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Abstract: This work explores neural approximation for nonlinear dimensionality reduction mapping
based on internal representations of graph-organized regular data supports. Given training observa-
tions are assumed as a sample from a high-dimensional space with an embedding low-dimensional
manifold. An approximating function consisting of adaptable built-in parameters is optimized subject
to given training observations by the proposed learning process, and verified for transformation
of novel testing observations to images in the low-dimensional output space. Optimized internal
representations sketch graph-organized supports of distributed data clusters and their representative
images in the output space. On the basis, the approximating function is able to operate for testing
without reserving original massive training observations. The neural approximating model contains
multiple modules. Each activates a non-zero output for mapping in response to an input inside
its correspondent local support. Graph-organized data supports have lateral interconnections for
representing neighboring relations, inferring the minimal path between centroids of any two data
supports, and proposing distance constraints for mapping all centroids to images in the output space.
Following the distance-preserving principle, this work proposes Levenberg-Marquardt learning
for optimizing images of centroids in the output space subject to given distance constraints, and
further develops local embedding constraints for mapping during execution phase. Numerical simu-
lations show the proposed neural approximation effective and reliable for nonlinear dimensionality
reduction mapping.

Keywords: unsupervised learning; distance preserving mapping; nonlinear dimensionality reduction
mapping; data visualization; topology preservation; data support approximation; nonlinear system
solving; Levenberg-Marquardt learning; clustering analysis; principle component analysis; locally
nonlinear embedding

1. Introduction

Nonlinear dimensionality reduction (NDR) mapping [1–4] addresses transforming
high dimensional observations to an embedded lower dimensional manifold. NDR map-
ping has attracted many attentions for analyzing large volume of high dimensional ob-
servations, such as genomics [5], images [6,7], video [8] and audio signals. The goal is to
preserve and visualize neighborhood relations of observations by displaying transformed
images in the low dimensional output space. Principle component analysis (PCA) [9,10]
extracts orthogonal eigenvectors, termed as principle components, which serve as internal
representations of given training observations for linearly transforming high-dimensional
observations to an output space. Linear projections of observations on selected principle
components can be determined without reserving original training observations. Lin-
ear transformation by selected principle components can operate as an online process
that transforms one observation at a time, but it has been shown infeasible for topology
preserving [1–3] and can’t be directly applied for NDR mapping.

Locally linear embedding (LLE) [1] has been presented for NDR mapping and data
visualization. LLE is a batch process that simultaneously determines images of all given
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observations in a training set X. Applying the k-nearest neighboring method, it recruits
k closest observations to form the neighborhood Nk(x) of each observation x. It assumes
a locally linear relation within Nk(x) such that observation x is a linear combination of
observations in Nk(x). For topology preserving, images of observations in Nk(x) are re-
garded as neighbors of the image rx of x. After optimizing coefficients cx of a correspondent
linear relation that expresses each x, LLE further poses a linear relation within images of k
observations in Nk(x). Based on the assumption that rx is a linear combination of images
of observations in Nk(x) using cx, solving linear relations that express all rx simultaneously
attains images of all observations.

In LLE, expressing rx by a linear relation makes use of the neighborhood and coeffi-
cients of the linear relation that expresses x. Inferring the image of any novel observation
during execution phase hence needs neighbors defined over all training observations. LLE
cannot operate with only internal representations extracted from X for image inference
during testing phase. This limits portability and computational efficiency of LLE due
to massive memory access to all training observations. To overcome the difficulty, this
work extends LLE to locally nonlinear embedding (LNE) for NDR mapping. LNE adopts
nonlinear relations for inferring images of novel observations during execution phase.
LNE stands within a larger scope than LLE and can operate with only extracted internal
representations for neural approximation of NDR mapping.

Similar to LLE, Isomap [2] and Laplacian Eigenmaps [11,12] maintain Nk(x) for each
x. Isomap [2] applies the k nearest neighboring method to calculate geodesic distances
and applying the traditional multi-dimensional scaling method [13–15], equivalently PCA,
to infer images of all observations. Laplacian Eigenmaps sketch the k-nearest-neighbor
graph based on Nk(x) for all x and solve the generalized eigenvalue problem for inference
of images of all observations. Both Isomap and Laplacian Eigenmaps require reserving all
training observations for inferring images of novel observations during execution phase.

Self-organization maps (SOM) [16–19] as well as elastic nets (EN) [20,21] use grid-
organized receptive fields as adaptable internal representations for inferring images of
observations. Unsupervised learning is a process that extracts internal representations
subject to training observations. Equipped with well extracted receptive fields, SOM emu-
lates a cortex-like map, and attains a two-dimensional embedding for topology preserving
mapping. It activates one and only one node in response to an observation following the
winner-take-all principle. The active neural node must have a receptive field that is closest
to the given observation and its geometrical location on a grid refers to the inferred image
in the low-dimensional embedding. SOM infers images of novel observations during
execution phase without reserving training observations. Since unsupervised learning of
SOM makes use of updating operations, which directly adopt Euclidean distances among
observations, it needs further improvement for NDR mapping.

The NDR mapping proposed in this work ensures properties of extracting essential
internal representations and recovering the low-dimensional embedded manifold. Based on
the extracted internal representations and locally nonlinear embedding, the NDR mapping
infers images of novel observations during testing phase, requiring no reservation of
training observations.

This work proposes graph-organized data supports to scope training observations.
The union of graph-organized data supports well sketches the underlying global density
support of raw observations. Internal representations of the proposed NDR mapping
contain a set of receptive fields and built-in parameters of adalines (adaptive linear ele-
ments) [22,23], where receptive fields are related to represent centroids of distributed data
supports. The scope of each local data support is a K-dimensional regular box, where K is
less than or equals the dimension of the input space. A neural module consisting of K pairs
of adalines is employed to determine the membership of observations to a correspondent
data support. An adaline neural module is an indicator to the scope of a correspondent
data support. There are M neural modules, respectively determining individual scopes of
M data supports as well as their neighboring relations. Neighboring relations among data
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supports are related to edges of a graph. Derived from training observations, the graph
configuration describes neighboring relations among data supports. All neural modules
are further extended for NDR mapping. The extension simply equips every neural module
with a posterior weight that represents the image of the centroid of a correspondent data
support. The image of every centroid and images of its neighboring centroids following
the property of locally nonlinear embedding induce nonlinear constraints for optimizing
all posterior weights.

Internal representations extracted from training observations include features well
characterizing the membership to every data support. Based on extracted internal repre-
sentations of M neural modules as well as posterior weights, the NDR mapping following
locally nonlinear embedding can infer images of novel observations during testing phase
without reserving original training observations. This property highly increases portability
of the proposed NDR mapping. The size of adaptable built-in parameters for the proposed
NDR mapping depends on the number of neural modules and the dimension of every
data support. Massive training observations are no more required during execution of the
proposed NDR mapping for testing.

The challenge is to optimize adaptable built-in parameters and posterior weights
of joint adaline neural modules for the proposed NDR mapping. The union of graph-
organized data supports sketches a bounded domain of the proposed neural approximation
for NDR mapping. The NDR mapping explored in this work transforms high dimensional
observations to images in the output space that recovers the manifold embedded within the
input space. It is realized by adaline neural modules extended with posterior weights. The
learning process mainly contains stages respectively constructing graph-organized cluster
supports and optimizing posterior weights by the Levenberg-Marquardt algorithm [24–27].
The first learning stage is aimed to optimize centroids, bulit-in parameters of adaline
modules and graph interconnections for representing graph-organized data supports.
The second stage is to determine posterior weights by solving a nonlinear system that
characterizes distance preserving mapping of centroids to images in the output space.
The proposed neural approximation realizes NDR mapping without reserving training
observations, depending only on adaptable feature representations or built-in parameters.
Equipped with well trained built-in parameters, the proposed NDR mapping can determine
the image of a novel testing observation during execution phase by resolving constraints of
locally nonlinear embedding.

2. Materials and Methods
2.1. Adaline Neural Modules for Representing Distributed Data Supports

Adaline neural modules are proposed for NDR mapping from the space of high dimen-
sional observations to the output space of images. Those neural modules are with lateral
interconnections and posterior weights for performing composite linear and nonlinear
transformation. Every neural module is equipped with a receptive field as well as K pairs
of adalines [22,23], where K denotes the projection dimension, in reception of observations.
An NDR mapping model is composed of many neural modules. Like SOM and EN, there
exist lateral interconnections among neural modules. The NDR mapping is realized by
graph-organized neural modules, where the graph configuration represents neighboring
relations among extracted data supports with interconnections dynamically derived subject
to training observations.

Let x denote an observation in the input space RL and µ ∈ RL denote a receptive
field. The deference x− µ is a result of de-mean, as µ is related to the centroid of a data
cluster. The difference x− µ propagates forward through K projective fields of adalines as
shown in Figure 1, where ak ∈ RL denotes a projective field and matrix A =

[
aT

k
]

collects K
receptive fields. The projection hk = (x− µ)Tak forms an external field to paired threshold
elements of adalines,

θl(h) =

{
1, i f h ≥ l
0, otherwise
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and

θu(h) =

{
1, i f h ≤ u
0, otherwise

when both threshold elements are active in response to h, it means that h ∈ [l, u].
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Figure 1. A feedforward neural module for translation of a high-dimensional observation to an
image in the output space.

Each adaline neural module for receipting observations is equipped with K pro-
jective fields and K pairs of threshold elements in additional to a receptive field. Let
Ik = [lk, uk], where lk and uk respectively denote the lower and upper bounds of projection
hk = aT

k (x− µ). When all K pairs of threshold elements are active, the tuple (h1, . . . hK) is
within a K-dimensional cuboid or box defined by the Cartesian product of K projection
intervals, I = I1 × . . .× IK, expressed by

I =
{
(h1, . . . , hK)

∣∣∣hk = aT
k (x− µ) ∈ Ik, k = 1, . . . , K

}
For K = L, in the original observation space, a bounded region termed as a data

support is expressed by

Λ =
{

x
∣∣∣h = A(x− µ) ∈ I, x ∈ RL

}
A neural module is equipped with a threshold element that has a lower bound 2K for

indicating membership to Λ as shown in Figure 1. This threshold element activates if all of
2K threshold elements contribute positive responses to given x. Internal representations of
a neural module in Figure 1 include a receptive field µ, K projective fields and K pairs of
lower and upper bounds, for reception of observations.

When x ∈ Λ, equivalently A(x− µ) ∈ I, an adaline module summarizes the mem-
bership to the cluster support Λ and is activated if the external field reaches the lower
threshold level, 2K. If the membership threshold element is active, the attached posterior
weight r produces a non-zero image in the output space Rd, where d is less than L for
dimensionality reduction, otherwise the output is a zero vector.
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The membership threshold element in an adaline neural module activates to indicate
the membership of the input to a correspondent data support. The proposed NDR model
consists of multiple graph-organized neural modules, each possessing its own data support.
The union of all cluster supports presents an approximation to the global density support
underlying training observations in the original input space for modeling the embedded
manifold. An NDR neural model contains not only receptive fields for input perception
but also posterior weights for output generation.

The NDR neural model shown in Figure 2 is composed of M adaline neural modules.
Each neural module is with internal representations, including a receptive field µm, K
projective fields in matrix form Am, lower and upper bounds, respectively denoted by
{lmk}k and {umk}k, and a posterior weight rm. Figure 3 shows training observations from
the Swiss roll and edges of vertices in a graph. Each vertex m in the graph has a set of
neighboring vertices, denoted by NBm, according to the graph configuration derived by
the learning process. It is notable that neighboring relations of nodes exactly concise with
those among correspondent data supports and lateral interconnections of joint adaline
neural modules.
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2.2. NDR Model Learning

The proposed neural model for NDR mapping inherits receptive fields and graph-
organized neural nodes of SOM and EN. The model design further recruits neural organiza-
tion of dynamical graph configuration, projective fields, threshold elements and posterior
weights. For data analysis, an NDR model has adaptable built-in parameters for represent-
ing distributed cluster supports, neighboring relations of local supports, and images of
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centroids. NDR model learning is with objectives of well approximating the global density
support underlying training observations by the union of distributed cluster supports,
structuring neighborhood relations of distributed cluster supports by the dynamic graph
configuration and determining images of centroids based on distance preserving mapping.

2.2.1. Clustering Analysis for Learning Receptive Fields

Given high dimensional observations are patterns without labels for NDR mapping.
Let S =

{
xi ∈ RL}

i be a training set. NDR model learning is subject to unlabeled training
observations and is hence unsupervised. An NDR model transforms an observation to
an image that is not explicitly provided in advance. This work relates receptive fields to
centroids of clusters derived by clustering analysis subject to training observations in S.

Mathematical modeling [28–30] for clustering analysis involves formulation of con-
straints and the objective using mixed integer and continuous variables. The mixed integer
programming leads to the annealed clustering algorithm [28,29] in Appendix A, where
M receptive fields eventually partition training observations in S to M non-overlapping
subsets. Let Si collect observations that are closest to µi among M receptive fields,

Si =
{

x
∣∣∣i = argmin

m
‖ x− µm ‖, x ∈ S

}
. (1)

The annealed clustering algorithm attains not only all µm but also the exclusive
membership of each xt to M subsets, denoted by a unitary vector of binary elements,
δ[t] = (δ1[t], . . . , δM[t]), where δm[t] ∈ {0, 1}. There is one only one active bit among M
binary bits in δ[t]. It is ensured by the annealed clustering algorithm that δi[t] is the only
active bit if and only if xt belongs to Si. δ[t] represents the membership of xt to M subsets
partitioned by M receptive fields.

The objective function [28,29] for optimizing continuous receptive fields and discrete
memberships could have different forms under variant computation objectives. The objec-
tive function is commonly not differentiable with respect to discrete δi[t]. Minimization of
the objective function with respect to discrete and continuous variables by the annealed
clustering algorithm has been extensively verified in previous works [28,29]. Appendix A
gives a simplified version of the annealed clustering algorithm. Numerical simulations that
show its effectiveness and reliability for clustering analysis have been extensively given in
previous works [28,29].

2.2.2. Deriving Cluster Supports by Optimizing Adaline Modules

Each adaline module in Figure 2 plays a role of indicating the membership to a cluster
support. Clustering analysis partitions training observations in S to M disjoint subsets.
It follows Si ∩ Sj = ∅ and S = ∪mSm. Both SOM and EN make use of receptive fields to
determine the exclusive membership of an observation following the winner-take-all (WTA)
principle. This work further constructs cluster supports by optimizing adaline modules.
A local cluster support is related to a region Λm that is characterized by K orthogonal
projective fields derived from training observations in Sm, where K ≤ L. The membership
to Λm is determined by lower and upper thresholds of projections on K projective fields.

The receptive field µm derived by clustering analysis well represents the mean of
training observations in Sm. Subtracting µm attains demeaned observations in Sm. Let
matrix Cm denote the covariance matrix of demeaned observations in Sm. Orthogonal
projective fields can be obtained by solving the following eigenvalue problem,

Cmam = λam



Mathematics 2021, 9, 1017 7 of 18

Orthogonal projective fields, denoted by {amk}k, are set to eigenvectors corresponding
to K largest eigenvalues. Let lmk and umk respectively denote the lower bound and the
upper bound of projections on amk over Sm, where{

lmk = minx∈Sm(x− µm)
Tamk

umk = maxx∈Sm(x− µm)
Tamk

Built-in parameters in an adaline module including K projective fields and K pairs of
lower and upper thresholds have been determined for constructing cluster supports. The
projection interval Imk = [lmk, umk] denotes the minimal interval that covers projections of
all demeaned observations in Sm on amk.

Let fm(x) denote the result of transferring x to vector (hm1, . . . , hmK)
T , where

hmk = (x− µm)
Tamk. The local support Λm is defined by

Λm = {x| fm(x) ∈ Im1 × . . .× ImK}. (2)

If fm(x) belongs to the Cartesian product Im1 × . . .× ImK, x belongs to Λm.
If x belongs to Sm, by definition of lmk and umk, the component hmk of fm(x) must

belong to Imk for any k, and fm(x) belongs to Λm. If K equals L, Λm is simply a geometry
box with orthogonal edges and is centered at µm, containing training observations in Sm.
The union of all Λm is an approximation to the real global density support that covers all
training observations in S. The volume of the local support corresponding to Sm can be
calculated by

Vm = ∏
k
(umk − lmk) (3)

The ratio of cluster size to the volume can be calculated by |Sm |
Vm

that represents the

uniform density of Λm and the global uniform density is estimated by |S|
∑m Vm

.
It is notable that the membership of the projection fm(x) to Im1× . . .× ImK is calculated

by K pairs of threshold elements shown in Figure 1. The top threshold element in Figure 1
that has a lower bound, 2K, is active if K pairs of threshold elements are active.

2.2.3. Graph Configuration and Neighboring Relations of Cluster Supports

The membership of x to Λm can be determined by the adaline neural module in
Figure 2. It takes one subtraction and K projections on projective fields and 2K + 1 com-
parisons by threshold elements to determine the membership. It is extended to determine
the membership of a line segment between two points in the space of RL to Λm in case of
K = L. The membership of a line segment to a cluster support is significant for calculating
the distance between centroids of Λm and Λn. The line segment between µm and µn is
expressed by

µmn(t) = µm + t(µn − µm)

where t ∈ [0, 1]. By linearly spacing the interval [0, 1] to a partition, one can obtain a lot
of equally spaced points on the segment. If all sampled points on the segment belong to
Λm ∪Λn, it is inferred that the line segment belongs to Λm ∪Λn. as shown in Figure 4C. In
the occasion, the distance between µm and µn is defined by

Dmn =

√
(µm − µn)

T(µm − µn) (4)

If there exists some t such that umn(t) does not belong to Λm ∪Λn, the above definition
is not feasible for determining the distance between centroids of Λm and Λn.
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When K equals L, the mapping fm(x) is invertible. Λm is a geometrical box with 2K

vertices defined by the Cartesian product {lm1, um1} × . . .× {lmK, umK}. Two vertices with
K− 1 same coordinates and only one different coordinate are neighboring. Applying the
inverse of fm to two neighboring vertices induces two end points of an edge of Λm in RL.
Again the membership of each edge of Λm to Λn can be examined by the neural circuit in
Figure 2. If there exists one vertex or one point sampled from an edge of Λm belonging to
Λn, or inversely, from an edge of Λn belonging to Λm, Λm ∩Λn is not empty. Two cluster
supports are neighboring, if their intersection is not empty. The neighboring relations are
maintained by a symmetric interconnection matrix G with element Gmn ∈ {0, 1}. Both Gmn
and Gnm equal one if Λm and Λn are neighboring, and are zero otherwise.

The distance between µm and µn can be also determined if some part in the whole
segment does not belong to Λm ∪ Λn as shown in Figure 4D and Gmn equals one. The
following definition is employed if µmn(t) /∈ Λm ∪Λn for some t and Λm ∩Λn 6= ∅,

Dmn = min{z∈Λm∩Λn} ‖ µm−z ‖ + ‖ µn − z ‖ (5)

Calculation of Dmn is approximated by searching for the best z among vertices and
edges of two neighboring cluster supports for simplification. For K < L, subject to given
training observations from RL, the vertices of Λm can not be determined from the Cartesian
product {lm1, um1} × . . .× {lmK, umK}, since fm is no more invertible. If K is less than L,
the nearest distance between Sm and Sn is employed to determine the neighboring relation
of Λm and Λn.

When K < L, Gmn = 1 if dmn is less than a predetermined small positive number
ε, and Gmn = 0, otherwise, where dmn denotes the nearest distance between Sm and Sn
defined by the minimal distance between any xm ∈ Sm and xn ∈ Sn. The two observations,
respectively belonging to Sm and Sn, whose distance induces dmn less than ε could be
reserved for recalculating dmn during testing phase. The distance Dmn between centroids
µm and µn, if Gmn = 1, is determined by the sum of three distances, respectively between
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µm and xm, µn and xn, and xm and xn, where xm ∈ Sm, xn ∈ Sn, and the distance between
xm and xn is less than ε. Both xm and xn in accompany with Gmn for K < L, are reserved
in order to calculate the distance between two observations respectively belonging to two
neighboring local supports.

For the case with K = L, the connectivity Gmn is one if intersection of Λm and Λn is
non-empty and is zero otherwise. Since the projection function fm is invertible, vertices
and edges of each local support can be sketched and their memberships to other supports
can be checked directly. However, in case with K < L, the projection function fm is not
invertible. The connectivity Gmn is checked by comparing the set distance between Sm and
Sn with a predetermined threshold. Figure 3B shows the connectivity derived subject to the
Swiss roll data. The graph configuration, denoted by G, is not predetermined and is a result
of checking neighboring relations between cluster supports. Neighboring relations among
training observations in LLE have been extended to neighboring relations of data supports.

The distance between centroids of two cluster supports that are not neighboring is
calculated based on given graph configuration and all Dmn with Gmn = 1. The problem
now is to determine Dmn between µm and µn for Gmn = 0. Generally, G denotes edges
among M nodes on a graph such that nodes m and n are connected if and only if Gmn = 1.
The distance Dmn corresponding to an edge that connects nodes m and n is well defined.
Two arbitrary nodes on a graph are path-connected if there exists a path between them.
The distance between two path-connected nodes can be determined by the shortest path
algorithm of Dijkstra [31].

If M nodes on the graph are path-connected, all distances among M nodes or all
entries in matrix D are determined.

2.3. Levenberg-Marquardt Learning for Distance-Preserving Mapping and Optimal
Posterior Weights

The distance matrix D provides clues for determining images of centroids of cluster
supports, where images of centroids are regarded as optimal posterior weights of graph-
organized neural modules for NDR mapping. The dimension of the output space is
typically less than or equals three for data visualization by computer graphics. If the
output dimension equals one, without losing generality, the output space is related to
the interval [0, 2π] for visualization and the posterior weight rm refers to the radian of
a unitary circle. The problem of determining all posterior weights turns to find images
on a unitary circle based on the distance matrix D. On a unitary circle, each image has
two neighbors. The goal is to minimize the total distance of neighboring images subject to
given D. The neighboring relation defines a cycle path that visits each node exactly once
and returns to where it starts. The task is different from a typical TSP (traveling salesman
problem) that is provided with city cites within a Euclidean space.

The Hopfield neural network [32,33] and Potts neural networks [34,35] for solving TSP
with only the distance matrix D can be directly applied for optimizing images of centroids,
equivalently posterior weights. Given distance matrix D, neural approaches [34,35] attain
a circular sequence that visits M centroids. Let pi denote the index of a node at stop i
on the determined circular sequence, where 1 ≤ i ≤ M+1 and pM+1 = p1 for circular
representation. Let qi denote the difference between images of node pi and pi+1. Let qi be
proportional to Dpi pi+1 and the sum of all qi be 2π. Then

qi =
2πDpi pi+1

∑j Dpj pj+1

. (6)

By setting the image of node p1 to zero, one can determine the image of node pi+1 by
adding qi to the image of node pi for all i.

For K = L, the matrix D contains distances defined inside the union of cluster supports
with the non-negative, symmetric and triangle properties for distance measure. The first
two properties are trivial. The third triangle property holds for distances in D. Let Qik
denote the shortest path from node i to node k. According to the shortest path algorithm,
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path Qik contains no cycle. Let Qij and Qjk respectively denote the shortest path between
node i and node j, and node j and node k. Let node j be absent in path Qik. The triangle
property holds if Dik ≤ Dij + Djk. Assume Dik greater than Dij + Djk. It follows that path
Qik is not the shortest one, since it could be improved by the path that concatenates Qij
with Qjk. This leads to a contradiction. So, the length of Qik must be less than or equal to
Dij + Djk.

Now the task extends to find images of centroids or posterior weights, where the
dimension of the output space is two or three and K = L. The purpose is to find and display
the image rm of every µm. The distance Dmn is determined by Equations (4) and (5) if Gmn = 1,
and by the shortest path algorithm otherwise. For distance preserving mapping, distances in
D propose the following constraint for determining rm and rn in the output space,

‖ rm − rn ‖ −Dmn = 0 (7)

The constraint (7) for any path-connected node m and n constitutes a nonlinear system.
There are 1

2 M(M− 1) constraints. The LM (Levenberg-Marquardt) algorithm has been
extensively applied for learning multilayer neural networks [26,27] and solving nonlinear
system. This work applies the LM algorithm for solving the nonlinear system (7) and
determining images of centroids for distance preserve mapping. The following criterion is
formulated for least square fitting,

E(r) = ∑
m,n

(‖ rn − rm ‖ −Dnm)
2

where r denotes a collection of all posterior weights. The outstanding performance of the
LM algorithm has been extensively explored in previous works [26,27] for learning neural
networks. The LM algorithm is applied to find optimal ropt defined by

ropt = argmin
r

E(r)

If G contains unconnected subgraphs, solving the nonlinear system (7) by the LM
algorithm can be separately applied to every unconnected subgraph. There will be multiple
isolated subgraphs and multiple sets of images, each corresponding to one subgraph whose
nodes are path-connected.

2.4. Locally Nonlinear Embedding for NDR Mapping

Learning the proposed neural model subject to training observations in S achieves
optimal built-in parameters, including receptive fields, projective fields, projection bounds
and posterior weights. This section presents locally nonlinear embedding (LNE) for NDR
mapping based on a neural model that has been equipped with optimal built-in parameters
and posterior weights.

In response to an observation in the training set S, a well-trained NDR model is
expected to generate an image in the output space. Let x belong to some subset Sm.
Then x belongs to cluster support Λm and a correspondent neural module is active. Let
NBm = {n|Gmn = 1} and ln with n ∈ NBm denote the distance between x and µn similar to
distance measure described in Equation (5). If the line segment between x and µn belongs
to Λm ∪ Λn, since x ∈ Λm, ln is calculated by the Euclidean distance between x and µn,
otherwise by the following equation

ln = min{z∈Λm∩Λn} ‖ x− z ‖ + ‖ µn − z ‖ (8)

The calculation of ln is approximated by seeking the best z on vertices and edges of Λm
for simplicity. Similar to Equation (7), the LNE distance-preserving constraint is given by

‖ r− rn ‖= ln (9)
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where n ∈ NBm ∪ {m}. Equation (9) poses locally nonlinear constraints for inferring image
r subject to given distances. Following locally nonlinear embedding, the constraint (9)
specifies a nonlinear system, where the only unknown is r and the constraint number is
only |NBm|+ 1. By the strategy of distance preservation, optimal r can be trivially resolved
by the LM algorithm with random initialization near rm. A well trained NDR mapping can
be applied to determine the image of each observation in S.

A well trained NDR model is employed to generate locally nonlinear constraints (9)
for mapping a novel observation. The graph-organized neural modules simultaneously
operate to encode a novel observation x. If these is no active module that generates an
image in the output space, it is implied that x is out of all local supports and is not within
the domain of NDR mapping, otherwise there exists at least one local support that covers
x. Let H denote a set that collects indices of local supports commonly covering x. These
local supports must be overlapping and H is a small set only with several elements. Let α
denote a vector with element ln that measures the distance between x and µn according to
Equation (8), and the image vector β consist of rn, where n ∈ NBm ∪ {m} for each m ∈ H.
Locally nonlinear constraints (9) are well defined by given vectors α and β. The calculation
of ln in case of K = L and K < L has been given in contexts of Section 2.2.3.

Inferring the image r of x is based on distances in α and images in β. According to
Equation (9), locally nonlinear constraints are in number identical to the length of vector
α or β, or the sum of |NBm|+ 1 over m ∈ H. Since H is a small set and there is only one
unknown, locally nonlinear constraints (9) constitute a nonlinear system that can be easily
solved by the LM algorithm.

3. Results

Numerical simulations verify the proposed neural model and learning process for
NDR mapping of the 3-dimensional Swiss-roll data [1,2]. Given Swiss-roll data contain
N = 5000 3-dimensional points, S =

{
xi ∈ R3}N

i=1. The training data S are embedded
within a 2-dimensional surface as shown in Figure 3A. The Swiss-roll data are suitable for
evaluating the effectiveness of the proposed neural model for NDR mapping.

The first step applies the annealed clustering algorithm [28,29] in Appendix A to
partition S to M non-overlapping subsets as described in Section 2.2.1. This step obtains
receptive fields {µm}m as centroids of cluster supports.

The second step completes cluster support construction for optimal projective fields
and projection intervals as described in Section 2.2.2. The projection dimension K is set to
three for current example. The centroid of a correspondent local support Λm is set to the
mean of a cluster. Figures 4A and 5A show all centroids. Subtracting µm from observations
in Sm leads to demeaned observations, subsequently a covariance matrix Cm. Solving the
eigenvalue problem corresponding to Cm attains K orthogonal projective fields, {amk}k, and
K projection intervals, each being denoted by Imk. As shown in Figure 4B, these parameters
sketch a local support as a 3-dimensional box. The union of all local supports approximates
the global density support underlying observations in S.

If M = 1, there is only one cluster support. Let Stest collect novel 20,000 data points
randomly sampled from the sole regular cluster support that covers all observations in S.
A well-trained neural model with M = 64 can evaluate memberships of newly sampled
observations in Stest to the union of M cluster supports. The membership is verified if
there exists at least one activated module in the neural model. Reserving those inside the
union of cluster supports attain results in Figure 5B, which displays similar structure to the
original Swiss-roll.
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The third step figures out lateral interconnections of neural modules, equivalently
neighboring relations of cluster supports. For current situation, fm is invertible such that
vertices and edges of cluster support Λm can be efficiently tracked. Figure 6A shows
neighborhood relations of cluster supports in the input space. On the basis, the distance
between centers of two neighboring cluster supports has two different ways for calcula-
tion, depending on the straight line between two centroids µi and µj totally within two
neighboring cluster supports as shown in Figure 4C or partially within Λi ∪Λj as shown
in Figure 4D. Based on distances of centroids of neighboring cluster supports, as described
in Section 2.2.3, the shortest path algorithm of Dijkstra [12] is further applied to determine
the distance between every pair of path-connected nodes m and n, where Gmn = 0. Now
all entries in matrix D have been determined for inferring images of all centroids.

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 6. (A) Edges on a graph and neighboring relations of cluster supports in the input space. 
(B) Images of centroids and training observations. (C) Images of all observations in the output 
space. 

4. Discussion 
Let V(M) be the sum of all Vi, where Vi denotes the volume of cluster support 𝛬𝒊 de-

termined by Equation (3). V(M) is expected to be related to an upper bound of the volume 
of the the global density support that covers all data points in S. However, as shown in 
Figure 5A, V(M) decreases as M increases. Hence minimal V(M) cannot serve as the only 
criterion of setting M. For current example, two local supports are neighboring if Λ𝒊 ∩Λ𝒋 ∅. The connectivity of the graph G tends to increase as M increases. Following the 
minimal volume and maximal connectivity principle, the optimal number of cluster sup-
ports derived by advanced clustering analysis is determined by 𝑀 = min(𝑉(𝑚) − 𝜆𝐶(𝑚)) (20)

where C(M) is the ratio of the sum of elements in G to the number, 𝟏𝟐M(M-1), of full con-
nections. Figure 5A shows empirical volume V(M) and connectivity C(M), where the hor-
izontal axis denotes the number of clusters. Here λ is set to V(1) for balancing two quan-
tities. As the number of clusters increases to M = 64, it tends to balance volume and con-
nectivity. Advanced clustering analysis partitions S into M clusters, as shown in Figure 
5B. For this case, nodes on the graph are connected and there is no isolated node. 

The proposed NDR model is applied for neighborhood preservation mapping. Con-
sisting of two hidden layers in additional to input and output layers, the proposed NDR 
model is a deep neural network [36–38]. For generalization, learning an NDR model sub-
ject to training observations is verified by a testing set that is not provided during learning 
phase. Let S  denote the testing set. The first step is to check if given testing observa-
tions are within the union of local supports defined by the trained NDR model. Let S  
collect screened observations whose images could be inferred by the trained NDR model. 
The reservation ratio of testing observations is expressed by | || |. 

By a well-trained NDR model and locally nonlinear embedding, each observation 𝐱 
in S  is transformed to an image 𝐫 in the output space. Let NB (𝐱) denote k nearest 
neighbors in the input space and NB (r) denote k′ nearest neighbors of the image 𝐫 in 
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Based on distances of centroids in matrix D, distance preserving constraints in
Equation (7) constitute a large scaled nonlinear system, where all images of centroids
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in r are unknown. As described in Section 2.3, the LM algorithm minimizes the least square
criterion for optimizing all posterior weights. As a result, images of all µm on a 2D plane
are shown in Figure 6B. The centroids in Figure 6A are mapped to images according to the
distance preserving criterion. This illustrates significance of applying the LM algorithm for
topology-preserving dimensionality reduction.

A well trained NDR neural model is employed to map each training or testing ob-
servation. As described in Section 2.4, locally nonlinear constraints (9) are given for each
training or testing observation, where the only unknown denotes the generated image
in the output space. Figure 6C shows the generated images of all observations. The LM
algorithm is effective and reliable for seeking the image of each testing observation that
satisfies locally nonlinear constraints (9). It is notable that a well-trained NDR neural model
is semi-parametric. It operates without reserving full training observations and is able to
map novel testing observations to an embedded low dimensional manifold faithfully.

4. Discussion

Let V(M) be the sum of all Vi, where Vi denotes the volume of cluster support Λi
determined by Equation (3). V(M) is expected to be related to an upper bound of the
volume of the the global density support that covers all data points in S. However, as
shown in Figure 5A, V(M) decreases as M increases. Hence minimal V(M) cannot serve as
the only criterion of setting M. For current example, two local supports are neighboring if
Λi ∩Λj 6= ∅. The connectivity of the graph G tends to increase as M increases. Following
the minimal volume and maximal connectivity principle, the optimal number of cluster
supports derived by advanced clustering analysis is determined by

Mopt = min
m

(V(m)− λC(m)) (10)

where C(M) is the ratio of the sum of elements in G to the number, 1
2 M(M-1), of full

connections. Figure 5A shows empirical volume V(M) and connectivity C(M), where the
horizontal axis denotes the number of clusters. Here λ is set to V(1) for balancing two
quantities. As the number of clusters increases to M = 64, it tends to balance volume
and connectivity. Advanced clustering analysis partitions S into M clusters, as shown in
Figure 5B. For this case, nodes on the graph are connected and there is no isolated node.

The proposed NDR model is applied for neighborhood preservation mapping. Con-
sisting of two hidden layers in additional to input and output layers, the proposed NDR
model is a deep neural network [36–38]. For generalization, learning an NDR model subject
to training observations is verified by a testing set that is not provided during learning
phase. Let Stest denote the testing set. The first step is to check if given testing observations
are within the union of local supports defined by the trained NDR model. Let S′test collect
screened observations whose images could be inferred by the trained NDR model. The
reservation ratio of testing observations is expressed by |Stest|

|S′test| .
By a well-trained NDR model and locally nonlinear embedding, each observation

x in S′test is transformed to an image r in the output space. Let NBk(x) denote k nearest
neighbors in the input space and NB k′(r) denote k′ nearest neighbors of the image r in the
output space. For z ∈ NBk(x), an indicator hit(z) is set to one if the image of z belongs to
NB k′(r), and zero otherwise. An error percentage for testing is defined by,

ε
(
S′test

)
= 1− 1∣∣S′test

∣∣× k ∑
x∈S′test

∑
z∈NBk(x)

hit(z) (11)

Determining images of testing observations can be realized by parallel computation.
Inferences of two testing observations to images are independent and can be performed
simultaneously. Numerical simulations employ a notebook equipped with four 2.3 GHz
Intel Core i5 workers that can simultaneously execute to speed up NDR mapping of testing
observations under Matlab environment.
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Numerical simulations independently generate two “brokenswiss” datasets respec-
tively for training and testing. Each dataset consists of N = 5000 three dimensional
observations. The testing “brokenswiss” dataset is shown in Figure 7. Learning an NDR
model with M = 91 internal nodes subject to the training set ten times attains entries in the
first row of Table 1, where mean and variance of reservation ratio and error percentage over
ten executions are listed. Low variances in Table 1 reflect high reliability of the proposed
learning process. For current example, k = 12 and k′ = 36. The mean of reservation ratio
is near 90% and the mean of error percentage is less than 4%, which shows effectiveness of
the proposed learning process.
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Table 1. Mean and variance of reservation ratio and error percentage for testing.

Reservation Ratio (Testing) Error Percentage (Testing)

Dataset Mean Var Mean Var

Brokenswiss 89.78% 1.73 × 10−5 3.92% 6.03 × 10−5

Colorball 95.00% 5.35 × 10−6 16.51% 2.83 × 10−5

Both LLE and Isomap methods are not model based. Without further improvement,
these two methods are unable to produce models for testing, hence inducing neither
reservation ratio nor error percentage for testing in Table 1. LLE and Isomap codes [39]
induce execution results that miss images of half training observations in the output space
for this example. Both LLE and Isomap are not able to reduce the training error percentage
for current example. Their training error percentage is about 50%.

Figure 8A shows observations sampled from the two-colored surface of a ball. The
training set contains four-dimensional observations, since except for 3D coordinates an
attribute is recruited for representing two different colors. The dimension L of the input
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space is four for this example. Figure 8B shows a graph with edges in the output space,
where the positions of nodes refer to images of centroids of local supports. These edges
represent neighboring relations of extracted local supports. The graph contains two isolated
subgraphs. It is observed that two nodes respectively belonging to two isolated subgraphs
are not connected. It is verified that local supports corresponding to nodes on each isolated
subgraph contain observations of the same color and two subgraphs separately reflect two
different colors of observations. The proposed NDR mapping successfully translates 4D
observations to an embedded low-dimensional manifold. The encouraging results motive
further applications of the proposed NDR neural model to high dimensional observations
oriented from spectral features of sounds and handwritten patterns of characters.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 18 
 

 

Both LLE and Isomap methods are not model based. Without further improvement, 
these two methods are unable to produce models for testing, hence inducing neither res-
ervation ratio nor error percentage for testing in Table 1. LLE and Isomap codes [39] in-
duce execution results that miss images of half training observations in the output space 
for this example. Both LLE and Isomap are not able to reduce the training error percentage 
for current example. Their training error percentage is about 50%. 

Figure 8A shows observations sampled from the two-colored surface of a ball. The 
training set contains four-dimensional observations, since except for 3D coordinates an 
attribute is recruited for representing two different colors. The dimension 𝐿 of the input 
space is four for this example. Figure 8B shows a graph with edges in the output space, 
where the positions of nodes refer to images of centroids of local supports. These edges 
represent neighboring relations of extracted local supports. The graph contains two iso-
lated subgraphs. It is observed that two nodes respectively belonging to two isolated sub-
graphs are not connected. It is verified that local supports corresponding to nodes on each 
isolated subgraph contain observations of the same color and two subgraphs separately 
reflect two different colors of observations. The proposed NDR mapping successfully 
translates 4D observations to an embedded low-dimensional manifold. The encouraging 
results motive further applications of the proposed NDR neural model to high dimen-
sional observations oriented from spectral features of sounds and handwritten patterns of 
characters. 

 
Figure 8. (A) Observations sampled from the two-colored ball surface for testing. (B) Isolated sub-
graphs and their edges. 

The second row of Table 1 lists numerical results of evaluating the proposed learning 
process for the testing dataset in Figure 8. Either the training set S or the testing set S  
contains N = 8000 four dimensional observations. For this example, k = 12, k = 48. 
The proposed learning process executes ten times for training an NDR model with M =81 subject to S. Each time the trained NDR model is verified with S . Statistics over ten 
executions are summarized in Tables 1 and 2, where the reservation ratio is 95% and the 
error percentage is 16.51% in average. For the same reason stated previously, testing re-
sults of LLE and Isomapp are not listed in Table 1. As shown in Table 2, the proposed 
learning process in average takes 166 s to train an NDR model, and 190 s to map 8000 
testing observations to images through parallel computation. Matlab environment can 
further extend parallel computation with more cores. Both LLE and Isomap are also una-
ble to reduce training error percentage effectively for this example. It is notable that Iso-
map takes 1336 s to process training observations for this example. The proposed learning 
process significantly improves computational efficiency for training and accuracy for 
mapping testing observations. 

  

Figure 8. (A) Observations sampled from the two-colored ball surface for testing. (B) Isolated
sub-graphs and their edges.

The second row of Table 1 lists numerical results of evaluating the proposed learning
process for the testing dataset in Figure 8. Either the training set S or the testing set Stest
contains N = 8000 four dimensional observations. For this example, k = 12, k′ = 48. The
proposed learning process executes ten times for training an NDR model with M = 81
subject to S. Each time the trained NDR model is verified with Stest. Statistics over ten
executions are summarized in Tables 1 and 2, where the reservation ratio is 95% and the
error percentage is 16.51% in average. For the same reason stated previously, testing results
of LLE and Isomapp are not listed in Table 1. As shown in Table 2, the proposed learning
process in average takes 166 s to train an NDR model, and 190 s to map 8000 testing
observations to images through parallel computation. Matlab environment can further
extend parallel computation with more cores. Both LLE and Isomap are also unable to
reduce training error percentage effectively for this example. It is notable that Isomap takes
1336 s to process training observations for this example. The proposed learning process
significantly improves computational efficiency for training and accuracy for mapping
testing observations.

Table 2. Mean and variance of execution time for training and testing.

Execution Time

Training (Seconds) Testing (Seconds)

Dataset Mean Var Mean Var

Colorball 166.0 66.0 190.0 43.7

5. Conclusions

Numerical simulations show the proposed NDR neural model feasible for nonlinear
dimensionality reduction and visualization of the embedded low dimensional manifold. A
well trained NDR neural model needs no more training observations for mapping novel
testing observations during execution phase. Traditional LLE and Isomap require reserving
full training observations for mapping a novel testing observation. Compared with LLE and
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Isomap, the proposed NDR neural model possesses better portability for mapping testing
observations during execution phase. It only requires built-in parameters for further execution.

All built-in parameters of a well-trained NDR model are comprehensible and mean-
ingful for abstractive data structures. The optimized built-in parameters subject to training
observations constitute extracted local supports, serving as internal representations of the
centroid and projected PCA box of each local support. The obtained posterior weights
refer to images of all centroids of local supports. The dynamic graph configuration states
neighboring relations of local supports. Edges on the graph refer to lateral interconnections
of adaline neural modules in a well-trained NDR model.

The LM algorithm has been shown effective for solving a large scaled nonlinear
system toward transferring centroids to images in the output space. The nonlinear system
is derived following the principle of distance preserving mapping. The LM algorithm has
been also shown for seeking the image of a novel observation that satisfies locally nonlinear
embedding constraints (9) during execution phase. Since there is only one unknown in a
small set of locally nonlinear constraints (9), the LM algorithm is fast for NDR mapping of
a single testing observation. This work has successfully extended LLE to locally nonlinear
embedding constraints. The LNE constraints hold within a larger scope in comparison
with traditional LLE, extensively enhancing quality of NDR mapping. Learning an NDR
neural model is a process of integrating advanced clustering analysis, optimizing adaline
neural modules and solving large-scale distance-preserving nonlinear constraints. The
integrating learning process has been shown effective and reliable for optimizing built-
in parameters of the proposed NDR neural model. An NDR neural model performs a
standalone approximation that infers images of testing observations without maintaining
huge volume of training observations.
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Appendix A

A simplified version of the annealed clustering algorithm [28,29] is summarized by
the following iterative steps.

i. Randomly set all µj near the mean of all data points, {xi}i, initialize the inverse
temperature parameter β to sufficiently low value, and set ε to a small positive value.

ii. Calculate the distance dij between each point xi and µj.

iii. Update the expectation of each element in exclusive memberships. qj[i] =
exp(−βdij)

∑k exp(−βdik)
.

iv. Set stability to the mean of λi = ∑j q2
j [i] over i. If stability is less than the sum of 1

M
and ε, add each qj[i] with a small andom noise for perturbation.

v. Fix all qk[i] and minimize the 1
N ∑

i
∑
k

qk[i] ‖ xi − µk ‖2 with respect to all µm.

vi. If stability < 0.98, set β to β/0.995 and repeat Step ii-v, otherwise halt.

As in previous works [28,29], the algorithm operates under a physical-like annealing
process. Annealing schedules a temperature-like parameter 1

β from sufficiently high to
low values. The expectation of each element in stochastic membership variables and each
adaptive centroid µj are maintained during the physical-like annealing process. At each
intermediate temperature, the algorithm iteratively updates each qj[i] and each centroid µj.
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At the end of the annealing process, the temperature-like parameter is scheduled to suffi-
ciently low values, where the algorithm eventually attains optimal exclusive memberships
and centroids. The mean of λi over i denotes the stability. This quantity is calculated at
step iv. If it is less than the sum of 1

M and a pre-determined small positive value ε, each
qj[i] is added with a noise to escape a trivial state at step iv. If it approaches one at step vi,
the algorithm halts.

References
1. Roweis, S.; Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]

[PubMed]
2. Tenenbaum, J.; Silva, d.V.; Langford, J. A global geometric framework for nonlinear dimensionality reduction. Science 2000,

290, 2319–2323. [CrossRef] [PubMed]
3. Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef]
4. Sorzano, C.O.S.; Vargas, J.; Pascual-Montano, A.D. A Survey of Dimensionality Reduction Techniques. arXiv 2014, arXiv:1403.2877.
5. Afshar, M.; Usefi, H. High-dimensional feature selection for genomic datasets. Knowl. Based Syst. 2020, 206, 106370. [CrossRef]
6. Rabin, N.; Kahlon, M.; Malayev, S. Classification of human hand movements based on EMG signals using nonlinear dimen-

sionality reduction and data fusion techniques. Expert Syst. Appl. 2020, 149, 113281. [CrossRef]
7. Taskin, G.; Crawford, M.M. An Out-of-Sample Extension to Manifold Learning via Meta-Modelling. IEEE Trans. Image Process.

2019, 28, 5227–5237. [CrossRef] [PubMed]
8. Li, H. 1D representation of Laplacian eigenmaps and dual k-nearest neighbours for unified video coding. IET Image Process. 2020,

14, 2156–2165. [CrossRef]
9. Pearson, K.F.R.S. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,

2, 559–572. [CrossRef]
10. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Edu. Psychol. 1933, 24, 417–441. [CrossRef]
11. Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural

Information Processing Systems (NIPS 2001); Dietterich, T., Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA, 2002.
12. Donoho, D.; Grimes, C. Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data. Proc. Natl. Acad.

Sci. USA 2003, 100, 5591–5596. [CrossRef]
13. Torgerson, W.S. Multidimensional scaling: I. Theory and method. Psychometrika 1952, 17, 401–419. [CrossRef]
14. Young, G.; Householder, A.S. Discussion of a set of points in terms of their mutual distances. Psychometrika 1938, 3, 19–22.

[CrossRef]
15. Sammon, J. A nonlinear mapping algorithm for data structure analysis. IEEE Trans. Comput. 1969, 100, 401–409. [CrossRef]
16. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [CrossRef]
17. Ritter, H.; Martinetz, T.; Schulten, K. Reading. Neural Computation and Self-Organizing Maps; Addison-Wesley: Boston, MA, USA, 1992.
18. Kohonen, T. Self-Organizing Maps, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1995.
19. Hu, R.; Ratner, K.; Ratner, E. ELM-SOM plus: A continuous mapping for visualization. Neurocomputing 2019, 365, 147–156.

[CrossRef]
20. Durbin, R.; Willshaw, G. An analogue approach to the traveling salesman problem using an elastic net method. Nature 1987,

326, 689–691. [CrossRef] [PubMed]
21. Durbin, R.; Mitchison, G. A dimension reduction framework for cortical maps. Nature 1990, 343, 644–647. [CrossRef]
22. Widrow, B.; Lehr, M. 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation. Proc. IEEE 1990,

78, 1415–1442. [CrossRef]
23. Wu, J.-M.; Lin, Z.-H.; Hsu, P.-H. Function approximation using generalized adalines. IEEE Trans. Neural Netw. 2006, 17, 541–558.

[CrossRef]
24. Hagan, M.; Menhaj, M. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993.

[CrossRef]
25. Ljung, L. System Identification—Theory for the User; Prentice-Hall: Hoboken, NJ, USA; Englewood Cliffs: Bergen, NJ, USA, 1987.
26. NØrgaard, M.; Ravn, O.; Poulsen, N.K.; Hansen, L.K. Neural Networks for Modelling and Control of Dynamic Systems;

Springer: Berlin/Heidelberg, Germany, 2000.
27. Wu, J.-M. Multilayer Potts Perceptrons with Levenberg–Marquardt Learning. IEEE Trans. Neural Netw. 2008, 19, 2032–2043.

[CrossRef] [PubMed]
28. Wu, J.-M.; Hsu, P.-H. Annealed Kullback—Leibler divergence minimization for generalized TSP, spot identification and gene

sorting. Neurocomputing 2011, 74, 2228–2240. [CrossRef]
29. Wu, J.-M.; Lin, Z.-H. Learning generative models of natural images. Neural Netw. 2002, 15, 337–347. [CrossRef]
30. Tasoulis, S.; Pavlidis, N.G.; Roos, T. Nonlinear Dimensionality Reduction for Clustering. Pattern Recognit. 2020, 107, 107508.

[CrossRef]
31. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
32. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef]

http://doi.org/10.1126/science.290.5500.2323
http://www.ncbi.nlm.nih.gov/pubmed/11125150
http://doi.org/10.1126/science.290.5500.2319
http://www.ncbi.nlm.nih.gov/pubmed/11125149
http://doi.org/10.1126/science.1127647
http://doi.org/10.1016/j.knosys.2020.106370
http://doi.org/10.1016/j.eswa.2020.113281
http://doi.org/10.1109/TIP.2019.2915162
http://www.ncbi.nlm.nih.gov/pubmed/31095481
http://doi.org/10.1049/iet-ipr.2019.1119
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1037/h0071325
http://doi.org/10.1073/pnas.1031596100
http://doi.org/10.1007/BF02288916
http://doi.org/10.1007/BF02287916
http://doi.org/10.1109/T-C.1969.222678
http://doi.org/10.1007/BF00337288
http://doi.org/10.1016/j.neucom.2019.06.093
http://doi.org/10.1038/326689a0
http://www.ncbi.nlm.nih.gov/pubmed/3561510
http://doi.org/10.1038/343644a0
http://doi.org/10.1109/5.58323
http://doi.org/10.1109/tnn.2006.873284
http://doi.org/10.1109/72.329697
http://doi.org/10.1109/TNN.2008.2003271
http://www.ncbi.nlm.nih.gov/pubmed/19054728
http://doi.org/10.1016/j.neucom.2011.03.002
http://doi.org/10.1016/S0893-6080(02)00018-7
http://doi.org/10.1016/j.patcog.2020.107508
http://doi.org/10.1007/BF01386390
http://doi.org/10.1073/pnas.79.8.2554


Mathematics 2021, 9, 1017 18 of 18

33. Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152.
34. Peterson, C.; Söderberg, B. A New Method for Mapping Optimization Problems onto Neural Networks. Int. J. Neural Syst. 1989,

1, 3–22. [CrossRef]
35. Wu, J.-M. Potts models with two sets of interactive dynamics. Neurocomputing 2000, 34, 55–77. [CrossRef]
36. Martin, B.; Jens, L.; André, S.; Thomas, Z. Robust dimensionality reduction for data visualization with deep neural networks.

Graph. Models 2020, 108, 101060.
37. Ding, J.; Condon, A.; Shah, S.P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative

models. Nat. Commun. 2018, 9, 1–13. [CrossRef] [PubMed]
38. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
39. Available online: https://lvdmaaten.github.io/drtoolbox/ (accessed on 29 April 2020).

http://doi.org/10.1142/S0129065789000414
http://doi.org/10.1016/S0925-2312(00)00303-9
http://doi.org/10.1038/s41467-018-04368-5
http://www.ncbi.nlm.nih.gov/pubmed/29784946
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://lvdmaaten.github.io/drtoolbox/

	Introduction 
	Materials and Methods 
	Adaline Neural Modules for Representing Distributed Data Supports 
	NDR Model Learning 
	Clustering Analysis for Learning Receptive Fields 
	Deriving Cluster Supports by Optimizing Adaline Modules 
	Graph Configuration and Neighboring Relations of Cluster Supports 

	Levenberg-Marquardt Learning for Distance-Preserving Mapping and Optimal Posterior Weights 
	Locally Nonlinear Embedding for NDR Mapping 

	Results 
	Discussion 
	Conclusions 
	
	References

