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Abstract: We consider the behavior of a viscous fluid within a container that has an elastic upper, free
boundary. The movement of the upper boundary is described by a combination of a plate equation
and a boundary condition of friction type that quantifies the elasticity of the boundary. We show the
local existence of weak solutions to this coupled system in three dimensions, by applying the Galerkin
method to a regularized version of the problem and using a fixed-point argument afterwards.
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1. Introduction

Let ω denote a bounded Lipschitz domain in R2. We consider a domain,

Ωh0 = {(x, y, z) ∈ R3 | (x, y) ∈ ω, 0 < z < 1 + h0(x, y)},

filled with a viscous fluid, where h0 is a given vertical displacement of the elastic, upper
part of the boundary from the reference state ω × {1}. We denote the rigid part of the
boundary of Ωh0 by Γ0 := (ω× {0})∪ (∂ω× [0, 1]), which consists of the lower part of the
boundary as well as of the lateral part. Only Γh0 = ∂Ωh0 \ Γ0, the upper part of ∂Ωh0 , is
subject to change in time which is described by a function h that is to be determined. So,
while Ωh0 denotes the domain occupied by the fluid at the initial time t = 0,

Ωh(t) = {(x, y, z) ∈ R3| (x, y) ∈ ω, 0 < z < 1 + h(t, x, y)}

is the domain occupied by the fluid at time t. The equations that describe the interplay
between the fluid flow and the elastic boundary, are expressed by (u, p) and h, respectively.
They are defined on the non-cylindrical open space-time domain

Ω̂h :=
⋃

t∈(0,T)
{t} ×Ωh(t) (1)

and satisfy the coupled non-linear system

∂tu− div(2µD(u)− pI) = f − (u · ∇)u in Ω̂h, (2)

div u = 0 in Ω̂h, (3)

u(t, ·) = 0 on Γ0, (4)

u(t, x, y, 1 + h(t, x, y)) = (0, 0, ∂th(t, x, y))> on (0, T)×ω, (5)

h =
∂h

∂nω
= 0 on ∂ω, (6)
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u|t=0 = u0 in Ωh0 , (7)

(h, ∂th)|t=0 = (h0, h1) in ω, (8)

with Du := 1
2 (∇u + ∇u>) and nω ∈ R2 denoting the outer unit normal on ∂ω. On

ω× (0, T) we have for given λ, κ > 0 that

∂th =

{
0, if |∂2

t h + ∆2h + λ∆2∂th− (Tf `)3| < κ

−α(∂2
t h + ∆2h + λ∆2∂th− (Tf `)3), if |∂2

t h + ∆2h + λ∆2∂th− (Tf `)3| = κ
(9)

for α = α(t, x, y) ≥ 0 which is equivalent to(
∂2

t h + ∆2h + λ∆2∂th− (Tf `)3
)
η ≥ κ|∂th| − κ|∂th + η| ∀η ∈ R. (10)

Here, α = |∂th|
κ in (9)2 and α = 0 in case (9)1 is an unknown function of the system;

furthermore, µ > 0 denotes the viscosity of the fluid. Equations (2) and (3) are the
incompressible Navier–Stokes equations with a given external force f , where (3) and (5)
imply that the flow is volume preserving; see Remark 1 (ii). Moreover, (4), describes that
the fluid does not move on the rigid part Γ0. Since the fluid adheres to the plate, we
postulate the kinematic boundary condition (5). Moreover, Tf ` = Tf `(t, x, y) is the surface
force exerted by the fluid on the structure given by∫

ω
Tf `(t, x, y) · v(t, x, y, 1 + h(t, x, y)) dx dy =

∫
Γh(t)

(−2µD(u) · nt + pnt) · v dσ (11)

for all v ∈ C∞
c (Ωh(t))

3, where nt =
(−∇′h, 1)>√

1 + |∇′h|2
is the t-dependent outer normal at Γh(t).

Instead of the boundary condition (9), often an equation of the form

∂2
t h + ∆2h + λ∆2∂th = (Tf `)3 + g

is used in the literature. For instance, in Reference [1], Chambolle et al. have constructed
weak solutions for the corresponding problem; the authors remark that the damping term
∆2∂th can be replaced by the term ∆∂2

t h. Similar results have been shown by Grandmont [2]
in the case of a three-dimensional cavity, where one part of the boundary is assumed to be
elastic and the other one rigid. However, the focus in Reference [2] is on the behavior of
solutions in the limit λ→ 0 and a uniform positive lower bound of the time of existence.

In Reference [3], Denk and Saal exploit the damping term −∆∂th in a half space
like domain with base ω = Rn−1 and maximal regularity to get strong solutions; similar
techniques are used by Celik and Kyed [4] in a spatially periodic setting (n = 3) to prove
the existence of strong t-periodic solutions. Beiraõ da Veiga [5] proved the local existence
of strong solutions in a one-dimensional periodic base ω = (0, L). Similar results are
obtained by Badra and Takahashi [6] working with semigroups of Gevrey class. Fluid
structure interaction problems with a classical non-linear von Kármán shallow shell of
finite thickness that allow for both transversal and lateral displacements are considered by
Chueshov and Ryzhkova [7]. Lengeler and Růžička [8] discussed the case of a Koiter shell
instead of the flat plate and, hence, replaced the operator ∆2 by an operator better suited
for non-flat boundaries.

These equations model the movement of the plate via a (damped) plate equation,
where the damping term used here is λ∆2∂th and the forces causing the movement are
given by (Tf `)3 and a prescribed external force g. Our boundary condition is a combination
of this equation with a boundary condition of friction type, namely (for h = 0)

un =

{
0, if |(Tf `)n| < κ

−α(Tf `)n, if |(Tf `)n| = κ with α ≥ 0
and uτ = 0. (12)
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Here, the subscripts n and τ denote the normal and tangential component of a
vector, respectively.

Condition (12) describes that the fluid adheres to the boundary, but if the normal com-
ponent of the stress tensor becomes large enough, the fluid may start to “leak” and presses
the upper elastic boundary in the opposite direction of (Tf `)n. This boundary condition
allowing for leaking and, in particular, its counterpart on slip where tangential components
are controlled as in (12) (Coulomb’s boundary or dry friction condition) have been studied
extensively. For instance, the existence of strong solutions with respect to time for the
Navier–Stokes equations coupled with this boundary condition, i.e., u ∈W1

2 (0, T; L2(Ω)),
has been shown by Kashiwabara [9] for finite time intervals. On the other hand, a thorough
analysis of the stationary Stokes case in bounded smooth domains of Rd, d ≥ 3, including
H2–results and the Stokes resolvent problem, is due to Saito [10]. Besides results on weak
solutions, Bălilescu, San Martín, and Takahashi [11] present several numerical examples
for the slip Coulomb boundary condition, whereas Jing et al. [12] propose a discontinuous
Galerkin method for the non-linear leak boundary condition. In [13], Bălilescu et al. con-
sider the translational and rotational motion of a rigid body immersed into a viscous fluid
together with Coulomb’s boundary condition. Consiglieri [14] discusses the stationary
case of a non-Newtonian fluid with Coulomb’s condition, whereas Baranovskii [15] puts
the focus on a viscoelastic fluids of Oldroyd-B type.

In combination, the boundary condition (9) describes that, if the force g := ∂2
t h +

∆2h + λ∆2∂th− (Tf `)3 is smaller than the threshold κ, then h, and, therefore, the domain
does not change in time. However, if the force becomes large enough, the upper boundary
may start to change in time, and it does so in the opposite direction of the force. So, κ can
be viewed as a constant measuring the elasticity of the plate, which is the upper boundary.
If the material that the plate consists of is very elastic, κ is very small. If κ is very large, the
plate is harder to move. For simplicity, we assume in the following that λ = 1.

In this work, we show the existence of weak solutions. First, we will formally derive an
energy estimate to identify suitable solution spaces in Section 2. In Section 3, we rigorously
define the solution spaces and gather results about trace operators associated with the
domain Ωh(t). In Section 4, we define weak solutions before we show their existence in
Sections 5 and 6. Indeed, in Section 5, we describe several smoothing arguments and
perform the Galerkin approximation method on a given domain Ω̃δ(t), yielding a weak
solution (u, h) which ignores the kinematic boundary condition (5) on the upper part of
the boundary. Finally, in Section 6, a fixed point argument yields a solution u satisfying
h = δ, i.e., the kinematic boundary condition and also (9).

We want to emphasize that we follow the work of Chambolle, Desjardins, Esteban, and
Grandmont; see Reference [1]; however, we have an additional non-linear boundary term.
In a first weak formulation, as in (19) or (20) in Section 4, we get a variational inequality
in which both the solution and the test function are variables in the non-linear function
| · |. By a mollification, the modulus is replaced by a smooth function Gε, as in (28) below,
which is non-linear in the solution, but linear in the test function. These terms require from
time to time significant changes from the mentioned paper. In order to keep this work
self-contained and comprehensible, we still give a detailed proof of the existence of weak
solution that is in some points even more detailed than that in [1].

2. Energy Estimate

Formally multiplying (2) with u and integrating over Ωh leads to∫
Ωh(t)

∂tu · u +
∫

Ωh(t)
(u · ∇)u · u + 2µ

∫
Ωh(t)

|D(u)|2

+
∫

Γh(t)

(−2µD(u) · nt + pnt) · u =
∫

Ωh(t)

f · u.
(13)
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Note that we will omit the infinitesimal increments, such as dx dy in R2, dσ for 2d-surfaces,
and dτ for time to keep lengthy formulae short. Then, the Reynolds transport theorem, as
in [16] (Theorem 3.5), implies that

d
dt

∫
Ωh(t)

1
2
|u|2 =

∫
Ωh(t)

d
dt

(
1
2
|u|2

)
+
∫

∂Ωh(t)\Γ0

1
2
|u|2v · nt,

with v denoting the velocity of the area element which equals u. Hence, using div u = 0
and the divergence theorem, we deduce that∫

Ωh(t)
(u · ∇)u · u =

1
2

∫
∂Ωh(t)

|u|2u · nt =
d
dt

∫
Ωh(t)

1
2
|u|2 −

∫
Ωh(t)

d
dt

(
1
2
|u|2

)
.

Plugging this into (13), we get that

1
2

d
dt

∫
Ωh(t)

|u|2 + 2µ
∫

Ωh(t)

|D(u)|2 +
∫

Γh(t)

(−2µD(u) · nt + pnt) · u =
∫

Ωh(t)

f · u. (14)

Now, due to the definition of Tf ` given by (11), we calculate for the boundary term∫
∂Ωh(t)\Γ0

(−2µD(u) · nt + pnt) · u =
∫

ω
Tf ` · u(t, x, y, 1 + h(t, x, y))

(5)
=
∫

ω
(Tf `)3∂th =

∫
ω
−
(
∂2

t h + ∆2h + µ∆2∂th− (Tf `)3
)
∂th

+
∫

ω

(
∂2

t h + ∆2h + µ∆2∂th
)
∂th.

(15)

We rewrite the last integral as∫
ω

(
1
2

d
dt
|∂th|2 +

1
2

d
dt
|∆h|2 + µ|∆∂th|2

)
.

Applying (10) to the second last integral, we get∫
ω
−
(
∂2

t h + ∆2h + µ∆2∂th− (Tf `)3
)
∂th ≤

∫
ω

(
κ|2∂th| − κ|∂th|

)
=
∫

ω
κ|∂th|.

We also obtain the reverse inequality if we consider y = −∂th in (10). Hence, we conclude∫
ω
−
(
∂2

t h + ∆2h + µ∆2∂th− ()3
)
∂th =

∫
ω

κ|∂th|.

Plugging these identities into (14), we get the equality

1
2

d
dt

∫
Ωh(t)

|u|2 + 2µ
∫

Ωh(t)

|D(u)|2 +
∫

ω

(
1
2

d
dt
|∂th|2 +

1
2

d
dt
|∆h|2 + µ|∆∂th|2 + κ|∂th|

)
=
∫

Ωh(t)

f · u.

Integrating over time yields for all t > 0

1
2

∫
Ωh(t)

|u(t)|2 + 2µ
∫ t

0

∫
Ωh(s)

|D(u)|2 ds +
1
2

∫
ω

(
|∂th(t)|2 + |∆h(t)|2

)
+
∫ t

0

∫
ω

(
µ|∆∂th|2 + κ|∂th|

)
=

1
2

∫
Ωh0

|u0|2 +
1
2

∫
ω

(
|h1|2 + |∆h0|2

)
+
∫ t

0

∫
Ωh(s)

f · u.
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Using Young’s and Hölder’s inequality, we deduce for all t > 0

1
2

(
‖u(t)‖2

L2(Ωh(t))
+ ‖∂th(t)‖2

L2(ω) +
1
2
‖∆h(t)‖2

L2(ω)

)
+ 2µ

∫ t

0
‖D(u)‖2

L2(Ωh(s))
ds + µ‖∆∂th‖2

L2((0,t)×ω) + κ‖∂th‖L1((0,t)×ω)

≤ 1
2

∫ t

0
‖u(s)‖2

L2(Ωh(s))
+

1
2

(
‖u0‖2

L2(Ωh0
) + ‖h1‖2

L2(ω) + ‖∆h0‖2
L2(ω)

)
+

1
2

∫ t

0
‖ f (s)‖2

L2(Ωh(s))
ds.

(16)

Then, Grönwall’s lemma yields

1
2

(
‖u(t)‖2

L2(Ωh(t))
+ ‖∂th(t)‖2

L2(ω) + ‖∆h(t)‖2
L2(ω)

)
+ 2µ

∫ t

0
‖D(u)‖2

L2(Ωh(s))
ds + µ‖∆∂th‖2

L2((0,t)×ω) + κ‖∂th‖L1((0,t)×ω)

≤ et

2

(
‖u0‖2

L2(Ωh0
) + ‖h1‖2

L2(ω) + ‖∆h0‖2
L2(ω)

)
+

1
2

∫ t

0
‖ f (s)‖2

L2(Ωh(s))
et−s,

(17)

for all t > 0. Hence, it is natural to assume for the given data that f ∈ L2(0, T; L2(R3)),
u0 ∈ L2(Ωh0), h0 ∈ H2

0(ω), and h1 ∈ L2(ω). Due to the fact that we do not know how
large Ωh(t) is, we defined f on R3, which is not restrictive given that the extension by zero
preserves L2-integrability. Via (17) these properties, in turn, imply that

u ∈ L∞(0, T; L2(Ωh(t))), D(u) ∈ L2(0, T; L2(Ωh(t))),

h ∈W1,∞(0, T; L2(ω)) ∩ H1(0, T; H2
0(ω)).

For a rigorous definition of these spaces, see the next section. Due to u(t, ·) = 0 on Γ0, it is
tempting to use Korn’s inequality in order to get u ∈ L2(0, T; H1(Ωh(t))). However, here,
we encounter the main problem in solving Equations (2)–(9) in a weak sense. While h ∈
H1(0, T; H2

0(ω)) ⊂ C([0, T]×ω) is continuous, h does not need to be Lipschitz continuous.
Hence, Ωh(t) is not necessarily a domain with Lipschitz boundary. Nevertheless, due to the
continuity of h, Ωh(t) is open and uniformly bounded. Therefore, we can find an M ∈ N
such that BM := ω× (0, M) ⊃ Ωh(t) for all t ∈ [0, T]. Now, we define

u =

{
u in Ωh(t),
(0, 0, ∂th)> in BM\Ωh(t).

Due to the interface condition (5) and the previous properties, we see that D(u) ∈
L2((0, T)× BM). Ergo, we can apply Korn’s inequality in BM to get u ∈ L2(0, T; H1(BM)),
and, by restriction, we still conclude that u ∈ L2(0, T; H1(Ωh(t))).

3. Solution Spaces and Trace Operators

Let T > 0 and 0 < m < M. Moreover, let δ ∈ C([0, T]×ω) be a function such that

1 + δ(t, x, y) ∈ [m, M] for all (t, x, y) ∈ [0, T]×ω, δ|∂ω = 0. (18)

Then, the set

Ωδ(t) := {(x, y, z) ∈ R3| (x, y) ∈ ω, 0 < z < 1 + δ(t, x, y) ∀(x, y) ∈ ω, z ∈ R}



Mathematics 2021, 9, 1026 6 of 31

is open and contained in BM = ω × (0, M) but does not necessarily have a Lipschitz
boundary. Furthermore, we need the open space-time domain Ω̂δ :=

⋃
t∈(0,T){t} ×Ωδ(t),

cf. (1). Recalling Γ0 = (ω× {0}) ∪ (∂ω× [0, 1]), we define the following spaces

H1
0,Γ0

(Ωδ(t)) := {v ∈ H1(Ωδ(t))| v|Γ0
= 0},

L2(0, T; H1(Ωδ(t))) := {v ∈ L2(Ω̂δ)| ∇v ∈ L2(Ω̂δ)},

L2(0, T; H1
0(Ωδ(t))) := C∞

c (Ω̂δ)
L2(0,T;H1(Ωδ(t)))

,

Vδ := {v ∈ C1(Ω̂δ)| div v = 0, v = 0 on (0, T)× Γ0},

Vδ := V L2(0,T;H1(Ωδ(t)))

δ ,

L∞(0, T; L2(Ωδ(t))) := {v ∈ L2(Ω̂δ)| ess sup
t∈(0,T)

‖v‖L2(Ωδ(t))
< ∞},

V := {v ∈ L2(0, T; H1(BM))|div v = 0,

v = 0 on (0, T)× (Γ0 ∪ (∂ω× (1, M)))}.

Even though Ωδ(t) might not necessarily be Lipschitz, one can still show that

Vδ = {v ∈ L2(0, T; H1(Ωδ(t)))| div v = 0, v = 0 on (0, T)× Γ0},

as in [17] (Theorem 3.22, p. 68), by using that Ωδ(t) is locally the graph of a function.
The following lemmata treat the definition and properties of the trace on Γδ(t). For these
lemmata, always assume that δ satisfies (18).

Lemma 1. For fixed t ∈ [0, T], the linear mapping

γδ(t) : C1(BM)→ C0(ω), v 7→ v(x, y, 1 + δ(t, x, y))

can be extended to a linear continuous mapping from H1(BM) to L2(ω). Similarly, the same
mapping but defined on C1(Ωδ(t)) can be extended to H1(Ωδ(t)).

Additionally, we have γδ(t)(v) ∈ L2(0, T; L2(ω)) for all v ∈ L2(0, T; H1(Ωδ(t))).

The proof of this Lemma, as well as the proofs of the following Lemmas 2–6, can be
found in Reference [1]. Using the trace operator γδ(t), we can now rewrite H1

0(Ωδ(t)) if we
additionally assume that δ ∈ C0([0, T]; H1(ω)).

Lemma 2. Additionally, let δ ∈ C0([0, T]; C0(ω) ∩ H1(ω)), then

H1
0(Ωδ(t)) = {v ∈ H1

0,Γ0
(Ωδ(t))| γδ(t)(v) = 0}.

In particular, v ∈ L2(0, T; H1
0(Ωδ(t))) if and only if v ∈ L2(0, T; H1

0,Γ0
(Ωδ(t))) and γδ(t)(v(t))

= 0 for almost all t ∈ (0, T).

In the next lemma, we consider an extension operator we have already used at the
end of the previous section.

Lemma 3. Additionally, let δ ∈ C0([0, T]; C0(ω) ∩ H1(ω)) and let b ∈ L2(0, T; H1
0(ω)) and

v ∈ Vδ such that γδ(t)(v(t)) = (0, 0, b)> for a.e. t ∈ (0, T). The function defined by

v =

{
v in Ω̂δ,
(0, 0, b)> in ((0, T)× BM)\Ω̂δ

belongs to V and
‖v‖V ≤ C(‖v‖Vδ

+ ‖b‖L2(0,T;H1(ω))),
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where C > 0 depends only on M.

Moreover, we have the existence of a lifting operator:

Lemma 4. For every φ ∈ H1
0(ω), there exists a w ∈ H1

0,Γ0
(Ωδ(t)) such that

γδ(t)(w) = φ and ‖w‖H1(Ωδ(t))
≤ Cm‖φ‖H1(ω).

The next lemma gives a meaning to the normal trace on the boundary:

Lemma 5. For every t ∈ (0, T), there exists a linear continuous operator

γn
δ(t) : {v ∈ L2(Ωδ(t))| div v ∈ L2(Ωδ(t))} → (H1

0(ω))′

with
γn

δ(t)(v) = v(t, x, y, 1 + δ(t, x, y)) · nt ∀(x, y) ∈ ω, ∀v ∈ C∞(Ωδ(t)).

The following lemma justifies Korn’s inequality.

Lemma 6. For all

v, u ∈ {w ∈ Vδ| ∃b ∈ L2(0, T; H1
0(ω)) s.t. γδ(t)(w(t)) = (0, 0, b)> for a.e. t ∈ (0, T)},

we have
2
∫

Ωδ(t)

D(u) : D(v) =
∫

Ωδ(t)

∇u : ∇v, f or a.e. t ∈ (0, T);

thus, √
2‖D(u)‖L2(Ωδ(t))

= ‖∇u‖L2(Ωδ(t))
f or a.e. t ∈ (0, T).

We also have Poincaré’s inequality due to the boundedness of BM.

Lemma 7. Let v ∈ H1
0,Γ0

(Ωδ(t)). Then,

‖v‖L2(Ωδ(t))
≤ M‖∇v‖L2(Ωδ(t))

.

4. Weak Formulation

After the definition of solution and trace spaces and their basic properties, we are now
in the position to define weak solutions. Let u0 ∈ L2(Ωh0), h1 ∈ L2(ω) and h0 ∈ H2

0(ω) ⊂
C0(ω).

Definition 1. We call (u, h) a weak solution of (2)–(9) if

(i) u ∈ Vh ∩ L∞(0, T; L2(Ωh(t))),

(ii) h ∈W1,∞(0, T; L2(ω)) ∩ H1(0, T; H2
0(ω)),

(iii) γh(t)(u(t)) = (0, 0, ∂th(t))> on ω, for a.e. t ∈ (0, T),
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(iv) for all test functions (φ, b) ∈ Vh × C1([0, T]; H2
0(ω)) satisfying the compatibility condition

φ(t, x, y, 1 + h(t, x, y)) = (0, 0, b(t, x, y))> for all (t, x, y) ∈ [0, T] × ω, there holds the
variational inequality∫

Ωh(t)

u(t) · φ(t)−
∫ t

0

∫
Ωh(s)

u · ∂tφ + 2µ
∫ t

0

∫
Ωh(s)

D(u) : D(φ)

+
∫ t

0

∫
Ωh(s)

(u · ∇)u · φ−
∫ t

0

∫
ω
(∂th)2b +

∫ t

0

∫
ω

∆h∆b +
∫

ω
∂th(t) b(t)

−
∫ t

0

∫
ω

∂th ∂tb +
∫ t

0

∫
ω

∆∂th ∆b +
∫ t

0

∫
ω

κ
(
|∂th| − |∂th− b|

)
≤
∫ t

0

∫
Ωh(t)

f · φ +
∫

Ωh0

u0 · φ(0) +
∫

ω
h1b(0)

(19)

holds for almost all t ∈ (0, T).

The integral
∫ t

0

∫
ω(∂th)2b in (19) is explained by a formal application of Reynolds

transport theorem:∫
Ωh(t)

u(t)φ(t)−
∫ t

0

∫
Ωh(s)

u∂tφ−
∫

Ωh0

u0φ(0) =
∫ t

0

∫
Ωh(s)

∂tu φ +
∫ t

0

∫
ω
(∂th)2b.

To explain the other terms, we formally calculate∫ t

0

∫
Ωh(t)

(−div(2µD(u)− pI))φ

= 2µ
∫ t

0

∫
ω

D(u) : D(φ) +
∫ t

0

∫
Γh(t)

(−2µD(u)nt + pnt)φ.

Applying (11) to the last term, we estimate∫ t

0

∫
ω
(Tf l)3b =

∫ t

0

∫
ω

(
(Tf l)3 − (∂2

t h + ∆2h + ∆2∂th)
)

b +
∫ t

0

∫
ω

(
∂2

t h + ∆2h + ∆2∂th
)

b

(10)
≥
∫ t

0

∫
ω

κ(|∂th| − |∂th− b|)−
∫ t

0

∫
ω

∂th∂tb +
∫

ω
∂th(t)b(t)

−
∫

ω
h1b(0) +

∫ t

0

∫
ω

∆h∆b +
∫ t

0

∫
ω

∆∂th∆b.

Using the identity

1
2

∫
Ωh(t)

(u · ∇)u · φ = −1
2

∫
Ωh(t)

(u · ∇)φ · u +
1
2

∫
ω
(∂th)2b,

we can also write∫
Ωh(t)

u(t) · φ(t)−
∫ t

0

∫
Ωh(s)

u · ∂tφ + 2µ
∫ t

0

∫
Ωh(s)

D(u) : D(φ)

+
1
2

∫ t

0

∫
Ωh(s)

(u · ∇)u · φ− 1
2

∫ t

0

∫
Ωh(s)

(u · ∇)φ · u− 1
2

∫ t

0

∫
ω
(∂th)2b +

∫ t

0

∫
ω

∆h∆b

+
∫

ω
∂th(t) b(t)−

∫ t

0

∫
ω

∂th ∂tb +
∫

ω

∫ t

0
∆∂th ∆b +

∫ t

0

∫
ω

κ
(
|∂th| − |∂th− b|

)
≤
∫ t

0

∫
Ωh(t)

f · φ +
∫

Ωh0

u0 · φ(0) +
∫

ω
h1b(0).

(20)

Later, it will become clear why we use (20) rather than (19).
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5. Existence of Weak Solutions: The Galerkin Approximation

This section is dedicated to the proof of the main theorem.

Theorem 1. Let f ∈ L2
loc((0, ∞); L2(R3)), u0 ∈ L2(Ωh0), h1 ∈ L2(ω), and h0 ∈ H2

0(ω) with

min
ω

(1 + h0) > 0,

div u0 = 0 in Ωh0 ,

u0 · n = 0 on Γ0,

γn
h0
(u0) = (0, 0, h1)

> · n0 on ω,∫
ω

h1(x, y) = 0.

(21)

Then, there exists a T∗ ∈ (0, ∞] and a weak solution (u, h) of (2)–(9) on [0, T] for all T < T∗. This
solution satisfies the estimate

‖u‖L∞(0,T;L2(Ωh(t)))
+ ‖∇u‖L2(0,T;L2(Ωh(t)))

+ ‖∂th‖L∞(0,T;L2(ω)) + ‖∆h‖H1(0,T;L2(ω))

≤ C(T, ‖u0‖L2(Ωh0
), ‖ f ‖L2((0,T)×R3), ‖h0‖H2

0 (ω), ‖h1‖L2(ω))

with a constant C > 0.

Remark 1. (i) The first assumption on h0, i.e., (21)1, is natural since we assume that there is no
intersection of the free boundary with the rigid boundary at the start. In fact, the reason why the
existence of a global solution for all times will not be shown is due to such a possible self-intersection of
the boundary. The other conditions are compatibility conditions. The last one is due to (21)2 and (21)4.

(ii) The conditions (21)4,5 and the solenoidality of u formally imply that the flow is volume
preserving. Actually,

∂t

∫
ω

h =
∫

ω
∂th =

∫
Γh(t)

u · nt =
∫

Ωh(t)

div u = 0,

so that
∫

ω h(t), the volume of Ωh(t), equals
∫

ω h0 for all suitable t > 0.

Proof. Step 1: The regularization procedure
First, we regularize the problem starting with the initial data. We find a sequence

(hε
0)ε>0 ⊂ C∞

c (ω) such that
∫

ω hε
0 =

∫
ω h0 for all ε > 0 and hε

0 → h0 in H2
0(ω) for ε → 0.

Since minω(1 + h0) > 0, there is an m > 0 such that minw(1 + h0) ≥ 2m > 0. Due to the
continuous embedding H2

0(ω) ↪→ C(ω), we also have that

min
ω

(1 + hε
0) ≥

3m
2

, (22)

given that ε > 0 is small enough.
Now, we define u0 by

u0 =

{
u0 in Ωh0 ,
(0, 0, h1)

> in BM+1\Ωh0 .

Since div(u0) = 0 in Ωh0 , div(0, 0, h1) = 0 in BM+1\Ωh0 and the normal trace γn
h0
(u0) =

(0, 0, h1)
> · n0, we also have that div(u0) = 0 in BM+1.

For 0 < δ < 1, we define the scaling

u[1+δ]
0 (x, y, z) =

(
(1 + δ)(u0)1, (1 + δ)(u0)2, (u0)3

)
(x, y, (1 + δ)z))>. (23)
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It is easy to check that u[1+δ]
0 is also divergence free. Due to h0 ∈ C(ω), the set

Z̃ :=
{
(x, y, z) ⊂ R3| (x, y) ∈ ω, (1− δ/2)(1 + h0(x, y)) < z < (1 + δ)(1 + h0(x, y))

}
is open and a neighborhood of Γh0 . In particular, we have that u[1+δ]

0 = (0, 0, h1)
> on Z̃.

Due to hε
0 → h0 in C(ω), we get for ε > 0 small enough the inclusion Z̃ε ⊂ Z̃, where

Z̃ε :=
{
(x, y, z) ⊂ R3| (x, y) ∈ ω,

(
1− δ

4
)
(1 + hε

0(x, y)) < z < (1 +
δ

2
)
(1 + hε

0(x, y))
}

,

a neighborhood Γhε
0
. Hence, provided that ε > 0 is small enough, we also have u[1+δ]

0 =

(0, 0, h1)
> on Z̃ε. Finally, we note the convergence

χΩ
hδ

0
u[1+δ]

0 → χΩh0
u0 in L2(BM) as δ→ 0.

Now, let (hε
1)ε>0 ⊂ C∞(ω) be such that hε

1 → h1 in L2(ω) and
∫

ω hε
1 = 0 for all ε > 0.

Moreover, we can regularize u[1+δ]
0 in L2(BM+1) by functions (uε

0)ε>0 ⊂ C∞(BM+1) with
div uε

0 = 0, uε
0 = 0 on Γ0, and uε

0(x, y, 1 + hε
0(x, y)) = (0, 0, hε

1)
> on ω. The latter can be

assumed due to u[1+δ]
0 = (0, 0, h1)

> on Z̃ε. In summary, we get that

div uε
0 = 0, uε

0(x, y, 1 + hε
0(x, y)) = (0, 0, hε

1)
> for all (x, y) ∈ ω,∫

ω
hε

1 = 0, uε
0 = 0 on Γ0,

∫
ω

hε
0 =

∫
ω

h0

and the convergences

χΩhε
0
uε

0 → χΩh0
u0 in L2(BM),

hε
1 → h1 in L2(ω),

hε
0 → h0 in H2

0(ω) as ε↘ 0.

Since the unknown domain Ωh(t) depends on the solution h, we first replace it with a
regularised domain Ωδ?ε (t) and use a fixed point argument in Step 6 below to find δ?ε = hε.
To be more precise, let δ ∈ H1(0, T; C0(ω) ∩ H1

0(ω)) such that δ|t=0 = hε
0 and M ≥ 1 +

δ(t, x, y) ≥ m > 0 for all (t, x, y) ∈ [0, T]×ω with m as before, i.e., minω(1+ h0) ≥ 2m > 0,
and M ∈ N will be chosen later.

For any auxiliary sequence (hε)ε>0 ⊂ H1(0, T; C0(ω) ∩ H1
0(ω)) with hε |t=0 = hε

0 for
all ε > 0, we take a space-time regularization

δ?ε := Nε(δ) ∈ C∞
c ([0, T]×ω)

of δ such that, if hε → δ in C0([0, T]×ω) and ∂thε → ∂tδ in L2(0, T; L2(ω)) as ε→ 0, then

Nε(hε)→ δ in C0([0, T]×ω)

∂tNε(hε)→ ∂tδ in L2(0, T; L2(ω))

Nε(δ)|t=0 = hε
0.

(24)

Note that we use the same parameter ε introduced in the beginning of Step 1 for hε
0, hε

1, for
δ?ε , the sequence hε, as well as for Nε; moreover, δ depends on ε via hε

0.
The operator Nε can be constructed as follows: Consider for each ε > 0 a regularization

Sε : H1(0, T; C0(ω) ∩ H1
0(ω)) −→ C∞([0, T]; C∞

0 (ω)) such that Sε(z) → z uniformly on
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bounded subsets of H1(0, T; C0(ω) ∩ H1
0(ω)) as ε → 0 and (Sε(z))|t=0 = 0 if z|t=0 = 0.

Then, we set

Nε(δ) := Sε(δ− δ|t=0) + hε
0 ∀δ ∈ H1(0, T; C0(ω) ∩ H1

0(ω)). (25)

Since ‖Nε(δ) − δ‖C0([0,T]×ω) = ‖Sε(δ − δ|t=0) − (δ − hε
0)‖C0([0,T]×ω) → 0 as ε → 0 and

M ≥ 1 + δ ≥ m on [0, T]×ω, we can assume that

2M ≥ 1 + δ?ε ≥
m
2

on [0, T]×ω (26)

by considering ε > 0 small enough. For further technical details, we refer to Reference [18].
The properties (24) of Nε will be crucial in Step 6.3 below in the analysis of the fixed point
operator Fε, as in (52).

Furthermore, in order to regularize the non-linearity, we also introduce the space-time
regularization v?ε := Rε(v) ∈ C∞((0, T)× B2M) for v ∈ L2(0, T; L2(B2M)) such that

Rε(vε)→ v in L2(0, T; L2(B2M)) as ε→ 0 if vε → v in L2(0, T; L2(B2M)) as ε→ 0. (27)

For example, we can set Rε(v) = ϕε ∗ E0(v) with (ϕε)ε>0 ⊂ C∞(R4) being an approximate
identity with compact support in (0, T)× B2M, and E0 denotes the extension by zero on R4.

Step 2: The approximate, almost linearized problem

Given uε
0, hε

0, hε
1 and δ?ε = Nε(δ), v?ε = Rε(v) (for an arbitrary v ∈ L2(0, T; L2(B2M))),

as in Step 1, we consider the following, almost linearized, approximate problem: Find
(uε, hε) such that

(i) uε ∈ Vδ?ε ∩ L∞(0, T; L2(Ωδ?ε (t))),

(ii) hε ∈W1,∞(0, T; L2(ω)) ∩ H1(0, T; H2
0(ω)),

(iii) uε(t, x, y, 1 + δ?ε (t, x, y)) = (0, 0, ∂thε(t, x, y))> on [0, T]×ω,

(iv) ∂tuε ∈ L2(0, T; L2(Ωδ?ε (t))),

(v) ∂2
t hε ∈ L2(0, T; L2(ω)),

(vi) uε(0) = uε
0, hε(0) = hε

0 and ∂thε(0) = hε
1,

(vii) for all φε ∈ Vδ?ε and b ∈ L2(0, T; H2
0(ω)) such that φε(t, x, y, 1 + δ?ε (t, x, y))

= (0, 0, b(t, x, y))> on [0, T]×ω, we have

∫ t

0

∫
Ωδ?ε (s)

∂tuε · φε + µ
∫ t

0

∫
Ωδ?ε (s)

∇uε : ∇φε +
1
2

∫ t

0

∫
Ωδ?ε (s)

(v?ε · ∇)uε · φε

−1
2

∫ t

0

∫
Ωδ?ε (s)

(v?ε · ∇)φε · uε +
1
2

∫ t

0

∫
ω

∂thε(∂tδ
?
ε )b +

∫ t

0

∫
ω
(∂2

t hε)b

+
∫ t

0

∫
ω

∆∂thε ∆b +
∫ t

0

∫
ω

∆hε∆b +
∫ t

0

∫
ω

κGε(∂thε)b =
∫ t

0

∫
Ωδ?ε (s)

f · φε.

(28)

Here, we linearized the term
∫ t

0

∫
ω(|∂th| − |∂th− b|) with respect to b via

∫ t
0

∫
ω Gε(∂thε)b,

with Gε being the derivative of jε : R→ R, x 7→
√

x2 + ε2, i.e.,

Gε(∂thε) =
∂thε√

|∂thε|2 + ε2
.
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However, Gε(∂thε) is still non-linear in the unknown hε. In addition, we wrote
∫

Ωδ?ε (s)
∇uε :

∇φε as 1
2

∫
Ωδ?ε (s)

Duε : Dφε which is possible due to Lemma 6. Furthermore, comparing (28)

with (20), we reversed the integration by parts with respect to time. For hε, we used

−
∫ t

0

∫
ω

∂thε ∂tb +
∫

ω
∂thε(t)b(t)−

∫
ω

hε
1b(0) =

∫ t

0

∫
ω
(∂2

t hε)b, (29)

which explains the new term
∫ t

0

∫
ω(∂

2
t hε)b in (28). For uε, we used the Reynolds transport

theorem to get ∫
Ωδ?ε (t)

uε(t)φ(t)−
∫ t

0

∫
Ωδ?ε (s)

uε∂tφε −
∫

Ωhε
0

uε
0φε(0)

=
∫ t

0

∫
Ωδ?ε (s)

∂tuε · φε + 2 · 1
2

∫ t

0

∫
ω

∂thε(∂tδ
?
ε )b.

(30)

This in combination with the replacement of the term − 1
2

∫ t
0

∫
ω(∂th)2b in (20) by the more

regular term − 1
2

∫ t
0

∫
ω ∂thε(∂tδ

?
ε )b explains the term 1

2

∫ t
0

∫
ω ∂thε(∂tδ

?
ε )b in (28).

Note that we are allowed to take the solution (uε, ∂thε) as test function (φ, b) in (28).
This yields

1
2
‖uε(t)‖2

Ωδ?ε (t)
+ µ

∫ t

0
‖∇uε‖2

L2(Ωδ?ε (s)
) +

1
2
‖∂thε(t)‖2

L2(ω) +
∫ t

0
‖∆∂thε‖2

L2(ω)

+
1
2
‖∆hε(t)‖2

L2(ω) +
∫ t

0

∫
ω

κ
|∂thε|2√
|∂thε|2 + ε2

=
∫ t

0

∫
Ωδ?ε (s)

f · uε +
1
2
‖uε

0‖2
L2(Ωhε

0
) +

1
2
‖∆h0‖2

L2(ω) +
1
2
‖h1‖2

L2(ω).

Here, we used that∫
Ωδ?ε (s)

∂tuε · uε +
1
2

∫
ω
(∂thε)

2∂tδ
?
ε =

1
2

d
dt

∫
Ωδ?ε (s)

|uε|2,

which is true since the upper boundary of Ωδ?ε (t) moves at the velocity (0, 0, ∂tδ
?
ε )
> and

uε(t, x, y, 1 + δ?ε (t, x, y)) = (0, 0, ∂thε(t, x, y))> on ω, see iii) above. Similar to the considera-
tions in Section 2, we get

‖uε‖L∞(0,T;L2(Ωδ?ε (t)
)) + ‖∇uε‖L2(0,t;L2(Ωδ?ε (t)

)) + ‖∂thε‖L∞(0,T;H1(ω))

+‖∆hε‖H1(0,T;L2(ω)) ≤ C
, (31)

with C > 0 depending only on the data and T but not on ε > 0, M or m. Due to ω being
bounded, we also deduce by Poincaré’s inequality, as in Lemma 7, that uε is bounded in
L2(0, T; H1(Ωδ?ε (t))) by a constant independent of ε > 0.

Now, we transform the domain Ωδ?ε (t) to the reference configuration, the cylinder
Z = Z1 = ω× (0, 1), via

χε(t) : Z → Ωδ?ε (t), (x, y, z) 7→ (x, y, z(1 + δ?ε (t, x, y)))>.

Note that χε(t) is a smooth diffeomorphism with det∇χε(t) = 1 + δ?ε (t) for all t ∈ (0, T).
For the sake of abbreviation, we set ρε(t) := ρ ◦ χε(t) for a function ρ in the following.
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Then, the transformed system reads∫ t

0

∫
Z

∂tuε · φε(1 + δ?ε )−
∫ t

0

∫
Z

∂3uε · φεz ∂tδ
?
ε + µ

∫ t

0

∫
Z

(
∇uε Aε

)
: ∇φε

+
1
2

∫ t

0

∫
Z
(v?ε · (Bε∇))uε · φε −

1
2

∫ t

0

∫
Z
(v?ε · (Bε∇))φε · uε

+
1
2

∫ t

0

∫
ω

∂thε(∂tδ
?
ε )b +

∫ t

0

∫
ω

∂2
t hε b +

∫ t

0

∫
ω

∆∂thε ∆b +
∫ t

0

∫
ω

∆hε∆b

+
∫ t

0

∫
ω

κGε(∂thε)b =
∫ t

0

∫
Z

f · φε(1 + δ?ε )

(32)

for all φε ∈ L2(0, T; H1
0,Γ0

(Z), b ∈ L2(0, T; H2
0(ω)) such that

φε(t, x, y, 1) = (0, 0, b(t, x, y))> on ω, div(B>ε φε) = 0 in Z.

Here, Bε := (∇χε)−>(1 + δ?ε ), Aε := 1
1+δ?ε

B>ε Bε and (v?ε · (Bε∇))ρ := (∇ρ)B>ε v?ε . The
interface condition transfers to

uε(t, x, y, 1) = (0, 0, ∂thε(t, x, y))>, ∀(x, y) ∈ ω.

Step 3: The Galerkin procedure for the approximate, linearized problem

Now, we construct a Galerkin basis (ψ0
i )i∈N of the space {v ∈ H1

0(Z)| div v = 0} by
the eigenfunctions of the Stokes problem, as in Reference [19] (Chapter 1, Section 2.6),

−∆ψ0
i +∇p0

i = µiψ
0
i in Z,

div ψ0
i = 0 in Z,

ψ0
i = 0 on ∂Z.

Setting φ0,ε
i = φ0,ε

i (t) := (B>ε (t))−1ψ0
i , we get for any t ∈ [0, T] a basis of the space

{v ∈ H1
0(Z)| div(B>ε v) = 0 in Z}.

Let (ξ j)j∈N be a basis of {b ∈ H2
0(ω)|

∫
ω b = 0}. Then, we construct (φ1,ε

j )j∈N such that

div(B>ε φ1,ε
j )(t) = 0 and φ1,ε

j (t, x, y, 1) = (0, 0, ξ j(x, y))> for all (x, y) ∈ ω. This can be
achieved by solving the t-dependent modified Stokes problem

−∆φ1,ε
j + (Bε · ∇)p1,ε

j = 0 in Z,

div(B>ε φ1,ε
j ) = 0 in Z,

φ1,ε
j =

{
0 on Γ0,
(0, 0, ξ j)

> on ∂Z \ Γ0

(33)

in a weak sense. Furthermore,

‖φ1,ε
j ‖H1(Z) + ‖p1,ε

j ‖L2(Z) ≤ Cε‖ξ j‖
H

1
2 (ω)

. (34)

Note that both φ0,ε
i and φ1,ε

i are smooth with respect to time since Bε, via δ∗ε , has this
property. Moreover, on ∂Z, all basis functions φ0,ε

i , φ1,ε
i are independent of t, and even

φ0,ε
i = 0 on ∂Z.
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Now, we consider the 2n equations∫
Z

∂tun
ε · φ0,ε

i (1 + δ?ε )−
∫

Z
∂3un

ε · φ0,ε
i z ∂tδ

?
ε + µ

∫
Z
∇un

ε Aε : ∇φ0,ε
i (35)

+
1
2

∫
Z
(v?ε · (Bε∇))un

ε · φ0,ε
i −

1
2

∫
Z
(v?ε · (Bε∇))φ0,ε

i · u
n
ε =

∫
Z

f · φ0,ε
i (1 + δ?ε )

for i = 1, . . . , n and∫
Z

∂tun
ε · φ1,ε

j (1 + δ?ε )−
∫

Z
∂3un

ε · φ1,ε
j z ∂tδ

?
ε + µ

∫
Z
∇un

ε Aε : ∇φ1,ε
j

+
1
2

∫
Z
(v?ε · (Bε∇))un

ε · φ1,ε
j −

1
2

∫
Z
(v?ε · (Bε∇))φ1,ε

j · u
n
ε

+
1
2

∫
ω

∂thn
ε (∂tδ

?
ε )ξ j +

∫
ω
(∂2

t hn
ε )ξ j +

∫
ω
(∆∂thn

ε )∆ξ j +
∫

ω
∆hn

ε ∆ξ j

+
∫

ω
κGε(∂thn

ε )ξ j =
∫

Z
f · φ1,ε

j (1 + δ?ε )

(36)

for j = 1, . . . , n, combined with the initial conditions

hn
ε (0) = hε

0, un
ε (0) = un

ε,0, ∂thn
ε (0) = hn

ε,1;

here, un
ε,0 and hn

ε,1 denote the orthogonal projections of u0
ε and hε

1 onto the finite dimensional

spaces span(φ0,ε
i , φ1,ε

j )i,j∈{1,...,n} and span(ξ j)j∈{1,...,n}, respectively. Due to the smoothness
of the involved functions with respect to time, we get the existence of a solution (un

ε , hn
ε ) of

the form

hn
ε (t) =

n

∑
j=1

β j(t)ξ j + hε
0 and un

ε (t) =
n

∑
i=1

αi(t)φ
0,ε
i +

n

∑
j=1

β̇ j(t)φ
1,ε
j (37)

on [0, T]. In order to prove the unique existence of the solution, we first plug (37) into (35)
and (36) to have a system that we want to solve for the unknowns α := (α1, ..., αn) and
β := (β1, ..., βn). This, in turn, can be done by reducing it to a system of first order with respect
to time. This first order system for (β, α, β̇)> (without initial conditions) reads(

In×n 0n×2n

02n×n Mε(t) + N

)
∂t

 β
α
β̇

 =

(
β̇

Fε,t(β, α, β̇)

)
.

Here, Fε,t denotes all lower-order terms that do not involve α̇ or β̈. Since the equation is
linear, so is Fε,t ∈ R2n×3n. Furthermore, Fε,t is smooth with respect to time. Obviously,
Mε(t) + N ∈ R2n×2n is given by

Mε(t) + N =
(∫

Z φ0,ε
i · φ

0,ε
j (1 + δ?ε )

)
i,j

(∫
Z φ0,ε

i · φ
1,ε
j (1 + δ?ε )

)
i,j(∫

Z φ0,ε
j · φ

1,ε
i (1 + δ?ε )

)
i,j

(∫
Z φ1,ε

i · φ
1,ε
j (1 + δ?ε )

)
i,j

 +

 0 0

0
(∫

ω ξiξ j
)

i,j

,

where i, j ∈ {1, ..., n}. Obviously, Mε(t) is smooth with respect to time, too, and it is
easy to check that Mε(t) + N is positive definite and, hence, invertible. Therefore, we
deduce the existence of a unique solution of the form as in (37) that satisfies the mentioned
initial conditions.
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Now, we multiply equation (35) with αi and sum over i ∈ {1, ..., n}. By analogy, we
multiply (36) with β̇ j and sum over j ∈ {1, ..., n}. Adding those two terms yields∫

Z
∂tun

ε · un
ε (1 + δ?ε )−

∫
Z

∂3un
ε · un

ε z ∂tδ
?
ε

+ µ
∫

Z
∇un

ε Aε : ∇un
ε +

1
2

∫
ω

∂thn
ε (∂tδ

?
ε )∂thn

ε +
∫

ω
(∂2

t hn
ε )∂thn

ε

+
∫

ω
(∆∂thn

ε )∆∂thn
ε +

∫
ω

∆hn
ε ∆∂thn

ε +
∫

ω
κGε(∂thn

ε )∂thn
ε =

∫
Z

f · un
ε (1 + δ?ε ).

(38)

Since ∂t(1 + δ?ε ) = div(0, 0, z ∂tδ
?
ε )
>, we get, with the exterior normal vector nZ of ω ×

(0, 1), that

1
2

∫
Z
|un

ε |2∂t(1 + δ?ε ) =
1
2

∫
Z
|un

ε |2 div(0, 0, z ∂tδ
?
ε )
>

=
1
2

∫
∂Z\Γ0

|un
ε |2(0, 0, z ∂tδ

?
ε )
> · nZ −

∫
Z

∂3un
ε · un

ε z ∂tδ
?
ε

=
1
2

∫
ω
(∂thn

ε )
2∂tδ

?
ε −

∫
Z

∂3un
ε · un

ε z ∂tδ
?
ε .

Therefore, we deduce

1
2

d
dt

∫
Z
|un

ε |2(1 + δ?ε ) =
∫

Z
∂tun

ε · un
ε (1 + δ?ε ) +

1
2

∫
ω
(∂thn

ε )
2∂tδ

?
ε −

∫
Z

∂3un
ε · un

ε z ∂tδ
?
ε .

Plugging this into (38), we get

1
2

d
dt

∫
Z
|un

ε |2(1 + δ?ε ) + µ
∫

Z
∇un

ε Aε : ∇un
ε +

∫
ω
(∂2

t hn
ε )∂thn

ε

+
∫

ω
(∆∂thn

ε )
2 +

∫
ω

∆hn
ε ∆∂thn

ε +
∫

ω
κGε(∂thn

ε )∂thn
ε =

∫
Z

f · un
ε (1 + δ?ε ).

Similarly as done in Section 2, along with Gε(∂thn
ε )∂thn

ε ≥ 0 and using that Aε is elliptic
with a constant independent of n, we can integrate in time and apply Grönwall’s inequality
to conclude that

‖un
ε ‖L∞(0,T;L2(Z)) + ‖∇un

ε ‖L2(0,T;L2(Z)) + ‖∂thn
ε ‖L∞(0,T;L2(ω)) + ‖∆hn

ε ‖H1(0,T;L2(ω))

≤ C(T, ‖u0‖L2(Ωh0
), ‖ f ‖L2((0,T)×R3), ‖h0‖H2

0 (ω), ‖h1‖L2(ω), ε, m, M). (39)

Here, the constant C > 0 depends on ε, m and M. However, if we return to the problem in
the deformed configuration, we obtain—similarly as done in Section 2—that

‖un
ε ‖L∞(0,T;L2(Ωδ?ε (t)

) + ‖∇un
ε ‖L2(0,T;L2(Ωδ?ε (t)

) + ‖∂thn
ε ‖L∞(0,T;L2(ω))

+ ‖∆hn
ε ‖H1(0,T;L2(ω)) ≤ C(T, ‖u0‖L2(Ωh0

), ‖ f ‖L2((0,T)×R3), ‖h0‖H2
0 (ω), ‖h1‖L2(ω))

, (40)

with C > 0 independent of ε, m, and M.

Step 4: Uniform estimates of time derivatives in n

In order to obtain a solution for n → ∞, we still need additional estimates of the
largest time derivatives. To be more specific, we need the estimate

‖∂tun
ε ‖L2(0,T;L2(Z)) + ‖∂tthn

ε ‖L2(0,T;L2(ω)) ≤ C̃(ε),

with C̃(ε) > 0 independent of n but possibly dependent on the given data, m, M, and ε.
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In order to achieve this estimate, we multiply (35) with α̇i and sum over i ∈ {1, ..., n}.
In a similar fashion, we multiply (36) with β̈ j and sum over j ∈ {1, ..., n}. For simplicity,
we omit the indices ε and n in the following and obtain, after adding the two sums,

∫
Z

∣∣∣∣ 2n

∑
i=1

λ̇iφi

∣∣∣∣2(1 + δ?)−
∫

Z
∂3u ·

2n

∑
i=1

λ̇iφiz ∂tδ
?

+
∫

Z

2n

∑
i=1

λ̇iφi ·
2n

∑
i=1

λi∂tφi(1 + δ?) + µ
∫

Z
∇uA : ∇

(
2n

∑
i=1

λ̇iφi

)

+
1
2

∫
Z
(v? · (B∇))u ·

2n

∑
i=1

λ̇iφi −
1
2

∫
Z
(v? · (B∇))

2n

∑
i=1

λ̇iφi · u

+
1
2

∫
ω

∂th ∂tδ
? ∂2

t h +
∫

ω
(∂2

t h)2 +
∫

ω
∆∂th ∆∂2

t h +
∫

ω
∆h ∆∂2

t h +
∫

ω
κG(∂th)∂2

t h

=
∫

Z
f ·

2n

∑
i=1

λ̇iφi(1 + δ?)

with

λi :=

{
αi, i ∈ {1, ..., n},
β̇i−n, i ∈ {n + 1, ..., 2n},

and φi :=

{
φ0

i , i ∈ {1, ..., n},
φ1

i−n, i ∈ {n + 1, ..., 2n}.

Hence, we get that∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?
∥∥∥∥2

L2(Z)
+

µ

2
d
dt

∫
Z
∇uA : ∇u + ‖∂2

t h‖2
L2(ω) +

1
2

d
dt

∫
ω
(∆∂th)2

=−
∫

Z

2n

∑
i=1

λ̇iφi

2n

∑
i=1

λi∂tφi(1 + δ?) +
µ

2

∫
Z
∇u∂t A : ∇u

+ µ
∫

Z
∇uA : ∇

2n

∑
i=1

λi∂tφi −
1
2

∫
Z
(v? · (B∇))u ·

2n

∑
i=1

λ̇iφi

+
1
2

∫
Z
(v? · (B∇))

2n

∑
i=1

λ̇iφi · u +
∫

Z
∂3u ·

2n

∑
i=1

λ̇iφiz ∂tδ
? − 1

2

∫
ω

∂th ∂tδ
? ∂2

t h

+
∫

ω
(∆∂th)2 − d

dt

∫
ω

∆h ∆∂th−
∫

ω
κG(∂th)∂2

t h +
∫

Z
f ·

2n

∑
i=1

λ̇iφi(1 + δ?).
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Then, an integration in time implies that

∫ t

0

∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?
∥∥∥∥2

L2(Z)
+

µ

2

∫
Z
∇u(t)A(t) : ∇u(t)

+
∫ t

0
‖∂2

t h‖2
L2(ω) +

1
2
‖∆∂th(t)‖2

L2(ω)

=
µ

2

∫
Z
∇u(0)A(0) : ∇u(0) +

1
2
‖∆∂th(0)‖2

L2(ω) +
∫

ω
∆h(0)∆∂th(0)

−
∫ t

0

∫
Z

2n

∑
i=1

λ̇iφi

2n

∑
i=1

λi∂tφi(1 + δ?) +
µ

2

∫ t

0

∫
Z
∇u∂t A : ∇u

+ µ
∫ t

0

∫
Z
∇u A : ∇

2n

∑
i=1

λi∂tφi −
1
2

∫ t

0

∫
Z
(v? · (B∇))u ·

2n

∑
i=1

λ̇iφi + . . .

. . . +
1
2

∫ t

0

∫
Z
(v? · (B∇))

2n

∑
i=1

λ̇iφi · u +
∫ t

0

∫
Z

∂3u ·
2n

∑
i=1

λ̇iφiz∂tδ
?

− 1
2

∫ t

0

∫
ω

∂th ∂tδ
? ∂2

t h +
∫ t

0
‖∆∂th‖2

L2(ω) −
∫

ω
∆h(t)∆∂th(t)−

∫ t

0

∫
ω

κG(∂th)∂2
t h

+
∫ t

0

∫
Z

f ·
2n

∑
i=1

λ̇iφi(1 + δ?).

(41)

Now, we have to estimate every term on the right-hand side of (41) by a constant
independent of n, but possibly depending on ε, m, M, and on δ and v. The first three pose
no problem since they depend on the initial data that are smooth. For the fourth term,
Hölder’s and Young’s inequality imply that∣∣∣∣ ∫ t

0

∫
Z

2n

∑
i=1

λ̇iφi

2n

∑
i=1

λi∂tφi(1 + δ?)

∣∣∣∣
≤ 1

8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(Z))

+ C

∥∥∥∥∥ 2n

∑
i=1

λi∂tφi

∥∥∥∥∥
2

L2(0,t;L2(Z))

.

(42)

Let us estimate the second summand of the right-hand side of (42). Remembering that
φ0,ε

i = (Bε)−>ψ0
i , we get that

2n

∑
i=1

λi∂tφi =
n

∑
i=1

αi∂t(B−>ψ0
i ) +

n

∑
j=1

β̇ j∂tφ
1
j =

n

∑
i=1

αi
(
∂tB−>

)
B>φ0

i +
n

∑
j=1

β̇ j∂tφ
1
j . (43)

Concerning the second term, we recall that φ1
j solves the Stokes-like problem (33), and,

hence, ∑n
j=1 β̇ j∂tφ

1
j solves

−∆
( n

∑
j=1

β̇ j∂tφ
1
j

)
+ (B∇)

( n

∑
j=1

β̇ j∂t p1
j

)
= −(∂tB∇)

n

∑
j=1

β̇ j p1
j in Z

div
(

B>
n

∑
j=1

β̇ j∂tφ
1
j

)
= −div

(
∂tB>

n

∑
j=1

β̇ jφ
1
j

)
in Z

n

∑
j=1

β̇ j∂tφ
1
j = 0 on ∂Z
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in the weak sense. Due to the duality estimate∣∣∣∣∣
〈
− (∂tB∇)

n

∑
j=1

β̇ j p1
j , φ

〉
(H1

0 )
′ ,H1

0

∣∣∣∣∣ =
∣∣∣∣∣
∫

Z

n

∑
j=1

β̇ j p1
j div

((
∂tB>

)
φ
)∣∣∣∣∣

≤ Cε

∥∥∥∥ n

∑
j=1

β̇ j p1
j

∥∥∥∥
L2(Z)
‖φ‖H1(Z)

for all test functions φ ∈ H1
0(Z), we get that∥∥∥∥∥ n

∑
j=1

β̇ j∂tφ
1
j

∥∥∥∥∥
H1(Z)

≤ C

∥∥∥∥∥ n

∑
j=1

β̇ j p1
j

∥∥∥∥∥
L2(Z)

+

∥∥∥∥∥ n

∑
j=1

β̇ jφ
1
j

∥∥∥∥∥
H1(Z)

.

Now, using the equation solved by (φ1
j , pj) and their continuous dependence on the given

data, as in (34), we can estimate further:∥∥∥∥∥ n

∑
j=1

β̇ j p1
j

∥∥∥∥∥
L2(Z)

+

∥∥∥∥∥ n

∑
j=1

β̇ jφ
1
j

∥∥∥∥∥
H1(Z)

≤ C

∥∥∥∥∥ n

∑
j=1

β̇ jξ j

∥∥∥∥∥
H1/2(ω)

= C‖∂th‖H1/2(ω). (44)

Combining the last two estimates, we have∥∥∥∥∥ n

∑
j=1

β̇ j∂tφ
1
j

∥∥∥∥∥
L2(0,t;H1(Z))

≤ C‖∂th‖L2(0,t;H1/2(ω)) ≤ C‖∂th‖L2(0,t;H2
0 (ω))

(39)
≤ C. (45)

The term (∂tB−>
)

B> in (43) is uniformly bounded on (0, T)× Z due to the smoothness
and boundedness of δ?. The bound may depend on ε though. Hence, we get that∥∥∥∥∥ n

∑
i=1

αi
(
∂tB−>

)
B>φ0

i

∥∥∥∥∥
L2(0,t;H1(Z))

≤ C

∥∥∥∥∥ n

∑
i=1

αiφ
0
i

∥∥∥∥∥
L2(0,t;H1(Z))

≤ C‖u‖L2(0,t;H1(Z)) + C

∥∥∥∥∥ n

∑
j=1

β̇ j(t)φ1
j

∥∥∥∥∥
L2(0,t;H1(Z))

≤ C,

(46)

where we use the estimate (44) for the term involving β̇ and (39) for the term involving u.
Therefore, we get from (42) that∣∣∣∣∣

∫ t

0

∫
Z

2n

∑
i=1

λ̇iφi

2n

∑
i=1

λi∂tφi(1 + δ?)

∣∣∣∣∣ ≤ 1
8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi

∥∥∥∥∥
2

L2(0,t;L2(Z))

+ C.

The integral
µ

2

∫ t

0

∫
Z
∇u ∂t A : ∇u

is bounded independently of n since u is bounded uniformly in L2(0, t; H1(Z)), as in (39),
and ∂t A is bounded in L∞((0, t)×ω× (0, 1)) due to δ? being independent of n. Concerning
the term

µ
∫ t

0

∫
Z
∇u A : ∇

(
2n

∑
i=1

λi∂tφi

)
,
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we use again (43) and deduce that∥∥∥∥∥ 2n

∑
i=1

λi∂tφi

∥∥∥∥∥
L2(0,t;H1(Z))

≤
∥∥∥∥∥ n

∑
i=1

αi∂tφ
0
i

∥∥∥∥∥
L2(0,t;H1(Z))

+

∥∥∥∥∥ n

∑
j=1

β̇ j∂tφ
1
j

∥∥∥∥∥
L2(0,t;H1(Z))

=

∥∥∥∥∥ n

∑
i=1

αi
(
∂tB−T)BTφ0

i

∥∥∥∥∥
L2(0,t;H1(Z))

+

∥∥∥∥∥ n

∑
j=1

β̇ j∂tφ
1
j

∥∥∥∥∥
L2(0,t;H1(Z))

(47)

is bounded due to (46) and (45).
For the next term in (41) involving v? = Rε(v) = ϕε ∗ E0(v), as in (27), we use

‖v?‖L∞((0,t)×Z) ≤ ‖ϕε ∗ E0(v)‖L∞((0,t)×R3) ≤ Cε‖v‖L2((0,t)×B2M),

and the boundedness of u in L2(0, t; H1(Z)), to get that∣∣∣∣12
∫ t

0

∫
Z
(v? · (B∇))u ·

2n

∑
i=1

λ̇iφi

∣∣∣∣
≤ C‖v‖2

L2((0,t)×B2M) +
1
8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(Z))

.

For the second integral involving v?, integration by parts implies that

1
2

∫ t

0

∫
Z
(v? · (B∇))

2n

∑
i=1

λ̇iφi · u

= −1
2

∫ t

0

∫
Z

3

∑
j=1

(∂j(B>v?)ju) ·
2n

∑
i=1

λ̇iφi +
1
2

∫ t

0

∫
∂Z

(
u ·

2n

∑
i=1

λ̇iφi

)
(v? · BnZ).

The first integral on the right-hand side can be estimated as∣∣∣∣∣12
∫ t

0

∫
Z

3

∑
j=1

(∂j(B>v?)ju) ·
2n

∑
i=1

λ̇iφi

∣∣∣∣∣ ≤ C +
1
8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(Z))

,

while, for the second one, we can write∣∣∣∣∣12
∫ t

0

∫
∂Z

(
u ·

2n

∑
i=1

λ̇iφi

)
(v? · BnZ)

∣∣∣∣∣ =
∣∣∣∣12
∫ t

0

∫
ω

∂th ∂2
t h(v? · BnZ)

∣∣∣∣
≤ C +

1
8
‖∂2

t h‖2
L2(0,t;L2(ω)),

where we used that u = ∂th, ∂tu = ∑2n
i=1 λ̇iφi = ∂2

t h on ∂Z \ Γ0 and that, by (39), ∂th is
bounded in L2(0, t; L2(ω)).

For the next term in (41), we easily have∣∣∣∣∣
∫ t

0

∫
Z

∂3u ·
2n

∑
i=1

λ̇iφiz ∂tδ
?

∣∣∣∣∣ ≤ C +
1
8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(Z))

.

Concerning integrals involving h, we start with the estimate∣∣∣∣12
∫ t

0

∫
ω

∂th ∂tδ
? ∂2

t h
∣∣∣∣ ≤ C +

1
8
‖∂2

t h‖2
L2(0,t;L2(ω)).
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The term
∫ t

0 ‖∆∂th‖2
L2(ω)

is bounded in view of (39). For the next term, we have, due to

H1(0, T; L2(ω)) ↪→ L∞(0, T; L2(ω)) and (39), that∣∣∣∣∫
ω

∆h(t)∆∂th(t)
∣∣∣∣ ≤ 1

4
‖∆∂th(t)‖2

L2(ω) + C‖∆h(t)‖2
L2(ω) ≤

1
4
‖∆∂th(t)‖2

L2(ω) + C.

Moreover, due to the boundedness of ω,∣∣∣∣∫ t

0

∫
ω

κG(∂th)∂2
t h
∣∣∣∣ ≤ ∫ t

0

∫
ω

κ · |∂2
t h| ≤ C κ t +

1
8
‖∂2

t h‖2
L2(0,t;L2(ω)).

Finally, the estimate∣∣∣∣∣
∫ t

0

∫
Z

f ·
2n

∑
i=1

λ̇iφi(1 + δ?)

∣∣∣∣∣ ≤ C +
1
8

∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(ω))

holds. So, in total, we conclude∥∥∥∥∥ 2n

∑
i=1

λ̇iφi
√

1 + δ?

∥∥∥∥∥
2

L2(0,t;L2(Z))

+ ‖∂2
t h‖2

L2(0,t;L2(ω)) + ‖∆∂th(t)‖2
L2(ω) ≤ C.

Due to ∂tu = ∑2n
i=1 λ̇iφi + ∑2n

i=1 λi∂tφi, with the second term bounded in L2(0, T; L2(Z))

because of (43), (45) and (46), and
√

1 + δ? ≥
√

m
2 , we have shown—in the original notation,

that is to say, with indices n and ε—that

‖∂tun
ε ‖L2(0,T;L2(Z)) + ‖∂2

t hn
ε ‖L2(0,T;L2(ω)) ≤ C̃(ε). (48)

Step 5: Convergence of un
ε , hn to a weak solution

The bounds from (39) and (48) imply that there is a subsequence of
(
(un

ε , hn
ε )n∈N

)
,

which we denote by
(
(un

ε , hn
ε )n∈N

)
again such that

∂tun
ε ⇀ ∂tuε in L2(0, T; L2(Z)),

un
ε ⇀ uε in L2(0, T; H1(Z)),

∂2
t hn

ε ⇀ ∂2
t hε in L2(0, T; L2(ω)),

∆hn
ε ⇀ ∆hε in H1(0, T; L2(ω)),

∂thn
ε → ∂thε in L2(0, T; L2(ω)),

∂thn
ε → ∂thε pointwise a.e. on (0, T)×ω

(49)

as n→ ∞ for some

(uε, hε) ∈ L2(0, T; H1
0,Γ0

(Z)
)
×
(

H2(0, T; L2(ω)) ∩ H1(0, T; H2
0(ω))

)
.

The last convergence in (49) is implied by the second to last (up to a subsequence), which,
in turn, is implied by (49)3,4 and the Aubin-Lions lemma. Using the above convergences,
we let n tend to infinity in (35) and (36) after an integration in time. For the convergence∫ t

0

∫
ω

κGε(∂thn
ε )ξ j −→

∫ t

0

∫
ω

κGε(∂thε)ξ j as n→ ∞

for all j ∈ N, we use that |Gε(∂thn
ε )| ≤ 1, the convergence of (∂thn

ε )n∈N to ∂thε pointwise
almost everywhere on (0, T)×ω and the dominated convergence theorem.
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For the interface condition, we note that by construction, as in (37), we have

un
ε (t, x, y, 1) = (0, 0, ∂thn

ε (t, x, y))> a.e. on (0, T)×ω ∀n ∈ N.

The first two convergences in (49) imply via the Aubin-Lions lemma that, as n → ∞, we
have un

ε → uε in L2(0, T; H3/4(Z)); thus,

un
ε |ω×{1} → uε |ω×{1} in L2(0, T; L2(ω)).

We already know that ∂thn
ε → ∂thε in L2(0, T; L2(ω)) as n → ∞. Therefore, by possibly

choosing a suitable subsequence, we deduce

uε(t, x, y, 1) = (0, 0, ∂thε(t, x, y))> a.e. on (0, T)×ω.

For the initial values, we have by design for n→ ∞

un
ε (0) = un

ε,0 −→ uε
0 in L2(Z)

∂thn
ε (0) = hn

ε,1 −→ h1
ε in L2(ω).

Due to H1(0, T; L2(X)) ↪→ C([0, T]; L2(X)) with X ∈ {ω, Z}, we deduce that uε(0) = uε
0

and hε(0) = hε
0.

Now, in order to combine the equations (35) and (36), and to solve the weak formu-
lation (32) on Z as a whole, we take a relevant test function (φε, b) ∈ L2(0, T; H1

0,Γ0
(Z))×

L2(0, T; H2
0(ω)), as in (32).

Let PN(b) = ∑N
j=1 b̃j(t)ξ j denote the projection of b onto span(ξ j)j∈{1,...,N}. As before,

φ1,ε
j denotes the solution of the stationary Stokes-like system (33), and φ1,ε

b denotes the

weak solution to the similar system but with boundary value (0, 0, b)> instead of (0, 0, ξ j)
>.

Due to the linearity of this system and the continuous dependence of solutions on the data,
we get∥∥∥∥∥ N

∑
j=1

b̃jφ
1,ε
j − φ1,ε

b

∥∥∥∥∥
L2(0,T;H1(Z))

≤ C‖PN(b)− b‖L2(0,T;H1/2(ω)) → 0 as N → ∞.

This enables us to multiply (36) with b̃j(t), integrate in time, take the limit n to infinity for
the solution, as justified above, take the sum over j ∈ {1, ..., N}, and then consider the limit
N → ∞ for the test function. This allows us to basically replace ξ j with b and φ1,ε

j with φ1,ε
b

in (36).
Then, we consider the Dirichlet part φ0 := φε − φ1,ε

b which satisfies φ0 = 0 on ∂Z
and div(B>ε (φ0)) = 0. For this reason, we can consider the projection of PM(φ0) =

∑M
i=1 α̃i(t)φ

0,ε
i onto span(φ0,ε

i )i∈{1,...,M}. Analogously to before, we multiply (35) with α̃i(t),
integrate over time, take the limit n→ ∞ for the solution, take the sum over i ∈ {1, ..., M},
and then take the limit M→ ∞ for the test function.

Next using that φε = φ0 + φ1,ε
b , we can add the two resulting equations to get that

(uε, hε) solves (28). Since the diffeomorphism χε is smooth, we obtain a weak solution for
the problem (28), formulated on Ωδ?ε , by setting (uε, hε) = (uε ◦ χ−1

ε , hε).
Furthermore, weak solutions of (28) are unique. For the proof, take two solutions

(u1
ε , h1

ε ), (u2
ε , h2

ε ) of (28) to the same given data and initial values. In the equation that
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is solved by the difference (u1
ε − u2

ε , h1
ε − h2

ε ), we test with the difference itself. After
integration by parts, we obtain

1
2

∫
Ωδ?ε (t)

|(u1
ε − u2

ε )(t)|2 + µ
∫ t

0

∫
Ωδ?ε (s)

|∇(u1
ε − u2

ε )|2

+
1
2

∫
ω
|∂t∆(h1

ε − h2
ε )(t)|2 +

1
2

∫
ω
|∆(h1

ε − h2
ε )(t)|2 +

∫ t

0

∫
ω
|∆∂t(h1

ε − h2
ε )|2

+
∫ t

0

∫
ω

κ
(
Gε(∂th1

ε )− Gε(∂th2
ε )
)
(∂th1

ε − ∂th2
ε ) = 0.

Since Gε is the derivative of a convex function, it is monotonically increasing. Therefore,
every term on the left-hand side is non-negative, and we conclude that u1

ε = u2
ε and

∂th1
ε = ∂th2

ε . The latter implies h1
ε = h2

ε due to h1
ε (0) = h2

ε (0).

6. Existence of Weak Solutions: The Fixed Point Argument

Step 6: The fixed point problem of Fε

Given initial values uε
0, hε

0, and hε
1, for any pair (δ, v) with δ ∈ H1(0, T; C0(ω)∩H1

0(ω)),
M ≥ 1 + δ ≥ m > 0 on [0, T]×ω and v ∈ L2(0, T; L2(B2M)), we have shown in Section 5
the existence of a weak unique solution (uε, hε) to the “linearized” problem (28) with
v?ε = Rε(v) and δ?ε = Nε(δ) where δ|t=0 = hε

0. This solution satisfies the estimates, cf. the a
priori estimates (31) and (40)

‖uε‖L∞(0,T;L2(Ωδ?ε (t)
) + ‖∇uε‖L2(0,T;L2(Ωδ?ε (t)

) + ‖∂thε‖L∞(0,T;L2(ω)) + ‖∆hε‖H1(0,T;L2(ω))

≤ C(T, ‖u0‖L2(Ωh0
), ‖ f ‖L2((0,T)×R3), ‖h0‖H2

0 (ω), ‖h1‖L2(ω)) (50)

with a constant C > 0 independent of ε > 0 and

‖∂tuε‖L2(0,T;L2(Z)) + ‖∂2
t hε‖L2(0,T;L2(ω)) ≤ C̃(ε), (51)

as in (48), the corresponding weak convergences in (49) and the weak lower semi-continu-
ity of the norm. For T∗ ∈ (0, T], let

Y := H1(0, T∗; C0(ω) ∩ H1
0(ω))× L2(0, T∗; L2(B2M)).

Then, we consider the solution operator

Fε : Bm,ε
M → Y, (δ, v) 7→ (hε, uε), (52)

where

Bm,ε
M :=

{
(δ, v) ∈ Y| ‖(δ, v)‖Y ≤ CM,

m ≤ 1 + δ(t, x, y) ≤ M on [0, T∗]×ω, δ|t=0 = hε
0
}

,

and (uε, hε) denotes the solution constructed in the previous steps for the data (δ, v)
and with

uε =

{
uε in Ωδ?ε (t),
(0, 0, ∂thε)> in B2M\Ωδ?ε (t).

It is easy to check that Bm,ε
M is non-empty, closed and convex. If we can show that Fε(Bm,ε

M ) ⊂
Bm,ε

M , that Fε(Bm,ε
M ) is relatively compact and that Fε is continuous, we get the existence of

at least one fixed point by Schauder’s fixed-point theorem, as in Reference [20] (Corollary
10.2). Note that m > 0 was already chosen such that minw(1 + h0) ≥ 2m > 0, but M and
T∗ still have to be chosen large and small enough, respectively, such that Fε satisfies the
mentioned properties, if CM is chosen large enough, as well.
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Step 6.1: Fε is a self-map

First, we want to show that Fε(Bm,ε
M ) ⊂ Bm,ε

M if M > 0 is large enough. Due to (50)
and H1(0, T; H2(ω)) ↪→ C0([0, T] × ω), we conclude that, if M is chosen large enough
according to the given data, then

sup
[0,T]×ω

(1 + hε) ≤ M.

Furthermore, it is easy to see that

‖uε‖L2(0,T;L2(B2M)) ≤ ‖uε‖L2(0,T;L2(Ωδ?ε (t)
)) + 2M‖∂thε‖L2(0,T;L2(ω))

(50)
≤ C1 ·M.

Due to hε ∈ H1(0, T; H2(ω)) and the embedding H2(ω) ↪→ C0(ω), we also get from (50)
that ‖hε‖H1(0,T;C0(ω)∩H1

0 (ω)) ≤ C2. Hence,

‖(hε, uε)‖Y ≤ C1 ·M + C2 =: CM.

Since hε is bounded in H1(0, T; H2(ω)), H1(0, T; H2(ω)) ↪→ C([0, T]×ω) and
minω(1 + hε

0) ≥
3m
2 , as in (22), there is a time T∗ > 0 such that

m ≤ min
[0,T∗ ]×ω

(1 + hε)

for ε > 0 small enough. In total, we have verified that Fε(Bm,ε
M ) ⊂ Bm,ε

M .

Step 6.2: Fε(Bm,ε
M ) is relatively compact

Let (δn, vn)n∈N ⊂ Bm,ε
M , and let (hn

ε , un
ε ) = Fε(δn, vn) denote the solution to (28).

Due to (50) and (51), (∂thn
ε )n is bounded in L2(0, T∗; H2

0(ω)), and (∂2
t hn

ε )n is bounded
in L2(0, T∗; L2(ω)). Since H2

0(ω) is compactly embedded in H1
0(ω) ∩ C0(ω), we get that

(∂thn
ε )n is relatively compact in L2(0, T∗; H1(ω) ∩ C0(ω)). Moreover, we have that

(
uε

n)
n

is bounded in L2(0, T∗; H1(Z)) and
(
∂tuε

n)
n is bounded in L2(0, T∗; L2(Z)). Hence, (uε

n)n

is relatively compact in L2(0, T∗; L2(Z)). Let uε denote the limit of the corresponding sub-
sequence.

Since (δn, vn) ∈ Bm,ε
M we have for the corresponding regularization δ?n,ε = Nε(δn) of δn

(see (24) and (25) for the definition and some properties)

‖δ?n,ε‖H1(0,T∗ ;H1(ω)) ≤ ‖Sε(δn − hε
0)− (δn − hε

0)‖H1(0,T∗ ;H1(ω)) + ‖δn‖H1(0,T∗ ;H1(ω))

≤ 2CM

for all n ∈ N and ε > 0 small enough. Since the embedding H1(0, T∗; H1(ω)) ↪→
L2((0, T∗)×ω) is compact, there exists a subsequence of (δ?n,ε)n∈N, called again (δ?n,ε)n∈N,
that converges pointwise a.e. on (0, T∗)×ω to an element δ̃ε ∈ H1(0, T∗; H1(ω)) as n→ ∞.
Due to

2M ≥ 1 + δ?n,ε ≥
m
2

on [0, T]×ω,

as in (26), the same estimate holds for the limit δ̃ε. Now, let

χn
ε (t) : Z −→ Ωδ?n,ε(t), (x, y, z) 7→ (x, y, z(1 + δ?n,ε(t, x, y)))> ∀t ∈ (0, T∗)

and define χε(t) similarly but with δ̃ε instead of δ?n,ε. We want to show that

χΩδ?n,ε(t)
(uε ◦ (χn

ε )
−1)→ χΩδ̃ε(t)

(uε ◦ χ−1
ε ) in L2(0, T∗; L2(B2M)) as n→ ∞. (53)
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Concerning the convergence of the norms, we have that∫
(0,T)×B2M

∣∣χΩδ?n,ε(t)
(uε ◦ (χn

ε )
−1)
∣∣2 =

∫
(0,T)×Ωδ?n,ε(t)

∣∣uε ◦ (χn
ε )
−1∣∣2

=
∫
(0,T)×Ωδ̃ε(t)

∣∣uε ◦ (χε)
−1∣∣2 det

(
∇(χn

ε ◦ χ−1
ε )
)
=
∫
(0,T)×Ωδ̃ε(t)

∣∣uε ◦ (χε)
−1∣∣2 1 + δ?n,ε

1 + δ̃ε
.

Due to the pointwise convergence of
(
δ?n,ε
)

n∈N to δ̃ε a.e. on (0, T)×ω as n→ ∞

1 + δ?n,ε

1 + δ̃ε
≤ 2M

m/2
,

the dominated convergence theorem yields the convergence of the norms. The weak
convergence follows in a similar fashion. In total, we obtain the strong convergence (53).
Hence, (53), in combination with∥∥χΩδ?n,ε(t)

(
un

ε − uε ◦ (χn
ε )
−1)∥∥

L2((0,T∗)×B2M)
=
∥∥un

ε − uε ◦ (χn
ε )
−1∥∥

L2(0,T∗ ;L2(Ωδ?n,ε(t)
))

=
∥∥(uε

n − uε)
√

1 + δ?n,ε
∥∥

L2(0,T∗ ;L2(Z)) ≤
√

2M‖uε
n − uε‖L2(0,T∗ ;L2(Z)) −→ 0

as n → ∞, implies that (χΩδ?n,ε(t)
un

ε )n∈N converges in L2(0, T∗; L2(B2M)). Therefore, since(
χΩδ?n,ε(t)

un
ε

)
is relatively compact in L2(0, T∗; L2(B2M)) and (∂thn

ε )n∈N is relatively compact

in L2(0, T∗; H1
0(ω)∩C0(ω)), as previously shown, we also deduce that (un

ε )n∈N is relatively
compact in L2((0, T∗)× B2M). This implies that Fε(Bm,ε

M ) ⊂ Y is relatively compact.

Step 6.3: Fε is continuous

Eventually, we prove that Fε is continuous. Let (δn, vn)n ⊂ Bm,ε
M be a sequence con-

verging to (δ, v) in Y as n→ ∞. We want to show that any subsequence of (Fε(δn, vn))n∈N
has a subsequence that converges to Fε(δ, v), which implies that (Fε(δn, vn))n∈N converges
to Fε(δ, v). Since any subsequence of (δn, vn)n∈N converges to the same limit (δ, v) in Y, too,
it is enough to consider only the (sub)sequence (Fε(δn, vn))n∈N.

We have already shown that a subsequence of Fε(δn, vn) =: (hn
ε , un

ε ), which we assume
to coincide with the sequence itself again, converges to an element (h̃ε, ũε) in Y. Moreover,
since (hn

ε , un
ε ) is a solution of the “linearized” system (28), it is also bounded due to the a

priori estimates (50) and (51). This also implies that (up to a subsequence) (hn
ε , un

ε )n∈N con-
verges weakly in H1(0, T∗; H2

0(ω))× L2(0, T∗; H1(B2M)) and (∂2
t hn

ε , χΩδ?n,ε(t)
∂tun

ε ) converges

weakly in L2(0, T∗; L2(ω))× L2(0, T; L2(B2M)).
So, we want to show that (h̃ε, ũε) = Fε(δ, v), i.e., (h̃ε, ũε) is a solution to the “linearized”

problem (28) associated with (δ, v). Due to uniqueness, this indeed yields (h̃ε, ũε) = Fε(δ, v).
It is easy to see that the mentioned convergences imply

ũε = (0, 0, ∂t h̃ε)
> in B2M\Ωδ?ε (t),

ũε(t, x, y, 1 + δ?ε (t, x, y)) = (0, 0, ∂t h̃ε(t, x, y))> on [0, T∗]×ω,

div ũε = 0 in B2M.
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Moreover, the system solved by (hn
ε , un

ε ) reads as follows: For all φn
ε ∈ Vδ?ε ,

b ∈ L2(0, T∗; H2
0(ω)) such that φε(t, x, y, 1 + δ?n,ε(t, x, y)) = (0, 0, b(t, x, y))> on [0, T∗]×ω

we have, cf. (28),∫ t

0

∫
Ωδ?n,ε(s)

∂tun
ε · φn

ε + µ
∫ t

0

∫
Ωδ?n,ε(s)

∇un
ε : ∇φn

ε +
1
2

∫ t

0

∫
Ωδ?n,ε(s)

(v?n,ε · ∇)un
ε · φn

ε

− 1
2

∫ t

0

∫
Ωδ?n,ε(s)

(v?n,ε · ∇)φn
ε · un

ε +
1
2

∫ t

0

∫
ω

∂thn
ε (∂tδ

?
n,ε)b +

∫ t

0

∫
ω

∂2
t hn

ε b

+
∫ t

0

∫
ω

∆∂thn
ε ∆b +

∫ t

0

∫
ω

∆hn
ε ∆b +

∫ t

0

∫
ω

κGε(∂thn
ε )b =

∫ t

0

∫
Ωδ?n,ε(s)

f · φn
ε .

(54)

We want to consider the limit as n goes to infinity, but the test functions depend on n.
In order to overcome this problem, we first consider the test function

φ0
ε ∈ C∞

c

(⋃
t∈(0,T∗)

{t} ×Ωδ?ε (t)

)
, div φ0

ε = 0.

Then, (φ0
ε , 0) is an admissible test function for large n due to the convergence of (δn)n∈N

to δ in H1(0, T∗; C0(ω) ∩ H1
0(ω)), which implies uniform convergence; therefore, with the

help of (24) for n large enough,

φ0
ε (t, x, y, 1 + δ?n,ε(x, y)) = 0 on ω.

For any trace funcion b ∈ L2(0, T∗; H2
0(ω)) with

∫
ω b = 0, there exists an element z ∈

L2(0, T∗; H1(Zm/2)) (where Zm/2 = ω× (0, m
2 )) such that

div z = 0 in (0, T∗)× Zm/2,

z|∂Zm/2
=

{
(0, 0, b)> on (0, T∗)×ω× {m

2 }
0 else

(55)

and
‖z‖L2(0,T∗ ;H1(Zm/2))

≤ c‖b‖L2(0,T∗ ;H1/2(ω)).

Then, we consider

φ1
ε (b) :=

{
(0, 0, b)> on B2M\Zm/2,
z on Zm/2.

The pair (φ1
ε (b), b) is an admissible test function, too, since 1 + δ?n,ε ≥ m

2 on (0, T∗)×ω for
all n ∈ N.

For these special choices of test functions (φ0
ε , 0) and (φ1

ε (b), b) that do not depend on
n, we can send n to infinity in the equation. Here, we use the convergences of (hn

ε , un
ε ), as

we have done in the finite dimensional case. Let us remark that, in order to go to the limit
in the most problematic term

∫ t
0

∫
Ωδ?n,ε(s)

(v?n,ε · ∇)un
ε · φε, we deduce from (27) that

‖v?ε − v?n,ε‖L∞((0,t)×B2M) = ‖ϕε ∗ E0(v− vn)‖L∞((0,t)×B2M) ≤ Cε‖v− vn‖L2(0,T;B2M) → 0

as n→ ∞. So, we obtain that (h̃ε, ũε) is a weak solution to the limit problem—at least for
the chosen set of test functions.

For a general test function (φ, b) ∈ Vδ?ε × L2(0, T∗; H2
0(ω)) with

φε(t, x, y, 1 + δ?ε (t, x, y)) = (0, 0, b(t, x, y))>

on [0, T∗]× ω, we use that (φε, b) = ((φε − φ1
ε (b), 0) + (φ1

ε (b), b) such that the first sum-
mand φε − φ1

ε (b) can be approximated by functions of the same type as φ0
ε . This shows that
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Fε is continuous. Therefore, by Schauder’s fixed point theorem, Fε has at least one fixed
point (hε, uε).

Step 7: The limit for ε→ 0

In order to pass to the limit as ε→ 0, we state the following:

Claim 1. For all τ > 0 small enough, there holds the estimates

∫ T∗

0

∫
B2M

χΩh?ε (t)
|uε(t, ·)− uε(t− τ, ·)|2 dt

+
∫ T∗

0

∫
ω
(∂th(t, ·)− ∂thε(t− τ, ·))2 dt ≤ C

√
τ

(56)

and ∫ T∗

0

∫
B2M

|χΩh?ε (t)
uε(t, ·)− χΩh?ε (t−τ)

uε(t− τ, ·)|2 dt ≤ C
√

τ (57)

with C > 0 independent of ε and where hε(t) := hε
0, ∂thε(t) := 0 and uε(t) := 0 if t < 0.

Actually, since the proof of this claim is almost word for word the same as the one
in [1], Lemma 9, we only treat here the new, additional term

∫ T∗

0

∫
ω

Gε(∂thn
ε )b.

The key idea in the proof is to test the equation solved by (uε, hε) with the special test
function (φε, b) depending on the solution (hε, uε) as follows:

φε =
∫ t

t−τ
u[1+δ]

ε (s, x, y, (1 + δ)z) ds, b =
∫ t

t−τ
∂thε(s, x, y) ds

for some δ > 0; see (23) for the definition of u[1+δ]. After inserting this test function,
the resulting terms are estimated by bounds of the form C

√
τ with C independent of ε.

Here, the only new term is
∫ T∗

0

∫
ω

(
Gε(∂thn

ε ) ·
∫ t

t−τ ∂thε(s, x, y) ds
)

, which we can estimate
as follows ∣∣∣∣∫ T∗

0

∫
ω

(
Gε(∂thn

ε ) ·
∫ t

t−τ
∂thε(s, x, y) ds

)∣∣∣∣
≤
∫ T∗

0

∫
ω
|Gε(∂thn

ε )|
(∫ T∗

0
|∂thε(s, x, y)|2 ds

)1/2√
τ

≤ CT∗‖∂thε‖L2(0,T∗ ;L2(ω))

√
τ ≤ C(T∗)

√
τ,

where the uniform boundedness of ‖∂thε‖L2(0,T∗ ;L2(ω)) is used; see (50).

Next, we use the Fréchet-Kolmogorov theorem. Here, (56) and (57) imply the equiconti-
nuity of (∂thε)ε>0 and

(
χΩh?ε (t)

uε

)
ε>0 in L2(0, T∗; L2(ω)) and L2((0, T∗)× B2M), respectively.

Thus, we deduce that (∂thε)ε>0 is relatively compact in L2((0, T∗)×ω) and
(
χΩh?ε (t)

uε

)
ε>0

is relatively compact in L2(0, T∗; L2(B2M)). This implies that (uε)ε>0 is relatively compact
in L2(0, T∗; L2(B2M)).

From these considerations, as well as from the estimates in (50) where the constant
does not depend on ε, we find functions h on [0, T∗]×ω and u on [0, T∗]× B2M such that
the following convergences (of a suitable subsequence which we identify with the sequence
itself) follow as ε goes to 0:
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hε → h in C0([0, T∗]×ω),

hε ⇀ h in H1(0, T∗; H2
0(ω)),

∂thε → ∂th in L2(0, T∗; L2(ω)),

uε → u in L2(0, T∗; L2(B2M)),

χΩh?ε (t)
uε → χΩh(t)

u in L2(0, T∗; L2(B2M)),

uε ⇀ u in L2(0, T∗; H1
0,Γ0

(B2M)),

h?ε → h in C0([0, T∗]×ω),

∂th?ε → ∂th in L2(0, T∗; L2(ω)),

u?
ε → u in L2(0, T∗; L2(B2M)).

(58)

The last three convergences follow from the way we regularized hε and uε, as in (24)
and (27), and from the corresponding convergences without regularization. Furthermore,
(χΩh?ε (t)

∇uε)ε>0 converges (up to a subsequence) weakly to a matrix-valued function q ∈
(L2(0, T; L2(B2M)))3×3 due to (50) as ε→ 0.

Let ϕ ∈ (L2((0, T∗)× B2M))3×3 such that supp ϕ ⊂ ⋃t∈(0,T∗){t}× (B2M\Ωh(t)). Then,
we have∣∣∣∣∫

(0,T∗)×B2M

χΩh?ε (t)
∇uε : ϕ

∣∣∣∣ = ∣∣∣∣∫
(0,T∗)×B2M

χΩh?ε (t)
∇uε : ϕ(χΩh?ε (t)

− χΩh(t)
)

∣∣∣∣
≤
∥∥∥χΩh?ε (t)

∇uε

∥∥∥
L2((0,T∗)×B2M)

∥∥∥ϕ(χΩh?ε (t)
− χΩh(t)

)
∥∥∥

L2((0,T∗)×B2M)

(50)
≤ C

∥∥∥ϕ(χΩh?ε (t)
− χΩh(t)

)
∥∥∥

L2((0,T∗)×B2M)
−→ 0 as ε→ 0

since h?ε converges to h in C0([0, T]×ω) as ε→ 0. This implies that q = 0 on
⋃

t∈(0,T∗){t} ×
(B2M\Ωh(t)).

Furthermore, let ψ ∈ L2(0, T∗; H1
0,Γ0

(B2M)) with supp ψ ⊂ ⋃
t∈(0,T∗){t} ×Ωh(t). In a

similar fashion as before, we have∣∣∣∣∫
(0,T∗)×B2M

(∇uε − χΩh?ε (t)
∇uε) : ∇ψ

∣∣∣∣
≤ ‖∇uε‖L2((0,T∗)×B2M)

∥∥∥|χΩh(t)
− χΩh?ε (t)

| |∇ψ|
∥∥∥

L2((0,T∗)×B2M)

≤ C
∥∥∥|χΩh(t)

− χΩh?ε (t)
| |∇ψ|

∥∥∥
L2((0,T∗)×B2M)

−→ 0 as ε→ 0.

Therefore, q = ∇u on
⋃

t∈(0,T∗){t} ×Ωh(t) and, in total,

χΩh?ε (t)
∇uε ⇀ q = χΩh(t)

∇u in L2(0, T∗; L2(B2M)). (59)

Next, we proceed to the limit in the equation

uε(t, x, y, 1 + h?ε (t, x, y)) = (0, 0, ∂thε(t, x, y))> on [0, T∗]×ω.

We already know that the right-hand side converges to (0, 0, ∂th)> in L2(0, T∗; L2(ω)).
We consider

wε =

{
(0, 0, ∂thε)> in B2M\Zm/2,
z∂thε

in Zm/2
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with z∂thε
∈ L2(0, T∗; H1

0,Γ0
(Zm/2)) solving (55) but with b replaced with ∂thε. Then, (uε −

wε)ε>0 is bounded in L2(0, T∗; H1(B2M)) with a constant independent of ε. This and (58)
imply that a subsequence of (uε − wε)ε>0 converges weakly to w0 := u− w with

w :=

{
(0, 0, ∂th)> in B2M\Zm/2 ,
z∂th in Zm/2

in L2(0, T∗; H1(B2M)). Let δ > 0 be arbitrary. Due to the uniform convergence of (h?ε )ε>0
to h, we get that

∃ ε̃ > 0 ∀ ε ∈ (0, ε̃] ∀ t ∈ (0, T∗) : Ωh(t)+δ ⊃ Ωhε(t).

This implies that

uε = (0, 0, ∂thε)
> on B2M\Ωh(t)+δ ⊂ B2M\Ωhε(t)

for all ε ∈ (0, ε̃] and t ∈ (0, T∗). We also have that

wε = (0, 0, ∂thε)
> on B2M\Ωh(t)+δ ⊂ B2M\Zm/2

because of 1 + h ≥ m on [0, T∗]×ω. Since δ > 0 was arbitrary, we deduce that w0 = 0 in⋃
t∈(0,T∗){t} × (B2M\Ωh(t)). Due to 1 + h?ε ≥ m

2 on [0, T∗]×ω, we also deduce that w0 = 0
on Γ0. This readily implies that

w0 = 0 in
⋃

t∈(0,T∗)

{t} × (B2M\Ωh(t)) and w0 ∈ L2(0, T∗; H1
0(Ωh(t))).

Due to Lemma 2, it follows that γh(t)(w0) = 0. Since γh(t)(w) = (0, 0, ∂th)>, it must be the
case that

γh(t)(u) = (0, 0, ∂th)>.

This shows that the interface condition is satisfied.
Now, we take the limit in the equation solved by (uε, hε). Recall that (uε, hε) solves∫ t

0

∫
Ωh?ε (s)

∂tuε · φε + µ
∫ t

0

∫
Ωh?ε (s)

∇uε : ∇φε +
1
2

∫ t

0

∫
Ωh?ε (s)

(u?
ε · ∇)uε · φε

− 1
2

∫ t

0

∫
Ωh?ε (s)

(u?
ε · ∇)φε · uε +

1
2

∫ t

0

∫
ω

∂thε(∂th?ε ) b +
∫ t

0

∫
ω

∂2
t hεb

+
∫ t

0

∫
ω

∆∂thε ∆b +
∫ t

0

∫
ω

∆hε∆b +
∫ t

0

∫
ω

κGε(∂thε)b =
∫ t

0

∫
Ωh?ε (s)

f · φε

(60)

for all φε ∈ Vh?ε , b ∈ L2(0, T; H2
0(ω)) such that φε(t, x, y, 1 + h?ε (t, x, y)) = (0, 0, b(t, x, y))>

on [0, T∗]×ω. This equation is derived from (28) by replacing (v, δ) with the fixed point
(uε, hε) found in Section 6. In particular, δ?ε = Nε(δ) becomes Nε(hε) = h?ε and v?ε = Rε(v)
becomes Rε(uε) = u?

ε , but note that uε and hε will still differ from u?
ε and h?ε , respectively.

Since Gε is the derivative of the convex function jε : R→ R, x 7→
√

x2 + ε2, we get

−Gε(∂thε)b = Gε(∂thε)(−b + ∂thε − ∂thε) ≤
√
(∂thε − b)2 + ε2 −

√
∂th2

ε + ε2,

which is equivalent to√
∂th2

ε + ε2 −
√
(∂thε − b)2 + ε2 ≤ Gε(∂thε)b.
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If we plug this into (60) and use integration by parts with respect to time for the first term
and for the term involving ∂2

t hε, as in (30) and (29) (with δ replaced by h), we end up with
the inequality∫

Ωh?ε (t)

uε(t) · φε(t)−
∫ t

0

∫
Ωh?ε (s)

uε · ∂tφε + µ
∫ t

0

∫
Ωh?ε (s)

∇uε : ∇φε

+
1
2

∫ t

0

∫
Ωh?ε (s)

(u?
ε · ∇)uε · φε −

1
2

∫ t

0

∫
Ωh?ε (s)

(u?
ε · ∇)φε · uε −

1
2

∫ t

0

∫
ω

∂thε(∂th?ε )b

+
∫

ω
∂thε(t)b(t)−

∫ t

0

∫
ω

∂thε ∂tb +
∫ t

0

∫
ω

∆∂thε ∆b +
∫ t

0

∫
ω

∆hε∆b

+
∫ t

0

∫
ω

κ

(√
∂th2

ε + ε2 −
√
(∂thε − b)2 + ε2

)
≤
∫ t

0

∫
Ωh?ε (s)

f · φε +
∫

ω
hε

1b(0) +
∫

Ωhε
0

uε
0φε(0)

(61)

for a.e. t ∈ (0, T∗) and for all (φε, b) ∈ Vh?ε × C1([0, T∗]; H2
0(ω)) with φε(t, x, y, 1 + h?ε ) =

(0, 0, b)> on [0, T]×ω.
As in the variational problem (54), we have to deal with the problem that the test

functions depend on ε. We solve this issue in a similar manner and consider

φ0 ∈ C∞
c

(⋃
t∈(0,T∗)

{t} ×Ωh(t)

)
, div φ0 = 0.

Then, (φ0, 0) is an admissible test function for small ε since φ0 ∈ Vh?ε for ε > 0 sufficiently
small due to the uniform convergence of h?ε to h as ε goes to 0. For an element b ∈
C1([0, T∗]; H2

0(ω)) with
∫

ω b = 0, we use the continuous embedding H2(ω) ↪→ W
3
4

4 (ω) to
deduce that there exists a z ∈ L∞(0, T∗; W1

4 (Zm/2)) ⊂ L∞((0, T∗)× Zm/2) such that

div z = 0 in (0, T∗)× Zm/2, z|∂Zm/2
=

{
(0, 0, b)> on (0, T∗)×ω× {m

2 },
0 else .

Then, we consider

φ1(b) :=

{
(0, 0, b)> on B2M\Zm/2 ,
z on Zm/2.

The pair (φ1(b), b) is an admissible test function, too, since 1+ δ?ε ≥ m
2 on (0, T∗)×ω for all

ε > 0. For this class of test functions, we can go to the limit in (61) due to the convergences
(58) and (59). Here, let us consider the most problematic term∫ t

0

∫
Ωh?ε (s)

(u?
ε · ∇)uε · φ =

∫ t

0

∫
B2M

χΩh?ε (s)
(u?

ε · ∇)uε · φ

=
∫ t

0

∫
B2M

χΩh?ε (s)
(u · ∇)uε · φ +

∫ t

0

∫
B2M

χΩh?ε (s)
((u?

ε − u) · ∇)uε · φ.

The first term on the right-hand side converges to
∫ t

0

∫
Ωh(s)

(u · ∇)u · φ, the correct limit due

to (59), and the second summand converges to 0 because of the strong convergence u?
ε → u

in L2(0, T∗; L2(B2M)) and the boundedness of (χΩh?ε (s)
∇uε)ε>0 in L2(0, T∗; L2(B2M)). Note

that this argument works since φ ∈ L∞((0, T∗)× Zm/2)); this, in retrospect, explains why
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the previous divergence problem was solved for an exponent larger than 2. Concerning the
term

∫ t
0

∫
Ωh?ε (s)

(u?
ε · ∇)φ · uε, we estimate

∫ t

0

∫
B2M

∣∣∣χΩh?ε (s)
(u?

ε · ∇)φ · uε − χΩh(s)
(u · ∇)φ · u

∣∣∣
≤
∫ t

0

∫
B2M

∣∣∣(χΩh?ε (s)
u?

ε − χΩh(s)
u) · ∇)φ · χΩh?ε (s)

uε

∣∣∣
+
∫ t

0

∫
B2M

∣∣∣(χΩh(s)
u · ∇)φ · (χΩh(s)

u− χΩh?ε (s)
uε)
∣∣∣

≤
∥∥χΩh?ε (s)

u?
ε − χΩh(s)

u
∥∥

L2((0,t)×B2M)
‖∇φ‖L∞(0,t;L4(B2M))

·
(
‖uε‖L2(0,t;L4(B2M)) +

∥∥χΩh(s)
u
∥∥

L2(0,t;L4(B2M))

)
+
∥∥χΩh?ε (s)

(
u?

ε − uε

)∥∥
L2((0,t)×B2M)

‖∇φ‖L∞(0,t;L4(B2M))

∥∥χΩh(s)
u
∥∥

L2(0,t;L4(B2M))

)
,

which converges to 0 as ε→ 0 due to the boundedness of (uε)ε in L2(0, t; L4(B2M)) implied
by (58)6; the term χΩh?ε (s)

(
u?

ε − uε

)
converges to 0 in L2 by (58)4,9 and the triangle inequality.

For the convergence of the non-linear boundary term in (61), due to

∂thε → ∂th in L2(0, T; L2(ω)) ↪→ L1(0, T; L1(ω)) as ε→ 0

and
√

x2 + ε2 ≤ |x|+ ε for x ∈ R, the dominated convergence theorem implies that∫ t

0

∫
ω

(√
∂th2

ε + ε2 −
√
(∂thε − b)2 + ε2

)
−→

∫ t

0

∫
ω
(|∂th| − |∂th− b|) as ε→ 0.

This shows that (u, h) is a solution of (20) for these special test functions.
Now, for a general test function (φ, b) ∈ Vh × C1([0, T∗]; H2

0(ω)) with φ(t, x, y, 1 +
h(t, x, y)) = (0, 0, b(t, x, y)) in [0, T]× ω, we write φ = (φ− φ1(b)) + φ1(b) with φ1(b) as
before. Since the Dirichlet part φ− φ1(b) can be approximated by functions of the same
type as φ0, we can recover the weak formulation (20) for general test functions. This shows
that (u, h) is a weak solution of (2)–(9), which concludes the proof.

7. Discussion

We presented the existence of weak solutions to a fluid-structure interaction problem
for Navier–Stokes equations in a domain with a damped Kirchhoff plate as an upper lid.
The interaction is given only in the normal direction, together with a threshold for the
normal stress, so that, for small stresses, the plate stays immovable. The proof follows the
line of Reference [1], where the damped plate is linearly coupled with the fluid. There
appear the natural questions whether similar results can be obtained for unbounded
domains of half space type and for bounded domains where the plate is fastened to the
arbitrarily shaped upper brim of the lateral boundary of a cylindrical domain or even
cannot be written as a graph.
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