limited and numerical
methods may be needed [2].

A variety of numerical methods have been proposed for solving ADE, such as
the method of characteristics [3–9], the finite difference method [10–19], the finite ele-
ment method [20–23], the differential quadrature method [24,25], the Lattice Boltzman
method [26], and the meshless method [27–30]. In these studies, solutions of the ADE
with constant parameters have been obtained. However, field and laboratory scale experi-
ments indicate that the dispersivity in subsurface transport problems may be space- and
time-dependent [31–35].

Several numerical solutions of the ADE with variable parameters have been proposed
in the literature. A numerical solution for one-dimensional transport of conservative and
non-conservative pollutants in an open channel with steady unpolluted lateral inflow
uniformly distributed over the whole length of the channel was presented by Ahmad [36].
In Ahmad [36], the flow velocity was considered to be proportional to the distance and
the diffusion parameter proportional to the square of velocity to account for the lateral
inflow into the channel. The governing equation was converted into an equation with
constant parameters using a transformation approach. The transformed equation was then
solved using a cubic spline interpolation and the Crank-Nicolson finite difference scheme
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for advection and diffusion parts, respectively. The computed results were compared
with the analytical solution for a continuous injection of the pollutant at the upstream
boundary. Ahmed [37] developed a finite difference scheme based on a mathematical
combination of the Siemieniuch and Gradwell approximation of time and the Dehghan’s
approximation of the space variable. The author stated that the results were compared with
analytical solutions and showed a good agreement. Savović and Djordjevich [38] proposed
an explicit finite difference method for the numerical solution of the one-dimensional
ADE with variable parameters in semi-infinite media. The continuous point source of
uniform nature was considered at the origin of the medium. Savović and Djordjevich [39]
then solved the same equation with a uniform pulse type input condition and the initial
solute concentration that decreased with distance. In both studies, numerical solutions were
obtained using the first-order explicit time integration approach and results were compared
with analytical solutions reported in the literature. Gharehbaghi [40] used the differential
quadrature method to obtain the numerical solution of the ADE with variable parameters in
the semi-infinite domain. Numerical solutions were obtained using the first-order explicit
and implicit time integration approaches. To examine the accuracy and the efficiency of the
suggested explicit and implicit differential quadrature approaches, obtained solutions were
compared with solutions of the finite difference method. The author stated that numerical
predictions of the implicit form gave better results than the explicit one. Gharehbaghi [41]
used the third- and fifth-order finite volume schemes [42] to solve a time-dependent, one-
dimensional ADE with variable parameters in a semi-infinite domain. Numerical solutions
were obtained using the first-order explicit time integration approach. The results of the
two schemes were compared with the performance of the QUICK scheme [43]. The author
stated that numerical predictions of the fifth-order finite volume scheme gave better results
than the third-order finite volume and the QUICK schemes.

As can be seen from the afore-mentioned studies, low-order time integration schemes
have been used in solving the ADE with variable parameters. To improve the accuracy of
numerical solutions, it is required to use higher-order schemes in both time and space. The
method of lines (MOL) is a well-established numerical procedure where the spatial deriva-
tives in the partial differential equation (PDE) are approximated algebraically. Thanks to
the MOL approach, a PDE system is converted into an ordinary differential equation (ODE)
system. This ODE system is then integrated using standard numerical integration routines.
Important variations of the MOL are possible. For example, the PDE spatial derivatives can
be approximated using finite difference, finite element, finite volume, weighted residual
method, and spectral method [44]. In this study, we propose another variation of the MOL
approach for solving ADE with constant and variable parameters. Spatial derivatives in
the proposed MOL approach are approximated using a sixth-order combined compact
difference scheme. The explicit fourth order Runge–Kutta method (ERK4) is used as the
numerical integration routine in the MOL approach.

2. Advection-Diffusion Equation

Solute transport through a medium is described using a PDE of the parabolic/hyperbolic
type. It is derived on the principle of conservation of mass and Fick’s laws of diffusion.
This equation is usually known as the ADE. The one-dimensional ADE may be written in
subscript notation as [45]:

Ct = (DCx)x − (UC)x, (1)

where C is the solute concentration, D is the diffusion parameter and U is the flow velocity
at a position x along the longitudinal direction at time t. In Equation (1), D and U can be
rewritten as:

D = D0g1(x, t), U = U0g2(x, t), (2)

In the above equation, D0 and U0 may be referred to as the initial diffusion parameter
and the uniform velocity, respectively. D0 and U0 are constants whose dimensions depend
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upon the expressions g1(x, t) and g2(x, t). The initially solute-free state of the semi-infinite
medium implies the following initial condition:

C(x, 0) = 0, x ≥ 0, (3)

Because a continuous input concentration is introduced at the origin, whereas the
concentration gradient at infinity is assumed to be zero, the following boundary conditions
are obtained:

C(0, t) = C0, Ct(x∞, t) = 0, x∞ → L, t > 0, (4)

3. Numerical Method

The numerical solution technique that we consider in this study is based on the sixth-
order combined compact finite difference and the MOL approach. Detailed information
and discussions about these methods are given in the following sub-sections.

3.1. Combined Compact Finite Difference Scheme

Combined compact difference (CCD) schemes are high accuracy methods, where first
and second derivatives are evaluated simultaneously utilizing the Hermitian polynomial
technique, as discussed in [46–50]. Since these methods provide first and second deriva-
tives simultaneously, one expects an increased accuracy and economy of operations from
these methods.

The analysis of the CCD schemes by depicting scale resolution [51,52] has been aug-
mented by properties related to phase and dispersion errors represented by numerical
group velocity and phase speed, and a new CCD scheme has been proposed in Sen-
gupta et al. [48], which has been termed as the NCCD scheme.

Consider a domain with N equidistant points with a spacing h, on which a general
function f (x, t) is defined. The NCCD scheme is used to simultaneously evaluate the first
and second spatial derivatives, indicated by primes as

(
f ′j , f ′′j

)
, which are evaluated at

the spatial location
(

xj
)
, from the following implicit equations for interior nodes, in terms

of the function
(

f j
)

values [46,48,49]:
For j = 1 and j = 2:

f ′1 =
1

2h
(−3 f1 + 4 f2 − f3), (5a)

f ′′1 =
1
h2 ( f1 − 2 f2 + f3), (5b)

f ′2 =
1
h

[(
2γ1

3
− 1

3

)
f1 −

(
8γ1

3
+

1
2

)
f2 + (4γ1 + 1) f3 −

(
8γ1

3
+

1
6

)
f4 +

2γ1

3
f5

]
, (5c)

f ′′2 =
1
h2 ( f1 − 2 f2 + f3), (5d)

For j = 3 to (N − 2):

7
16

(
f ′j+1 + f ′j−1

)
+ f ′j −

h
16

(
f ′′j+1 + f ′′j−1

)
=

15
16h

(
f j+1 + f j−1

)
, (6)

9
8h

(
f ′j+1 − f ′j−1

)
− 1

8

(
f ′′j+1 + f ′′j−1

)
+ f ′′j =

3
h2

(
f j+1 − 2 f j + f j−1

)
, (7)

For j = (N − 1) to N:

f ′N−1 = −1
h

[(
2γ2

3
− 1

3

)
fN −

(
8γ2

3
+

1
2

)
fN−1 + (4γ2 + 1) fN−2 −

(
8γ2

3
+

1
6

)
fN−3 +

2γ2

3
fN−4

]
, (8a)

f ′′N−1 =
1
h2 ( fN − 2 fN−1 + fN−2), (8b)

f ′N =
1

2h
(3 fN − 4 fN−1 + fN−2), (8c)
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f ′′N =
1
h2 ( fN − 2 fN−1 + fN−2), (8d)

with γ1 = −0.025 and γ2 = 0.09, are proposed by Sengupta [53] for better global numerical
properties in the domain.

Multiplicative constants in Equations (6) and (7), are fixed by matching the Taylor
series expansion coefficients up to the sixth-order. Thus, we have a complete linear algebraic
system for evaluating the first and second derivatives. Equation (5) are used for j = 1
and Equation (8) are used for j = N. A full-domain spectral analysis [54] for individual
derivatives is performed for the CCD schemes to solve non-periodic problems. For the
purpose of this analysis, we can write Equations (5)–(8) as:

A1f′ + B1f′′ = C1f, (9)

A2f′ + B2f′′ = C2f, (10)

By decoupling these two simultaneous linear algebraic equations we get [48,53]:

f′ =
1
h
(D1f), (11)

f′′ =
1
h2 (D2f), (12)

where
D1 =

(
A1 − B1B2

−1A2

)−1(
C1 − B1B2

−1C2

)
h, (13)

D2 =
(

B2 −A2A1
−1B1

)−1(
C2 −A2A1

−1C1

)
h2. (14)

More details of this global spectral analysis for CCD scheme is available in Sengupta
and Bhaumik [53].

3.2. Time Integration

The method of lines (MOL) is a procedure whereby one or more partial differential
equations (PDEs) are reduced to a system of ordinary differential equations (ODEs) in time
by approximating the spatial derivatives using standard approaches and then integrating
in time using an ODE code [55]. The MOL consists of two steps. In the first step, partial
differential equations are converted into a system of time-dependent ordinary differential
equations by replacing spatial derivatives with any numerical schemes. In the second step,
the resulting system of ODEs is numerically integrated in time using any numerical inte-
gration rule [56]. When the MOL approach is applied to Equation (1), the time-dependent
initial value problem is established as follows:

dCj

dt
= θ

(
t, Cj

)
, 1 ≤ j ≤ N, (15)

The first-order system of ODEs given by Equation (22) requires N initial conditions,
which are given by Equation (3). The expression θ

(
t, Cj

)
is called the right-hand side

function at the location xj and θ(t, C) can be written in the vector form as follows:

θ(t, C) = DCxx + (Dx −U)Cx −UxC, (16)

As seen above, we need the boundary conditions in the calculation of derivative
terms within θ(t, C) and these are given by Equation (4). The solution of the ODE system
given in Equation (22) can be easily obtained by any time-integration scheme. In the MOL
approach, the differential matrices (D1 and D2) and the initial and boundary conditions
are first passed to the function which is needed to calculate the numerical values of θ(t, C).
Note that, the numerical derivatives in θ(t, C) are calculated with high accuracy using
the NCCD scheme. The resulting ODE system is then solved using the explicit fourth
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order Runge–Kutta (ERK4) scheme. The ERK4 scheme is one of the most popular general-
purpose integrators as it is simple to implement and has good stability characteristics [57].
The formulation of the ERK4 scheme from time step m to m + 1 can be written as:

k1 = θ(tm, Cm), (17a)

k2 = θ

(
tm +

1
2

∆t, Cm +
1
2

∆tk1

)
, (17b)

k3 = θ

(
tm +

1
2

∆t, Cm +
1
2

∆tk2

)
, (17c)

k4 = θ(tm + ∆t, Cm + ∆tk3), (17d)

Cm+1 = Cm +
∆t
6
(k1 + 2k2 + 2k3 + k4), (17e)

4. Numerical Applications

In this section, numerical solution of the ADE with constant and variable param-
eters are tested on three numerical examples. In these examples, input parameters are
C0 = 1 kg/m3, D0 = 0.0002 m2/s and U0 = 0.01 m/s. The transport domain is divided
into intervals of a constant length h = 1 m. Calculated concentration values are presented
in longitudinal region 0 ≤ x ≤ L at different times. Since the Neumann boundary con-
dition is valid at the right boundary point, a large enough domain length is selected in
all examples, i.e., L = 100 m. The numerical examples presented in this study are closely
related each other. The initial and boundary conditions, the domain lengths (L), and the
input parameters (C0, D0, U0) are the same. The parameters m and ∝, which control only
temporal and spatial change, and the total simulation times (t) are different. The main goal
of this approach is to observe how the behavior of the problem changes when the velocity
(U) and diffusion coefficients (D) are selected as variables. If the velocity and diffusion
coefficients are fixed, the second and the third problem is reduced to the first problem.

4.1. ADE with Constant Parameters

The advection–diffusion equation is solved for a transport domain in which the
velocity and the diffusion coefficient are constant, i.e., g1(x, t) = 1 and g2(x, t) = 1. These
conditions describe the propagation of a steep front, which is simultaneously subjected
to the diffusion. The analytical solution of the ADE with constant parameters is given
by Szymkiewicz [3]:

C(x, t) =
C0

2

[
er f c

(
x−U0t√

4D0t

)
+ exp

(
U0x
D0

)
er f c

(
x + U0t√

4D0t

)]
, (18)

In this example, a numerical solution of an ADE with constant parameters and sharp
behavior was performed. The analytical solution of this example has been calculated
incorrectly by various researchers [3,20,22]. Therefore, the results of these studies were not
used in the comparison. Recently, Irk et al. [58] was conducted a study, by approximating
the spatial derivatives with cubic B-spline collocation scheme and extended cubic B-spline
collocation. They were adopted the Crank–Nicolson scheme for the time integration. These
two schemes will be referred to as CN-CBSC and CN-ECBSC.

L∞ norm errors of the ERK4-NCCD, CN-CBSC, and CN-ECBSC schemes for different
time steps at t = 3000 s are compared in Table 1. In this example, the Peclet number (Pe)
was selected as 5. The Courant numbers (Cr) were calculated as 0.01, 0.05, 0.1, 0.2, 0.3, 0.6,
and 1, respectively, when the time steps used were ordered from the smallest to the largest.
As can be seen from Table 1, the ERK4-NCCD scheme is more accurate and more stable
than the CN-CBSC and the CN-ECBSC schemes.
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Table 1. Comparison of the L∞ norm errors of several methods for different time steps ∆t at t = 3000 s.

∆t (s) ERK4-NCCD
(This Study) CN-CBSC [58] CN-ECBSC [58]

100 0.05830 NA NA
60 0.03538 0.04330 0.0425 *
30 0.01753 0.01962 0.01961
20 0.01150 0.01270 0.01260
10 0.00543 0.00685 0.00608
5 0.00264 0.00409 0.00307
1 0.00109 0.00224 0.00127

* After a personal interview with the author of this article (Prof. Dursun Irk), it was confirmed that the correct
value should be 0.0425, while the published value of 0.00425 was due to a typographic error.

Table 2 shows the numerical results obtained with ERK4-NCCD at t = 3000 s using
different time steps. It can be observed from Table 2, the ERK4-NCCD scheme it produces
the more accurate solutions for ∆t = 1 s, 5 s, and 10 s and gives acceptable solutions for
larger time steps. Table 3 shows the numerical solutions of ERK4-NCCD at t = 2000 s,
4000 s, and 6000 s using the time step ∆t = 1 s. As seen from the Table 3, there is almost no
difference between the analytical and numerical solutions.

Table 2. Comparison of the analytical solution with the numerical results of the ERK4-NCCD scheme
for different time steps ∆t at t = 3000 s.

x (m) ∆t = 1 ∆t = 5 ∆t = 10 ∆t = 20 ∆t = 30 ∆t = 60 ∆t = 100 Analytical

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
. . . . . . . . . . . . . . . . . . . . . . . . . . .
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
19 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
20 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.998
21 0.996 0.996 0.996 0.996 0.996 0.997 0.997 0.996
22 0.991 0.991 0.991 0.992 0.992 0.993 0.993 0.991
23 0.982 0.982 0.982 0.983 0.983 0.984 0.986 0.982
24 0.965 0.965 0.965 0.966 0.967 0.969 0.973 0.964
25 0.935 0.936 0.937 0.938 0.940 0.944 0.950 0.934
26 0.890 0.891 0.892 0.894 0.897 0.904 0.913 0.889
27 0.824 0.826 0.828 0.831 0.835 0.845 0.858 0.823
28 0.739 0.741 0.743 0.748 0.753 0.766 0.783 0.738
29 0.636 0.639 0.641 0.647 0.652 0.669 0.689 0.636
30 0.523 0.525 0.528 0.534 0.540 0.558 0.581 0.523
31 0.408 0.410 0.413 0.419 0.425 0.443 0.466 0.408
32 0.300 0.303 0.305 0.311 0.316 0.332 0.354 0.301
33 0.208 0.210 0.212 0.217 0.221 0.235 0.254 0.208
34 0.135 0.137 0.138 0.142 0.145 0.155 0.170 0.135
35 0.082 0.083 0.084 0.087 0.089 0.096 0.107 0.082
36 0.047 0.047 0.048 0.049 0.051 0.056 0.063 0.046
37 0.025 0.025 0.025 0.026 0.027 0.030 0.034 0.024
38 0.012 0.012 0.012 0.013 0.013 0.015 0.017 0.012
39 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.005
40 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.002
41 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 3. Comparison of the analytical solution with the numerical results of the ERK4-NCCD scheme
for the time step ∆t = 1 s at times t = 2000 s, t = 4000 s, and t = 6000 s.

x (m) t = 2000 s x (m) t = 4000 s x (m) t = 6000 s

Numerical Analytical Numerical Analytical Numerical Analytical

10 1.000 1.000 26 1.000 1.000 44 1.000 1.000
11 0.999 0.999 27 0.999 1.000 45 0.999 0.999
12 0.998 0.998 28 0.999 0.999 46 0.998 0.998
13 0.995 0.995 29 0.997 0.998 47 0.997 0.997
14 0.987 0.987 30 0.995 0.995 48 0.994 0.994
15 0.969 0.968 31 0.990 0.990 49 0.989 0.989
16 0.935 0.933 32 0.980 0.980 50 0.982 0.982
17 0.875 0.873 33 0.965 0.965 51 0.970 0.970
18 0.784 0.783 34 0.941 0.940 52 0.954 0.953
19 0.665 0.665 35 0.905 0.904 53 0.930 0.930
20 0.527 0.528 36 0.855 0.854 54 0.898 0.898
21 0.387 0.388 37 0.790 0.789 55 0.857 0.856
22 0.260 0.261 38 0.710 0.709 56 0.805 0.805
23 0.159 0.159 39 0.619 0.618 57 0.744 0.744
24 0.089 0.088 40 0.520 0.520 58 0.674 0.674
25 0.044 0.044 41 0.420 0.420 59 0.597 0.597
26 0.020 0.020 42 0.326 0.326 60 0.517 0.516
27 0.008 0.008 43 0.241 0.241 61 0.435 0.435
28 0.003 0.003 44 0.170 0.170 62 0.356 0.356
29 0.001 0.001 45 0.114 0.114 63 0.283 0.283
30 0.000 0.000 46 0.073 0.073 64 0.219 0.218

47 0.044 0.044 65 0.163 0.163
48 0.025 0.025 66 0.118 0.118
49 0.014 0.014 67 0.082 0.082
50 0.007 0.007 68 0.055 0.055
51 0.003 0.003 69 0.036 0.036
52 0.002 0.002 70 0.023 0.022
53 0.001 0.001 71 0.014 0.014
54 0.000 0.000 72 0.008 0.008

73 0.004 0.004
74 0.002 0.002
75 0.001 0.001
76 0.001 0.001
77 0.000 0.000

L2 0.00390 L2 0.00160 L2 0.00125
L∞ 0.00203 L∞ 0.00073 L∞ 0.00046

Numerical and analytical solutions of the ADE with constant parameters for ∆t = 1 s
is presented in Figure 1. Figure 1 shows that the numerical results obtained for ∆t = 1 s
coincide very well with the analytical solution. Table 2 shows the numerical results obtained
with ERK4-NCCD at t = 3000 s using different time steps. It can be observed from Table 2,
the ERK4-NCCD scheme it produces the more accurate solutions for ∆t = 1 s, 5 s, and 10 s
and gives acceptable solutions for larger time steps.
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4.2. ADE with Spatially Variable Parameters

In this example, we assumed that the diffusion coefficient is proportional to the
square of the velocity, i.e., g1(x, t) = (1+ ∝ x)2 and g2(x, t) = 1+ ∝ x. Under this
assumptions, the analytical solution of the ADE with spatially variable parameters is given
by Kumar et al. [59] as follows:

C(x, t) =
C0

2

{
(1+ ∝ x)−1er f c

[
ln(1+ ∝ x)
2 ∝
√

D0t
− β
√

t
]
+ (1+ ∝ x)δer f c

[
ln(1+ ∝ x)
2 ∝
√

D0t
+ β
√

t
]}

(19)

where β =
(
(U0+ ∝ D0)/

(
2
√

D0
))

and δ = U0/(∝ D0).
In this example, the velocity and the diffusion coefficient increase depending on the

value of ∝. The numerical results at t = 3000 s for different time steps and ∝= 0.005 m−1

are presented in Table 4. Table 4 shows that the ERK4-NCCD scheme was able to produce
acceptable solutions for the maximum time step ∆t = 75 s. When the simulation parameters
were increased, there was a slight decrease in the stability of the scheme according to the
previous example. Certainly, this inference is also valid for other numerical methods.
Figure 2 depicts the analytical and numerical solution of the ADE with spatially dependent
parameters at t = 3000 s for ∆t = 1 s and ∝= 0.02 m−1. These results can be compared
with the problem presented above for ∝= 0 and ∆t = 1 s in Figure 1. When we compare
Figures 1 and 2, we observe that a change in ∝ leads to a significant change in the solution
of the problem. As can be observed in Table 5, this change becomes more evident when we
significantly increase ∝. The L∞ norm errors of the ERK4-NCCD scheme for solving ADE
with different ∝ values at t = 3000 s are provided in Table 5.
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Table 4. Comparison of the analytical solution with the numerical results of the ERK4-NCCD scheme
for different time steps ∆t and ∝= 0.005 m−1 at t = 3000 s.

x (m) ∆t = 1 s ∆t = 5 s ∆t = 10 s ∆t = 20 s ∆t = 30 s ∆t = 60 s ∆t = 75 s Analytical

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
2 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990
3 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985
4 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980
5 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976
6 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971
7 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966
8 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962
9 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957
10 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952
11 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948
12 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943
13 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939
14 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935
15 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930
16 0.926 0.926 0.926 0.926 0.926 0.926 0.926 0.926
17 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922
18 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917
19 0.913 0.913 0.913 0.913 0.913 0.913 0.913 0.913
20 0.908 0.908 0.908 0.908 0.908 0.909 0.909 0.909
21 0.903 0.903 0.904 0.904 0.904 0.904 0.904 0.904
22 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898
23 0.890 0.891 0.891 0.891 0.891 0.891 0.892 0.891
24 0.880 0.881 0.881 0.881 0.881 0.882 0.883 0.880
25 0.866 0.866 0.866 0.867 0.867 0.869 0.870 0.865
26 0.844 0.845 0.845 0.846 0.847 0.850 0.851 0.844
27 0.814 0.814 0.815 0.817 0.818 0.823 0.825 0.813
28 0.772 0.772 0.774 0.776 0.778 0.785 0.788 0.771
29 0.716 0.718 0.719 0.723 0.726 0.735 0.739 0.716
30 0.649 0.650 0.652 0.656 0.660 0.672 0.678 0.648
31 0.570 0.572 0.575 0.579 0.584 0.598 0.604 0.570

Table 5. L∞ norm errors of the ERK4-NCCD scheme for different time steps ∆t and ∝ values at
t = 3000 s. NA indicates that the solution did not converged.

∆t (s) ∝ = 0.001 ∝ = 0.005 ∝ = 0.01 ∝ = 0.02

75 0.04315 0.03812 NA NA
60 0.03452 0.03049 NA NA
30 0.01699 0.01498 0.01291 NA
20 0.01110 0.00978 0.00844 0.00622
10 0.00532 0.00464 0.00396 0.00291
5 0.00257 0.00219 0.00185 0.00133
1 0.00109 0.00087 0.00072 0.00050

4.3. ADE with Spatially and Temporally Variable Parameters

In this example, we assumed that the diffusion is proportional to square of the velocity
parameter as considered second example. In addition, the diffusion and velocity are
supposed to vary with temporally in the same proportion as considering g1(x, t) = g(m, t)
(1+ ∝ x)2 and g2(x, t) = g(m, t)(1+ ∝ x). Under this assumptions, the analytical solution
of the ADE with spatially and temporally variable parameters is given by Kumar et al. [59]
as following:

C(x, t) =
C0

2

{
(1+ ∝ x)−1er f c

[
ln(1+ ∝ x)
2 ∝
√

D0T
− β
√

T
]
+ (1+ ∝ x)δer f c

[
ln(1+ ∝ x)
2 ∝
√

D0T
+ β
√

T
]}

(20)



Mathematics 2021, 9, 1027 10 of 14

where T =
∫ t

0 g(m, ϑ)dϑ, β =
(
(U0+ ∝ D0)/

(
2
√

D0
))

, δ = U0/(∝ D0), g(m, t) = 1 −
sin(mt) and ϑ is a dummy variable. In this example, the velocity and diffusion parameters
are slightly increased depending on the m and ∝.

L∞ norm errors of the ERK4-NCCD scheme for m = 0.1 s−1 and different ∝ values
at t = 1500 s can be found in Table 6. Increasing the ∝ value leads to increasing Courant
number, Cr = (U∆t)/h. Therefore, we can face with stability problems for explicit time
integration methods like ERK4. Referring to Table 6, it is seen that the stability range
decreased for ∝= 0.01 m−1 and ∝= 0.02 m−1. The numerical results of the ERK4-NCCD
scheme with ∝= 0.005 m−1 and ∆t = 1 s at t = 1500 s given in Table 7. As can be seen
from the table, quite less L2 and L∞ values were obtained for all m values. Analytical
and numerical solution of the ADE with spatially and temporally variable parameters at
t = 2000 s for ∆t = 1 s, and ∝= 0.05 m−1 are presented in Figure 3.

Table 6. L∞ norm errors of the ERK4-NCCD scheme for m = 0.1 s−1 with different time steps ∆t and
∝ values at t = 3000 s. NA indicates that the solution did not converged.

∆t (s) ∝ = 0.001 ∝ = 0.005 ∝ = 0.01 ∝ = 0.02

100 0.08198 NA NA NA
75 0.06042 0.05782 NA NA
60 0.04810 0.04577 NA NA
30 0.02253 0.02111 0.01951 NA
20 0.01396 0.01297 0.01208 0.01029
10 0.00626 0.00567 0.00520 0.00427
5 0.00430 0.00377 0.00346 0.00270
1 0.00332 0.00305 0.00267 0.00210
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parameters at t = 2000 s for ∆t = 1 s, m = 0.1 s−1, and ∝= 0.05 m−1.
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Table 7. The numerical results of the ERK4-NCCD scheme for ∝= 0.05 m−1 and ∆t = 1 s with
different m values at t = 1500 s.

x (m) m = 0.005 x (m) m = 0.01 x (m) m = 0.1

Numerical Analytical Numerical Analytical Numerical Analytical

0 1.000 1.000 0 1.000 1.000 0 1.000 1.000
1 0.995 0.995 1 0.995 0.995 1 0.995 0.995
2 0.990 0.990 2 0.990 0.990 2 0.990 0.990
3 0.985 0.985 3 0.985 0.985 3 0.985 0.985
4 0.980 0.980 4 0.980 0.980 4 0.980 0.980
5 0.975 0.976 5 0.975 0.976 5 0.976 0.976
6 0.970 0.971 6 0.969 0.970 6 0.970 0.971
7 0.964 0.965 7 0.963 0.964 7 0.965 0.966
8 0.957 0.957 8 0.956 0.955 8 0.960 0.960
9 0.945 0.944 9 0.940 0.938 9 0.953 0.953
10 0.921 0.918 10 0.906 0.903 10 0.942 0.941
11 0.872 0.869 11 0.842 0.840 11 0.920 0.917
12 0.788 0.787 12 0.740 0.741 12 0.879 0.875
13 0.669 0.671 13 0.604 0.607 13 0.808 0.805
14 0.523 0.527 14 0.450 0.454 14 0.704 0.703
15 0.373 0.376 15 0.303 0.305 15 0.573 0.573
16 0.239 0.241 16 0.182 0.182 16 0.430 0.431
17 0.137 0.137 17 0.097 0.096 17 0.294 0.295
18 0.070 0.069 18 0.045 0.044 18 0.183 0.182
19 0.032 0.031 19 0.019 0.018 19 0.102 0.101
20 0.013 0.012 20 0.007 0.006 20 0.051 0.050
21 0.004 0.004 21 0.002 0.002 21 0.023 0.022
22 0.001 0.001 22 0.001 0.001 22 0.009 0.009
23 0.000 0.000 23 0.000 0.000 23 0.003 0.003
. . . . . . . . . . . . . . . . . . . . 24 0.001 0.001
100 0.000 0.000 100 0.000 0.000 25 0.000 0.000

. . . . . . . . . .
100 0.000 0.000

L2 0.00729 L2 0.00749 L2 0.00590
L∞ 0.00346 L∞ 0.00360 L∞ 0.00335

5. Conclusions

In this study, a combined compact finite difference scheme based on the method of
lines is proposed for the numerical solution of the solute transport equation with variable
parameters. In this approach, the partial differential equation representing the ADE is
converted into many ordinary differential equations. These time-dependent ordinary
differential equations are then solved using an explicit fourth order Runge–Kutta method.
Numerical examples with sharp concentration fronts are presented to demonstrate the
effectiveness of the method. In the first example, we compared the numerical results of the
ERK4-NCCD scheme with CN-CBSC and CN-ECBSC. It is found that the ERK4-NCCD
scheme is more accurate and more stable than the CN-CBSC and the CN-ECBSC schemes. It
was observed that the numerical results obtained using small time steps and the analytical
results coincided with each other. Moreover, acceptable results were obtained when large
time steps were used as well. The ERK4-NCCD scheme gives excellent results for long
time-integration, i.e., t = 2000 s, 4000 s, and 6000 s. In second example, the velocity and
diffusion coefficients were slightly increased depending on the value of ∝. When the
parameters increased, there was a slight decrease in the stability of the scheme compared
to the previous example. We observe that a small change in ∝ leads to a significant change
in the solution of the problem. This change becomes more evident when we significantly
increase the ∝. In the third example, we observed that increasing ∝ value leads to increasing
Courant number. Therefore, we can face with stability problems for explicit time integration
methods like ERK4. As a result, the proposed method has produced more accurate and
more stable results than CN-CBSC and the CN-ECBSC schemes in solving ADE with
constant and variable parameters. The proposed scheme produces fairly accurate results
for the Cr ≤ 1 and the Pe ≤ 5. It is recommended to use compact upwind schemes
for higher Peclet numbers. When the method given in Gurarslan (2014) is followed, the
proposed scheme can be easily extended to the two- and three-dimensional ADE.
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