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Abstract: We describe the axiomatic approach to real-valued Systemic Risk Measures, which is a
natural counterpart to the nowadays classical univariate theory initiated by Artzner et al. in the
seminal paper “Coherent measures of risk”, Math. Finance, (1999). In particular, we direct our
attention towards Systemic Risk Measures of shortfall type with random allocations, which consider
as eligible, for securing the system, those positions whose aggregated expected utility is above a
given threshold. We present duality results, which allow us to motivate why this particular risk
measurement regime is fair for both the single agents and the whole system at the same time. We
relate Systemic Risk Measures of shortfall type to an equilibrium concept, namely a Systemic Optimal
Risk Transfer Equilibrium, which conjugates Bühlmann’s Risk Exchange Equilibrium with a capital
allocation problem at an initial time. We conclude by presenting extensions to the conditional,
dynamic framework. The latter is the suitable setup when additional information is available at an
initial time.
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1. Introduction

Both the financial crisis started in 2007 and the dramatic economic shocks related to
the COVID-19 pandemic have brutally proved the partial inadequacy of past approaches
to the management of risk for complex systems of interacting entities. It has become more
and more evident how deep interconnectedness played a major role in propagation of risk
at all levels, from smaller businesses to large scale multinational entities. The literature on
systemic risk has widely focused on modeling the structure of financial networks, aiming
at portraying the spread of shocks (both exogenous and endogenous) in the systems.
These models assume a more or less detailed knowledge of balance sheets of institutions
(interbank network and exposures, recovery rate at default, liquidation policy, bankruptcy
costs, cross-holdings, leverage structures, fire sales, and liquidity freezes). As pointed out
in [1], however, once such models have been implemented, “one still has to understand
how to compare the possible final outcomes in a reasonable way or, in other words, how to
measure the risk carried by the global financial system.”We will adopt here an axiomatic
approach, which addresses specifically this problem. Essentially, this axiomatic approach
identifies suitable maps associated with a risky position for the system (i.e., a vector of
financial positions) a single amount (namely, a real number). Such an amount, intuitively
speaking, summarizes the overall risk of the system. The literature on systemic risk is
nowadays very vast and growing. For empirical studies on banking networks, one might
look at [2–4]. The works [5–9] study interbank lending with a mean field approach and
using interacting diffusions. Concerning systemic risk modeling, we mention among the
many contributions [10] for a classical contagion model, ref. [11] for a default model,
ref. [12–14] for illiquidity cascade models, ref. [15,16] for an asset fire sale cascade model,
and [17] for a model which includes cross-holdings. Further works on network modeling
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are [18–24]. We refer the reader to [25,26] for a detailed overview on the literature on
systemic risk.

In this work, we will mostly focus on real-valued Systemic Risk Measures, which
have been studied in recent works inspired by the axiomatic approach to univariate
monetary Risk Measures of [27]. An alternative, set-valued approach has also gained
significant attention in the literature, as testified, for example, by the recent “Special Issue
on Vector- and Set-Valued Methods in Stochastic Finance and Related Areas” (Finance
Stoch. Volume 25, issue 1, January 2021).

By its own very nature, the classical framework of [27] allows for explicitly modeling
the mechanism of injecting capital in order to make risky positions acceptable and thus
seems a natural environment for treating the systemic case. The classical setup is static,
with deterministic amounts exchanged at initial times and random events that take place
at a terminal time T. To simplify the presentation, we will assume a zero interest rate,
e.g., the time T amounts are already in discounted terms. The presence of additional
information can be modeled by replacing the initial trivial sigma algebra, of the static
case, with a general one. Thus, we will depict the extension of the theory of Systemic
Risk Measures to a dynamic, multiperiod framework. Before discussing this topic, we will
elaborate some details on the static case, which help with developing the intuition of the
main concepts with less technicalities.

2. Univariate Monetary Risk Measures

We denote with L0(Ω,F , P) the set of (equivalence classes of) P−a.s. finite random
variables on the probability space (Ω,F , P).

The framework of [27], which is now textbook material and is excellently exposed
in [28], consists of three essential ingredients. First, the financial positions whose risk
one wants to quantify are represented by random variables X ∈ L0(Ω,F , P), where the
amount X(ω) is interpreted as a gain if positive, loss if negative. Second, it is assumed that
there exists a subset A ⊆L0(Ω,F , P) of random variables that are considered acceptable by
the agent or the financial regulator. The set A is assumed to be monotone that is X ≥ Y,
Y ∈ A⇒ X ∈ A. Finally, the univariate monetary Risk Measure η, which measures the risk of
the positions X ∈ L0(Ω,F , P), is defined as the minimal amount m ∈ R that must be added to
X in order to make the resulting (discounted) payoff acceptable that is

X 7→ η(X) := inf{m ∈ R | X + m ∈ A}. (1)

A key feature of such a map is the cash additivity property:

η(X + m) = η(X)−m, for all m ∈ R.

As this property points out, it is necessary (and meaningful) to express X, m and η(X)
in the same monetary unit, and this allows for the monetary interpretation of η(X) as a
value which can be effectively added to X. Assuming that the set A is convex (respectively
is a convex cone) the map in (1) is convex (respectively convex and positively homogeneous)
and is called convex (respectively coherent) Risk Measure, see [29,30]. A rather conservative
example of coherent Risk Measure is the worst case Risk Measure ρW : L0(Ω,F , P) →
R∪ {±∞} associated with the cone AW := L0

+(Ω,F , P) of non-negative random variables

ρW(X) := inf
{

m ∈ R | X + m ∈ AW
}
= −ess inf(X). (2)

Convexity is meant to express mathematically the principle of diversification, which is
summarized in the famous saying “don’t put all your eggs in one basket”. Diversification
might also be expressed with the weaker condition of quasiconvexity

η(λX + (1− λ)Y) ≤ max{η(X), η(Y)}, λ ∈ [0, 1],
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which accurately express the principle that diversification can not increase the risk. As a
result, in [31,32], quasi-convex Risk Measure is only assumed to satisfy monotonicity and
quasi-convexity. Any quasi-convex Risk Measures can be written in the form

η(X) = inf{m ∈ R | X ∈ Am} (3)

where each set Am ⊆ L0(Ω,F , P) is monotone and convex, for each m. The set Am models
the class of payoffs carrying the same risk level m. In the quasi-convex case, several degrees
of acceptability, expressed via the risk level m (see also [33]), are admitted. This marks a
difference with the convex and cash additive case, in which each financial position is either
acceptable or not acceptable.

3. Systemic Risk Measures

Let us now consider a financial system of N agents or institutions, portrayed by
the exposures X = [X1, . . . , XN ] ∈ (L0(Ω,F , P))N . Given the theory of univariate Risk
Measures, a natural first step to design the measurement of the risk of the system consists
in applying (possibly different) Risk Measures ηn to Xn, n = 1, . . . , N, and then aggregate
the resulting amounts as ρ(X) := ∑N

n=1 ηn(Xn). This approach is clearly quite naïf, since
it almost completely ignores the multivariate nature of the exposures X (if e.g., ηn is law
invariant for each n, the amount ρ(X) only depends on the marginals of the vector X) and,
more generally, it does not take into account the fact that securing each component of X is
in principle not enough to secure the system as a whole.

It is worth noticing that, in the above mentioned classical theory of univariate Risk
Measures, the valuation of the risk is obtained by aggregating the scenario-dependent
exposures into a deterministic amount, namely η(X), securing the financial positions. This
rather trivial remark, however, stresses the fact that, for the systemic case, one needs
to identify a second aggregation mechanism over the components of the system. This
aggregation over agents in the system can be obtained in several different ways (both
conceptually and mathematically), as we now explain.

3.1. First Aggregate, Then Allocate

In the axiomatic approach to Systemic Risk Measures, the objective is thus the identi-
fication of a functional ρ : (L0(Ω,F , P))N → R that evaluates the overall risk ρ(X) of the
whole system X = [X1, . . . , XN ] ∈ (L0(Ω,F , P))N . A significant part of recent literature
has focused on Systemic Risk Measures in the form

ρ(X) = η(Λ(X)) (4)

where η : L0(Ω,F , P) → R is a univariate monetary Risk Measure and Λ : RN → R
expresses an aggregation rule which provides a univariate risk factor Λ(X). We observe
here that Λ(X) stands for the random variable ω 7→ Λ ◦ X(ω). One of the most common
and natural choices is Λ(x) = ∑N

j=1 xj, x = [x1, ..., xN ] ∈ RN , see, e.g., the systemic Expected
Shortfall introduced in [34], or the Contagion Value at Risk (CoVaR) introduced in [35].
Among the drawbacks of this approach, we mention that this aggregation rule seems
not entirely appropriate when modeling systems in which cross-subsidization between
institutions might be rather unrealistic. Moreover, in this case, a more traditional approach
consisting of applying a univariate (coherent) Risk Measure η to the single risky positions
would be prudent enough. The latter claim is a consequence of the fact that, by sub-linearity
of coherent Risk Measures, it holds that η(∑N

n=1 Xn) ≤ ∑N
n=1 η(Xn).

A possible aggregation function that takes into account the lack of cross-subsidization
between financial institutions is the summation of losses below a given threshold: Λ(x) =
∑N

n=1−(xn − dn)−, where x− := −min(x, 0). Such an approach is adopted for example
in [36,37], and generalized in [38] where also the effect of gains (positive parts) is considered
by using Λ(x) = −∑N

n=1 αn(xn)− + ∑N
n=1 βn(xn − dn)+. Contagion effects in the style of
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the model in [10] can be also taken into account as in [39]. The aggregation rule is in this
case given in the form

ΛCM(x) = min
yi≥xi+∑N

n=1 Πinyn ,∀i=1,··· ,N, y∈RN
+

{
N

∑
n=1

yn

}
.

The matrix Π = (Πij)i,j=1,··· ,N represents the relative liability matrix, i.e., firm i has to
pay the proportion Πij of its total liabilities to firm j. It is of great importance to specify that,
in this last case, the vector X is interpreted as future profits and losses before propagation of
shocks and contagion take place. An alternative approach, which is adopted when working
with aggregations of the form Λ(x) = ∑N

n=1 xn and Λ(x) = ∑N
n=1−(xn − dn)− assumes

that the random vector X already incorporates the potential exposures due to contagion
effects. Systemic Risk Measures of the form X 7→ η(Λ(X)) are characterized axiomatically
in [39] on a finite state space, in [40] on a general probability space, and in [41,42] in a
conditional setting. These references also present further examples of possible aggregation
functions. Whenever η in (4) is a monetary Risk Measure, the characterization (1) allows
for writing

ρ(X) := inf{m ∈ R | Λ(X) + m ∈ A} . (5)

Thus, systemic risk can again be interpreted as the minimal cash amount that secures the
system when it is added to the total aggregated system loss Λ(X). In the cases when Λ(X) can
not be directly interpreted as cash, then ρ(X) has to be understood in a mild sense as some
risk level of the system, rather than the more explicit and practical meaning as a capital
requirement. As explained in [1], a considerable portion of existing Risk Measures in the
literature are in the form (5): the DIP of [36,43], the CoVar ([35]), the MES ([34]), and many
other examples that can be found in [44].

3.2. First Allocate, Then Aggregate

An alternative approach, introduced by [1], consists of measuring systemic risk as
the minimal cash that secures the aggregated system by adding the capital into the single
institutions before aggregating their individual risks. This is particularly meaningful when
aiming at securing the whole system by intervention at the level of single agents. If again
Λ : RN → R denotes an aggregation function, this second approach can be expressed as

ρ(X) := inf

{
N

∑
n=1

mn | m = [m1, ..., mN ] ∈ RN , Λ(X + m) ∈ A
}

. (6)

Here, the amount mn is added to the financial position Xn of institution n ∈ {1, ..., N}
before the corresponding aggregation Λ(X + m) takes place. This procedure is conceptually
relevant once we realize that injecting cash first might prevent cascade effects and contagion
to happen at all. The systemic risk is then measured as the minimal (total) amount ∑N

n=1 mn

injected into the institutions to secure the system.
A related concept, also based on acceptance sets, is developed by [45] in the context

of set-valued Systemic Risk Measures. The authors also admit capital injection before
aggregating individual risks (this is called aggregation mechanism sensitive to capital
levels in [45]). However, the latter approach and the one presented in (6) are hardly
comparable due to the intrinsic conceptual differences in considering total amounts of
capital to secure the system (as in (6)) versus set-valued approaches.

A risk measurement regime in the form (6) has a significant advantage with respect
to the one described in Section 3.1. Indeed, assume for the sake of the discussion that (5)
and (6) admit optima m(5) ∈ R, m(6) ∈ RN , respectively. In contrast to (5), we then see
that (6) addresses not only the problem of determining a total amount ρ(X) to secure the
system as a whole, but also determines a way to decompose the total risk ρ(X) into partial
risk allocations mn

(6) ∈ R to be attributed to each institution n: since ρ(X) = ∑N
n=1 mn

(6), it is
self evident that this procedure is consistent with the computation of the overall risk ρ(X).
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On the contrary, the amount m(5) secures the system in a less explicative way, especially
from the point of view of a regulator imposing capital requirements to each institution.
Once the amount m(5) is identified, it is yet to be specified if and how each component of
the system participates in the benefits of its allocation.

Dual representation results have been obtained in [1] in the “first allocate, then aggre-
gate” case and by [46] in both cases for Systemic Risk Measures based on acceptance sets.
Duality results have also been studied for set-valued Systemic Risk Measures of the “first
aggregate, then allocate type” in [47].

3.2.1. Multivariate Shortfall Risk Allocation

A particular case of Systemic Risk Measures of the type “first allocate, then aggre-
gate”has been specifically studied in [48]. The authors consider a loss function ` : RN →
(−∞,+∞], which is nondecreasing in the componentwise order, convex, lower semicontin-
uous and such that inf ` < 0 and `(x) ≥ ∑N

n=1 xn − c for some constant c. Such a functional
` extends to the multivariate case the loss functions considered in [28]. The multivariate
shortfall risk of the position X is then defined as

R(X) := inf

{
N

∑
n=1

mn | m ∈ RN ,E[`(X−m)] ≤ 0

}
.

A clever way to tackle this optimization problem and to get its dual representation
is to apply the powerful theory of Orlicz spaces (for an overview of Orlicz space theory
applied to utility maximization problem, we refer to [49]). Consider the multivariate Orlicz
heart induced by the loss function `, namely Mθ := {X ∈ (L0(Ω,F , P))N | E[θ(λ|X|)] <
+∞ ∀λ > 0}, where θ(x) := `(|x|) and |·| is taken componentwise.

By suitably restricting the domain of R to Mθ , the map R is found to be real-valued,
convex, monotone, and translation invariant (R(X + m) = R(X) − ∑N

n=1 mn). As the
topological dual of Mθ is the Orlicz space Lθ∗ associated with the convex conjugate θ∗ of θ,
a dual representation of R based on the duality (Mθ , Lθ∗ ) holds true (see [48] Theorem 2.10).
Assuming permutation invariance for `, i.e., `(x) = `(π(x)) for every componentwise
permutation π, optimal allocations are proved to exist and are characterized in terms of
Lagrange multipliers ([48] Theorem 3.4).

If one selects loss functions of the form `(x) = ∑N
n=1 `n(xn) for univariate loss func-

tions `1, . . . , `N , the amount R(X) only depends on the (one dimensional) marginals of the
law PX on RN . Thus, in order to capture the truly multivariate nature of the risk associated
with the position X of the system, one needs to consider more sophisticated functions `.
The choice of a particular the loss function

`(x) :=
N

∑
n=1

xn +
1
2

N

∑
n=1

((xn)+)2 + α
N

∑
1≤k≤j≤N

(xj)+(xk)+ − 1

allows for studying systemic sensitivity of shortfall risk and its allocation, impact of
exogenous shocks, and computational aspects of the risk allocations, namely of the optimal
allocations mX satisfying ∑N

n=1 mn
X = R(X).

As we shall see in the following section, allowing for scenario-dependent allocations in
place of the deterministic ones in [48] can prevent in general the aforementioned drawback
of marginal dependencies, even in the case of aggregation of single institutions’ loss
functions ∑N

n=1 `n(xn).

3.3. Scenario-Dependent Allocation

The approach described in Section 3.2 can be generalized replacing the deterministic
amounts m ∈ RN with random vectors Y ∈ C ⊆ (L0(Ω,F , P))N . Here, C stands for a set
of admissible assets with possibly random, scenario-dependent payoffs. This approach,
introduced by [1], raises the question on the initial time evaluation of those assets Y in C: since
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now the vector m will be substituted with a random vector Y, the simple componentwise
addition ∑N

n=1 mn implemented in (6) has no natural counterpart.
Following [50], however, one can assign a measurement π(Y) of the risk (or the cost)

associated with Y ∈ C, by postulating the existence of a evaluation map

π : C → R,

which is assumed to be monotone increasing. Under these premises, (6) can be extended as

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Λ(X + Y) ∈ A} . (7)

For the sake of interpretation, C could be a set of (vectors of) admissible financial
assets that can be used to secure the system. Adding Y to X componentwise yields the
terminal time value X + Y. Aggregation via Λ allows for determining whether the addition
of Y produces an acceptable position, and π(Y) is the valuation of Y. An example for π
and C which will play a major role is:

C ⊆
{

Y ∈ (L0(Ω,F , P))N |
N

∑
n=1

Yn ∈ R
}

=: CR, (8)

and π(Y) = ∑N
n=1 Yn. Here, the notation ∑N

n=1 Yn ∈ R means that ∑N
n=1 Yn is equal to

some deterministic constant in R, even though each single Yn, n = 1, · · · , N, is a random
variable. Then, as in (6), the Systemic Risk Measure

ρ(X) := inf

{
N

∑
n=1

Yn | Y ∈ C, Λ(X + Y) ∈ A
}

can again be interpreted as the minimal total cash amount ∑N
n=1 Yn ∈ R needed at an

initial time to secure the system by distributing the cash at the future time T among the
components of the risk vector X. However, as opposed to (6), in general, the allocation
Yi(ω) to institution i does not need to be known at an initial time, but depends instead on
the scenario ω ∈ Ω that has been realized at time T. As mentioned in [51], “this corresponds
to the situation of a lender of last resort who is equipped with a certain amount of cash
today and who will allocate it according to where it serves the most depending on the
scenario that has been realized at T”. Additional restrictions and constraints on the possible
allocations of cash are given by the set C. The Systemic Risk Measures with deterministic
allocations presented in Section 3.1 can be absorbed in this setup by the extreme choice
C = RN .

3.4. Multidimensional Acceptance Set

The Systemic Risk Measure (7) is a particular instance of the wider class of Systemic
Risk Measures defined through a general monotone multidimensional acceptance set
A⊆(L0(Ω,F , P))N

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X + Y ∈ A}. (9)

Indeed, for given A⊆L0(Ω,F , P) and Λ and setting

A :=
{

Z ∈ (L0(Ω,F , P))N | Λ(Z) ∈ A
}

, (10)

we have X + Y ∈ A iff Λ(X + Y) ∈ A. Obviously, not all multidimensional set Amay be
written in the form (10), as, for example, if A := A1×...×AN and An⊆L0(Ω,F , P) for each
n. Observe that, applying the definition (9), this latter acceptance set A generates the Risk
Measure ρ(X) = ∑N

n=1 ηAn(Xn), where each univariate Risk Measure ηAn is associated with
the set An.
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In analogy to (3), another possible generalization of (7) is achieved, see [1], by allowing
the acceptance set AY ⊆(L0(Ω,F , P))N to depend on the vector Y ∈ C and by defining the
quasi-convex map as:

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, X ∈ AY}. (11)

In the remainder of this paper, however, we will focus only on real-valued convex
Systemic Risk Measures defined via an aggregator functional and one dimensional accep-
tance set.

4. Axiomatic Definition of Systemic Risk Measures

As anticipated before, we present now the Systemic Risk Measures theory developed
by [1], which parallels the classical axiomatic definition of univariate Risk Measures via
acceptance sets. Again, (L0(Ω,F , P))N is the set of (equivalence classes of) vectors of
P−a.s. finite random variables. The space (L0(Ω,F , P))N equipped with the classical
componentwise P-a.s. order relation is a vector lattice. All inequalities between vectors of
random variables are meant to hold the P-.a.s.. We recall that a map f : (L0(Ω,F , P))N →
L0(Ω,F , P) is monotone decreasing if X2 ≥ X1 implies f (X1) ≥ f (X2). Analogously for
functions f : (L0(Ω,F , P))N → [−∞, ∞]. As usual, a map f : (L0(Ω,F , P))N → [−∞, ∞]
is convex if

f (λX1 + (1− λ)X2) ≤ f (λX1) + f ((1− λ)X2) ∀λ ∈ [0, 1].

A vector X = [X1, . . . , XN ] ∈ (L0(Ω,F , P))N denotes a configuration of risky factors
at a future time T associated with a system of N entities. Let

C ⊆ (L0(Ω,F , P))N A ⊆ L0(Ω,F , P)

be the set of admissible allocations at terminal time and acceptable positions, and consider
a map

π : C → R

so that π(Y) stands for the risk (or cost) associated with Y. Finally let Θ : (L0(Ω,F , P))N ×
C → L0(Ω,F , P) denote some aggregation function, jointly in X and Y.

Definition 1. The Systemic Risk Measure associated with C,A, Θ and π is the map ρ : (L0(Ω,F , P))N

→ [−∞, ∞] defined by

ρ(X) := inf{π(Y) ∈ R | Y ∈ C, Θ(X, Y) ∈ A} . (12)

The map ρ is a Convex Systemic Risk Measure if it is monotone decreasing and convex on
{ρ(X) < +∞}.

As is customary, we convene that inf{∅} = +∞. This definition translates mathe-
matically the idea that the systemic risk of a random vector X is measured by the minimal
risk (cost) of those random vectors Y that make X acceptable if appropriately aggregated.
Among the many advantages of the general formulation (12) is the possibility to design
Systemic Risk Measures that include both the case “first allocate, then aggregate” as in (6)
and (7) by putting Θ(X, Y) =Λ(X+Y), and the case “first aggregate, then allocate” as in (5)
by putting Θ(X, Y) :=Λ1(X)+Λ2(Y), where Λ1 : (L0(Ω,F , P))N → L0(Ω,F , P) is an ag-
gregation function and Λ2 : C → L0(Ω,F , P) could be, for example, the total discounted
cost of Y.

Moreover, it is readily verified that the framework of Section 3.2.1 can be embedded
in the one in (12). As shown in Proposition 4.1 [1], there are simple conditions ensuring
that ρ in (12) is a convex Systemic Risk Measure.
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Proposition 1. Suppose that A⊆L0(Ω,F , P) and C ⊆ (L0(Ω,F , P))N are convex, A is mono-
tone, Θ : (L0(Ω,F , P))N × C → L0(Ω,F , P) is concave and Θ(·, Y) is increasing for all Y ∈ C,
then ρ defined (12) is a convex Systemic Risk Measure.

Remark 1. For the sake of generality, the Definition 1 is given with no integrability assumptions
on either X or Y and admitting the values +∞ and −∞ for the functional ρ. Nevertheless, if a more
detailed analysis is to be carried over, a restriction to suitable spaces is in place. The motivations
are analogous to those of the univariate case, where the most common restrictions are those to
Lp(Ω,F , P) p ∈ [1, ∞] or to more general Orlicz spaces and Orlicz hearts. It is clear, and it was
shown in detail [52], that finiteness of ρ can not be guaranteed if working on unrestricted vector
spaces, as for example L0(Ω,F , P).

Practice shows that selecting an appropriate environment for the variables X in order to have
ρ(X) > −∞ is best done on a case-by-case manner: in [48,53], finiteness is, for example, achieved
by working on Orlicz hearts.

Guaranteeing ρ(X) < +∞, instead, lends itself to structural assumptions on C and A and Θ.
For example, under the same assumptions of Proposition 1 , if additionally

•
{

m1 ∈RN |m ∈ R+, 1 := [1, ...,1]
}
⊆ C,

• Θ(−m1, m1) ∈A for all m ∈ R+,

Then, ρ defined by (12) satisfies ρ(X) < +∞ for all X ∈ (L∞(Ω,F , P))N . Indeed, setting
m := maxj ‖ X j ‖∞, we deduce Θ(X, m1) ≥Θ(−m1, m1) ∈A, hence the monotonicity of A
implies that also Θ(X, m1) ∈A.

Example 1. We mention a few basic examples, taken from [1], to construct Risk Measures by using
the acceptance set AW associated with the worst case Risk Measure (see (2)) and the aggregation
function

Λd(X) :=
N

∑
n=1
−(Xn − dn)−.

Possible candidates for the set of terminal time allocations C are, on one hand, the deterministic
allocations C = RN and, on the other hand, the family of so-called “constrained scenario-dependent
cash allocations”. Recall the definition of CR in (8) and consider the sets

Cγ :=
{

Y ∈ CR | Yi ≥ γi i = 1, ...N
}

for γ := [γ1, ..., γN ], γi ∈ [−∞, 0]. If γ := [−∞, ...,−∞] this family of subsets includes
C∞ = CR. The valuation function is defined as

π(Y) :=
N

∑
n=1

Yn.

Then, all the following can be expressed in the form described in Definition 1:

ρag(X) := inf
{

y ∈ R | Λ0(X) + y ∈ AW
}
= ρW

(
N

∑
n=1
−(Xn)−

)

ρR
N
(X) := inf

{
π(Y)| Y ∈ RN Λ0(X + Y) ∈ AW

}
=

N

∑
n=1

ρW(Xn)

ργ(X) := inf
{

π(Y)| Y ∈ Cγ Λ0(X + Y) ∈ AW
}
= ρW

(
N

∑
n=1

(
Xn1{Xn≤−γn} − γ1{Xn>−γn}

))
.
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5. Risk Measures Associated with Utility Functions and Fairness Concepts

Given the general framework for measuring systemic risk presented in the pre-
vious sections, a particular choice π, C, A clearly allows for a more detailed analysis.
We here present some of the main findings in [53]. The starting point is fixing the ag-
gregation function Λ(x) = ∑N

n=1 un(xn) for utility functions un, n = 1, . . . , N, repre-
senting preferences of the single agents in the system. We consider the acceptance set
A = {Z ∈ L1(Ω,F ,P), E[Z] ≥ B} for a given constant B, a class of feasible allocation C
such that

C ⊆ CR ∩ L,

where the set CR was introduced in (8), and the cost functional π : C →R defined by
π(Y) = ∑N

n=1 Yn. The space L ⊆ (L0(Ω,F , P))N serves as an environment for the risky
positions of the system X and describes possible integrability conditions. The Systemic
Risk Measure introduced in Definition 1 then takes the form

X ∈ L 7→ ρB(X) := inf
Y∈C⊆CR

{
N

∑
n=1

Yn | E
[

N

∑
n=1

un(Xn + Yn)

]
≥ B

}
. (13)

Thus, ρB(X) represents the minimal total cash amount ∑N
n=1 Yn ∈ R needed at an

initial time to secure the system by distributing the cash at the future time T among the
components of the risk vector X. By considering scenario-dependent allocations, possible
dependencies among the banks are taken into account, as the budget constraints in (13)
will not depend only on the marginal distribution of X. As already mentioned before, this
would be the case for deterministic Yn.

The choice of a space L allows for a more detailed study, e.g., for the problem of
finiteness of the Systemic Risk Measures. In [53] the subspace L is determined by the
Orlicz hearts associated with the utility functions u1, . . . , uN . This specific choice of the
underlying space has been popularized in several recent works in the non systemic case.
Indeed, univariate convex Risk Measures on Orlicz spaces have been introduced by [49]
and [54] and deeply analyzed in several works. Just to mention a few, we address the
reader to [55–60]. If u : R → R is concave, increasing and satisfies limx→−∞

u(x)
x = +∞

(say, for example, a utility function satisfying the Inada conditions), then the function
φ(x) := −u(−|x|) + u(0) is a strict Young function that is: φ : R → [0,+∞) is even and
convex on R, φ(0) = 0 and limx→+∞

φ(x)
x = +∞.

The Orlicz space Lφ and Orlicz heart Mφ are then defined respectively as

Lφ :=
{

X ∈ L0(R) | E[φ(αX)] < +∞ for some α > 0
}

,

Mφ :=
{

X ∈ L0(R) | E[φ(αX)] < +∞ for all α > 0
}

,

and they are Banach spaces when endowed with the Luxemburg norm.
Once one realizes that requesting the integrability condition E[φ(X)] < +∞ au-

tomatically yields E[u(X)] > −∞, it is easy to reach the conclusion that the Orlicz
framework is a very natural setup when working with utility maximization problems.
A detailed discussion on this can be found in [49]. Just to mention a few key prop-
erties that will help with understanding our discussion in the following, the topologi-
cal dual of Mφ is the Orlicz space Lφ∗ , where the convex conjugate φ∗ of φ, defined by
φ∗(y) := supx∈R{xy− φ(x)}, y ∈ R, is also a strict Young function. It is also well known
that L∞(Ω,F , P) ⊆ Mφ ⊆ Lφ ⊆ L1(Ω,F , P). In addition, for a probability measure Q� P
such that dQ

dP ∈ Lφ∗ , the inclusion Lφ ⊆ L1(Ω,F , Q) also holds true.
Given the utility functions u1, . . . , uN : R → R with associated Young functions

φ1, . . . , φN , the underlying space L is given by

L = MΦ := Mφ1 × · · · ×MφN .
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Moreover, the space LΦ∗ := Lφ∗1 × · · · × Lφ∗N , induced by the conjugates of the func-
tions φ1, . . . , φN , is the topological dual space of MΦ and the dual system (MΦ, LΦ∗ ) will be
useful to obtain dual representation results. The following set of assumptions allows for
several interesting findings on properties of the functional ρB. They are tacitly assumed in
Section 5.

Assumption 1.

1. C0 ⊆ CR and C = C0 ∩MΦ is a convex cone satisfying RN ⊆ C ⊆ CR.
2. For all n = 1, . . . , N, un : R→ R is increasing, strictly concave, differentiable, and satisfies

the Inada conditions

u′n(−∞) := lim
x→−∞

u′n(x) = +∞, u′n(+∞) := lim
x→+∞

u′n(x) = 0.

3. B < Λ(+∞), i.e., there exists M ∈ RN such that ∑N
n=1 un(Mn) ≥ B.

4. For all n = 1, . . . , N, it holds that, for any probability measure Q� P

E
[

vn

(
dQ
dP

)]
< ∞ iff E

[
vn

(
λ

dQ
dP

)]
< ∞, ∀λ > 0,

where vn(y) := supx∈R{un(x)− xy} denotes the convex conjugate of un.

Under these assumptions, the functional ρB turns out to be finite-valued, monotone
decreasing, convex, continuous, and subdifferentiable on L ([53] Proposition 2.4). The fol-
lowing results highlight a natural counterpart for the multivariate case of well-known
ones for (univariate) Risk Measures. The proof is based on an automatic continuity result,
namely on the extended Namioka–Klee Theorem 1 [61].

Proposition 2 ( [53], Proposition 3.1). For any X ∈MΦ,

ρB(X) = max
Q∈D

{
N

∑
n=1

EQn [−Xn]− αB(Q)

}
=

N

∑
n=1

EQn
X
[−Xn]− αB(QX), QX ∈ D, (14)

where the penalty function is given by

αB(Q) := sup
Z∈A

{
N

∑
n=1

EQn [−Zn]

}
,

with A := {Z ∈MΦ | ∑N
n=1 E[un(Zn)] ≥ B} and

D := dom(αB) ∩
{

dQ
dP
∈ LΦ∗

+ | Qn(Ω) = 1 ∀n and

N

∑
n=1

(EQn [Yn]−Yn) ≤ 0 for all Y ∈ C0 ∩MΦ
}

, (15)

where dom(αB) := {Q = [Q1, . . . , QN ] | Qn � P ∀n and αB(Q) < +∞}.
(i) Suppose that, for some i, j ∈ {1, . . . , N}, i 6= j, we have ±(ei1A − ej1A) ∈ C for all

A ∈ F ,where e1, . . . , eN are the elements of the canonical basis of RN . Then,

D = dom(αB) ∩
{

dQ
dP
∈ LΦ∗

+ | Qn(Ω) = 1 ∀n, Qi = Qj and

N

∑
n=1

(EQn [Yn]−Yn) ≤ 0 for all Y ∈ C
}

.
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(ii) Suppose that ±(ei1A − ej1A) ∈ C for all i, j and all A ∈ F . Then,

D = dom(αB) ∩
{

dQ
dP
∈ LΦ∗

+ | Qn(Ω) = 1, Qn = Q, ∀n
}

.

A first relevant consequence of the dual representation result above is that it allows
for establishing existence of allocations for the minimization problem expressed by ρB. It
is remarkable that a solution is not known to exist in the space L, thus an enlargement of
the domain of optimization is needed (as customary, for example, in the classical utility
maximization problems). An additional assumption is needed to establish existence.

Definition 2. The set C0 is closed under truncation if, for each Y ∈ C0, there exists mY ∈ N
and cY = [c1

Y, . . . , cN
Y ] ∈ RN such that

N

∑
n=1

cn
Y =

N

∑
n=1

Yn := cY ∈ R

and for all m ≥ mY

Ym := Y1∩N
n=1{|Yn |<m} + cY1∪N

n=1{|Yn |≥m} ∈ C0.

It is easy to check that CR satisfies this property, and other examples are provided in
Section 5.1. For the existence of the optimal allocations in ρB (in an extended sense), we
will need the set

L1(P; QX) := (L1(Ω,F , P))N ∩ L1(Ω,F , Q1
X)× · · · × L1(Ω,F , QN

X ) .

Theorem 1 ( [53], Theorem 4.19). Let C = C0 ∩ MΦ and suppose that C0 ⊆ CR is closed
for the convergence in probability and closed under truncation. For any X ∈ MΦ, there exists
ỸX ∈ C0 ∩ L1(P; QX) such that

N

∑
n=1

Ỹn
X ∈ R, E

[
N

∑
n=1

un(Xn+Ỹn
X)

]
≥ B,

N

∑
n=1

(
EQn

X

[
Ỹn

X
]
− Ỹn

X

)
= 0,

and

ρB(X) = inf

{
N

∑
n=1

Yn | Y ∈ C0 ∩MΦ, E
[

N

∑
n=1

un(Xn+Yn)

]
≥ B

}
=

N

∑
n=1

Ỹn
X

= min

{
N

∑
n=1

Yn | Y ∈ C0 ∩ L1(P; QX), E
[

N

∑
n=1

un(Xn+Yn)

]
≥ B

}
=: ρ̃B(X),

so that ỸX is the solution to the extended problem ρ̃B(X).

The dual representation in Proposition 2 also allows for linking the Systemic Risk
Measure based on random allocations (13) to one based on allocation of deterministic
amounts. To this end, suppose that a probability vector Q = [Q1, . . . , QN ] is given. Treating
the vector of probability measures Q as a vector of pricing measures, it is possible to
introduce a Systemic Risk Measure that is quite naturally associated with Q by

ρQ
B (X) := inf

Y∈L

{
N

∑
n=1

EQn [Yn] | E
[

N

∑
n=1

un(Xn + Yn)

]
≥ B

}
. (16)
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The amount ρQ
B (X) represents the minimal systemic cost ∑N

n=1 EQn [Yn] among all
Y ∈ L which fulfill the acceptability constraint E[∑N

n=1 un(Xn + Yn)] ≥ B.
Similarly, one may introduce the systemic utility maximization problem in the case when

the valuation of the allocations is assigned by the expectation under Q that is:

πQ
A (X) := sup

Y∈L

{
E
[

N

∑
n=1

un(Xn + Yn)

]
|

N

∑
n=1

EQn [Yn] ≤ A

}
. (17)

One can also consider its counterpart

πA(X) := sup

{
E
[

N

∑
n=1

un(Xn + Yn)

]
| Y ∈ C,

N

∑
j=1

Y j ≤ A

}
.

Notice that, both in (16) and (17), the allocation Y belongs to a vector space L of random
variables, without the requirement Y ∈ CR. The problem πQ

A (X) is a maximization of the
expected systemic utility among all Y ∈ L satisfying the budget constraint ∑N

n=1 EQn [Yn] ≤ A.
The Systemic Risk Measures ρB and ρQ

B defined in (13) and (16) are a priori different
objects: even though they both subsume the same systemic budget constraint (expected
systemic utility above a certain threshold B), ρB is defined only through the cash amount
∑N

n=1 Yn ∈ R, while ρQ
B relies on the computation of the value (or the cost) of the random

allocations ∑N
n=1 EQn [Yn]. A similar comparison applies to πA and πQ

A . In [53], it is
shown that:

(i) the optimizer QX = [Q1
X, . . . , QN

X ] of the dual problem (14) satisfies

ρB(X) = ρ
QX
B (X), πA(X) = π

QX
A (X);

(ii) if A := ρB(X), the four problems above share the same (unique) solution YX;
(iii) the dual optimizer QX also satisfies

N

∑
n=1

EQXn [Y
n
X ] = ρB(X) (18)

which can be interpreted saying that it determines a systemic risk allocation
[EQ1

X
[Y1

X], . . . ,EQN
X
[YN

X ]];

(iv) ρB(X) = maxQ∈D ρQ
B (X) = ρ

QX
B (X), forD defined in (15). Drawing a parallel between

this property and related findings in utility maximization theory, one might say that
the domain D plays the same role here of the set of martingale measures for the
underlying stock in the classical theory.

Several conclusions can be drawn from the points above. Firstly, ρ
QX
B is a valid

alternative to ρB (sharing same value and solution) and can then be used to compute
the systemic risk. Additionally, (18) explains how the pricing operators given by EQX [·]
provide a valuation for the risk component Yn

X of the optimal allocation which is consistent
with ρB. Items (ii–iv) above also suggest how QX can be considered as pricing/valuation
measure for allocating the amount ρB(X) at initial time. More precisely:

Definition 3. A vector (ρn(X))n=1,...,N ∈ RN is a systemic risk allocation of ρ(X) if it fulfills
∑N

n=1 ρn(X) = ρ(X). The requirement ∑N
n=1 ρn(X) = ρ(X) is known as the “Full Allocation”

property; see, for example, [38].

In the case of deterministic allocations Y ∈ RN , i.e., C = RN , the optimal deterministic
YX is a somehow canonical risk allocation ρn(X) := Yn

X ∈ R. For general (random) alloca-
tions Y ∈ C ⊂ CR, at first glance, there is no direct counterpart of such a natural systemic
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risk allocation. However, as mentioned above, the properties listed above regarding ρB(X)
and ρ

QX
B (X) provide evidence of the fact that a natural choice is

ρn(X) := EQn
X
[Yn

X ] for n = 1, . . . , N. (19)

5.1. Interpretation and Implementation of ρ(X)

One main economic justification for the use of ρB as in (13) for systemic risk valuation
is that the optimal allocation YX of ρB(X) maximizes the expected systemic utility among
all random allocations of cost less than or equal to ρB(X) (problem πA, using Item (ii) on
page 12).

The class C determines the level of risk sharing between the banks, ranging from no
risk sharing in the case of deterministic allocations C = RN , to the case of full risk sharing
C = CR. In between, several intermediate cases can be considered: fix h ∈ {1, . . . , N}
clusters of institutions, set n := [n1, . . . , nh] ∈ Nh, be the corresponding partition of
{1, · · · , N} and let Im, m = 1, . . . , h denote the set of institutions belonging to the m-group.
Then, the sets C(n) = C(n)0 ∩ L, where

C(n)0 = {Y ∈ L0(RN) | ∃ d = [d1, . . . , dh] ∈ Rh :

∑
i∈Im

Yi = dm for m = 1, . . . , h} ⊆ CR, (20)

model a whole family of possible restrictions for allocations. Indeed, the conditions
∑i∈Im Yi = dm model a constrained sharing and allocation procedure among the agents in
the sole cluster Im.

We conclude reporting some relevant remarks made in conclusion of the analysis
in [53], explaining once again the relevance and potentiality of the family of Systemic Risk
Measures in the form (13).

(a) “the mechanism can be described as a default fund as in the case of a CCP”. Indeed,
the properties of ρB inspire the following procedure: at time 0, according to some sys-
temic risk allocation ρn(X) n = 1, . . . , N, satisfying ∑N

n=1 ρn(X) = ρB(X), the amount
ρB(X) is collected. ρn could be determined consistently using (19). At terminal time,
the amount ρB(X) is distributed among the institutions according to Yn

X , the optimal
scenario-dependent allocations satisfying ∑N

n=1 Yn
X = ρB(X), so that “the fund acts as

a clearing house ” .
(b) Alternatively, in terms of capital requirements and risk sharing mechanism, at time 0,

ρn(X) (a capital requirement) is associated with each institution n = 1, . . . , N in the
system. At terminal time, each bank provides (if negative) or collects (if positive) the
amount Yn

X − ρn(X). This means that, at terminal time, a risk sharing mechanism takes
place. Observe that this sharing mechanism is possible given that

N

∑
n=1

(Yn
X − ρn(X)) =

N

∑
n=1

Yn
X −

N

∑
n=1

ρn(X) = ρB(X)− ρB(X) = 0.

Remarkably, there is an incentive for a single bank to enter in such a mechanism,
based on the principle of choosing a fair risk allocation, as explained below.

A fundamental issue for each financial institution is to decide whether its allocated
share of the total systemic risk determined by the risk allocation [EQ1

X
[Y1

X], . . . ,EQN
X
[YN

X ]]

is fair. With the choice Q = QX, it is possible to show ([53], Corollary 4.3, Lemma 4.5 and
(4.11)) that

πA(X) = π
QX
A (X) = max

∑N
n=1 an=A,

N

∑
n=1

sup
EQn

X
[Yn ]=an

E[un(Xn + Yn)]. (21)
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When the amount A is chosen to be equal to the risk measurement for the system that is
A = ρB(X), YX is the solution of π

QX
A (X), EQXn [Yn

X ] = an
∗ maximizes (21), ∑N

n=1 EQXn [Yn
X ] =

A, and (21) can be rewritten as

πA(X) = π
QX
A (X) =

N

∑
n=1

sup
EQn

X
[Yn ]=EQn

X
[Yn

X ]

E[un(Xn + Yn)].

Consequently, by exploiting QX for valuation, the problem of systemic utility maximization
(17) reduces to individual utility maximization problems for the single banks:

∀n, sup
Yn

{
E[un(Xn + Yn)] | EQn

X
[Yn] = EQn

X
[Yn

X ]
}

. (22)

The optimum Yn
X and its value via the optimal measure QX, namely EQn

X
[Yn

X ], are
then fair for the nth bank in the system, as Yn

X maximizes the individual indirect utility
as in Equation (22). Notice, however, that this fairness principle for individual banks is
conjugated with a systemic-regulatory mechanism that is expressed in (21) through the
outer maximization over the allocations a ∈ RN . We will elaborate more on this feature
when dealing with the equilibrium concept in Section 6.

5.2. The Exponential Case: Explicit Formulas

Explicit formulas can be found for the value of ρ(X), YX and QX in the case of exponen-
tial utility functions and for C = C(n) (see (20)). To be more specific, these formulas are avail-
able for the choices un(x) = −e−αnx/αn, αn > 0, n = 1, . . . , N, and B < ∑N

n=1 un(+∞) = 0.

Theorem 2 ( [53], Theorem 6.2). For m = 1, . . . , h, and for k ∈ Im, we have

dm = βm log
(
− β

B
E
[

exp
(
−Xm

βm

)])
,

Yk
m = −Xk +

1
βmαk

Xm +
1

βmαk
dm, (23)

where Xm = ∑k∈Im Xk, βm = ∑k∈Im
1
αk

, β = ∑N
i=1

1
αi

, and

ρB(X) =
N

∑
i=1

Yi =
h

∑
m=1

dm.

The vector QX of probability measures with densities

dQm
X

dP :=
e−

1
βm Xm

E
[

e−
1

βm Xm

] m = 1, . . . , h.

is the solution of the dual problem (14), i.e.,

ρ(X) =
h

∑
m=1

EQm
X
[−Xm]− αB(QX),

and EQm
X
[Yn

X ], m = 1, . . . , h, n ∈ Im, is a systemic risk allocation, as in Definition 3.

It is also possible to conduct a sensitivity analysis based on the explicit formulas
above, and a study of monotonicity with respect to grouping (i.e., variation of the partition
defining C(n)). We refer the reader to [53] Sections 6.1 and 6.2 for the details.
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Remark 2. Unlike in the general case, for exponential utility functions, the optimum YX in (23)
actually belongs to the set L = MΦ, thus being an optimum for ρ(X) and ρQX(X) in the strict sense.

6. On Systemic Optimal Risk Transfer Equilibrium

In order to introduce an equilibrium concept, we reformulate some of the results on
the Systemic Risk Measure in (13), for the case C = CR ∩MΦ.

Proposition 3. Suppose a proper optimum YX ∈ MΦ exists for ρB(X) and ρ
QX
B (X). Then,

ρ
QX
B (X) = inf

{
N

∑
n=1

an | a ∈ RN s.t. ∃Z with
N

∑
n=1

Zn = 0, E
[

N

∑
n=1

un(Xn + an + Zn −EQn
X
[Zn])

]
≥ B

}
. (24)

Proof of Proposition 3. Observe that

ρ
QX
B (X) := inf

Y∈L

{
N

∑
n=1

EQn
X
[Yn] | E

[
N

∑
n=1

un(Xn + Yn)

]
≥ B

}
(25)

= inf
Y∈L

{
N

∑
n=1

EQn
X
[Yn] | E

[
N

∑
n=1

un(Xn +EQn
X
[Yn] + Yn −EQn

X
[Yn])

]
≥ B

}
.

Observe now that setting an = EQn
X

[
Yn

X
]

and Zn = Yn
X−EQn

X

[
Yn

X ,
]

we obtain thatEQn
X
[Zn] =

0 and an + Zn − EQn
X
[Zn] = Yn

X . Additionally, ∑N
n=1 Zn = 0 by items (i)-(iv) on page 12.

Hence, a defined in this way satisfies the constraints in RHS of (24). We then get ρQX(X) =
∑N

n=1 EQXn

[
Yn

X
]
≥RHS of (24). Conversely, for any a, Z satisfying the constraints of RHS

of (24), setting Yn = an + Zn −EQn
X
[Zn], one gets a vector fulfilling the constraints of (25)

and such that EQn
X
[Yn] = an, implying that also ρQX(X) ≤RHS of (24), which completes

the proof.

The formulation in (24) has an interesting consequence for the interpretation of
ρB(X) = ρ

QX
B (X). Consider indeed the following two-step procedure: each bank n pays

or receives the amount an (according to whether this is positive or negative) at the initial
time. At terminal time, a second, scenario-dependent allocation takes place: in exchange
for the price EQn

X
[Zn], bank n pays or receives the additional amount Zn. The terminal

time allocation is a reinsurance exchange among the banks in the system, since the clearing
condition ∑N

n=1 Zn = 0 imposes a “conservation of capital”for the system as a whole. Now,
this procedure yields a terminal time value equal to an + Zn−EQn

X
[Zn] which can be added

to the initial position of X, yielding the final position Xn + an + Zn −EQn
X
[Zn] for bank n.

ρ(X) is then the infimum total amount ∑N
n=1 an which can be allocated at an initial time,

in such a way that, for some reinsurance exchange, the overall satisfaction of the system
(E
[
∑N

n=1 un(Xn + an + Zn −EQn
X
[Zn])

]
) is above the threshold B.

A similar allocation and reinsurance procedure have been considered in [51], where
the concept of Systemic Optimal Risk Transfer Equilibrium (SORTE) has been introduced
as an equilibrium for a combination of capital allocation and reinsurance problems.

Equilibria related to exchange and allocation procedures, as well as risk sharing
problems aimed at reducing the overall risk of a system via reallocation, have been widely
studied in the literature. For a review on Arrow–Debreu Equilibrium, we refer to Section 3.6
of [28]. Following in the spirit the Arrow–Debreu Equilibrium theory and working in the
framework of a pure exchange economy, the authors in [62,63] provide the existence of
so-called risk exchange equilibria. The study of such equilibria, even though in different
forms, had been initiated by the seminal papers of Borch (see [64]). In [65], inf-convolutions
of convex Risk Measures have been successfully applied in the study of risk sharing,
and these have been further analyzed in [66–71]. This area of research has been very active



Mathematics 2021, 9, 1016 16 of 24

and many other relevant contributions on risk sharing also appeared recently; in particular,
we mention [72–79].

In addition, in this context, we consider a class of N agents, each having individual
risky position or random endowments given by the components of the risk vector X :=
[X1, ..., XN ]. Instead of designing a measurement for quantifying at the initial time the
risk for the system, the procedure we are to describe shows how to conjugate a capital
allocation problem regarding an amount A ∈ R exogenously assigned to the system (say,
a risk measurement obtained using a Systemic Risk Measure as described in previous
sections) with a reinsurance mechanism. For additional possible interpretations of the
amount A, we refer the reader to the related discussion in Section 5.2 of [53].

The SORTE combines a systemic optimal (deterministic) allocation with Bühlmann’s
Risk Exchange Equilibrium. In a one period framework {0, T}, each of the N agents is
characterized by a strictly concave, strictly monotone utility function un : R→ R.

6.1. Systemic Optimal (Deterministic) Allocation

To describe a systemic optimal allocation, suppose that the amount A is allocated at
an initial time among the agents in order to optimize the satisfaction/performance of the
system as a whole. Denoting by an ∈ R the cash received (provided) if positive (resp.,
if negative) by agent n, the terminal time endowment at disposal of agent n will be given
by (Xn + an). The optimal allocation aX ∈RN can then be determined according to an
optimization problem for the system’s utility in the form

sup

{
N

∑
n=1

E[un(Xn + an)] | a ∈RN s.t.
N

∑
n=1

an = A

}
.

Assuming that the agents will retain a cooperative attitude also at a terminal time and
that they will still believe in the overall reliability of the others, one can combine this initial
time allocation with a reinsurance procedure inspired by [62,63]. The aim is twofold: on
the one hand, this further increases the optimal total expected systemic utility. On the other
hand, this guarantees that each participant will be maximizing his/her expected utility
under budget constraints determined in an aggregated way by the system as a whole, thus
adding a rationality component that takes into consideration also single agents’ satisfaction.

6.2. Risk Transfer Equilibrium

In Bühlmann’s Risk Exchange Equilibrium, each agent is entitled to risk exchange with
the other participants. Agent n receives or provides the amount Ỹn(ω) at terminal time
(with the same convention on signs as in the case of systemic optimal allocation above),
in exchange for a price EQ[Ỹn] to be paid (if EQ[Ỹn] > 0) or received (if EQ[Ỹn] < 0) at the
initial time. Q here is some pricing probability measure. Observe that Ỹn, being scenario-
dependent, is a terminal time measurable random variable. The exchange variables Ỹn

have to satisfy the clearing condition:

N

∑
n=1

Ỹn = 0 P-a.s. .

The clearing condition expresses the fact that no capital is produced or lost in this
reallocation via Ỹ, so that the Risk Exchange Equilibrium also describes a reinsurance
mechanism. The pair (ỸX, QX) is a Risk Exchange Equilibrium if (a) for each n, Ỹn

X maximizes

E
[
un(Xn + Ỹn − EQX [Ỹ

n])
]

among all variables Ỹn and (b) ∑N
n=1 Ỹn

X = 0 P−a.s..
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6.3. Systemic Optimal Risk Transfer Equilibrium

The two procedures can now be combined as follows. Given some amount an assigned
to agent n, this agent may buy Ỹn at the price pn(Ỹn) in order to optimize

E
[
un(an + Xn + Ỹn − pn(Ỹn))

]
.

As in Bühlmann’s definition, with initial endowments Xn + an for each agent n =
1, . . . , N, the pricing functionals pn, n = 1, ..., N have to be selected in such a way that the
optimal solution verifies the clearing condition

N

∑
n=1

Ỹn = 0 P-a.s. .

However, an is not exogenously assigned to each agent, but only the total amount A is
at the disposal of the whole system. Thus, the optimal way to allocate A among the agents
is given by the solution (Ỹn

X , pn
X, an

X), n = 1, . . . , N of the following problem:

sup
a∈RN

{
N

∑
n=1

sup
Ỹn

{
E
[
un(an + Xn + Ỹn − pn

X(Ỹ
n))
]}
|

N

∑
n=1

an = A

}
,

N

∑
n=1

Ỹn
X = 0 P− a.s. .

Among the main findings in [51], we mention existence, uniqueness, and Pareto
optimality for SORTE. Additionally, explicit formulas are provided in the exponential case,
i.e., when considering

un(x) := 1− exp(−αnx), n = 1, . . . , N for α1, . . . , αN > 0 .

The SORTE concept can be extended, see [80], by replacing the utilitarian aggregation
of single agents’ utility functions, namely ∑N

j=1 uj(xj), to a multivariate utility function
U : RN → R satisfying some regularity conditions including a multivariate formulation
of the Inada conditions. As a particular example of such U, one may take U(x) :=
∑N

j=1 uj(xj) + Γ(x) for a concave increasing upper bounded function Γ : RN → R. As Γ
is not required to be strictly increasing nor strictly concave, the special selection Γ = 0
leads to the original concept of SORTE. The additional term Γ could be imposed to the
financial institutions in the system by some regulatory authority. One can show existence
and uniqueness also for this multivariate extension of SORTE (called Multivariate Systemic
Optimal Risk Transfer Equilibrium). In the multivariate extension, the preferences of
each agent depend on the action of the other agents in the system. Hence, it is natural to
formulate a Nash Equilibrium in this context. Remarkably, the optimal allocation Ỹn

X of the
multivariate SORTE is indeed a Nash Equilibrium (see [80] for details).

7. Conditional Systemic Risk Measures

The setting in the approaches described in the previous sections is static, that is: the
Systemic Risk Measures as described above do not leave room for incorporating dynamic
elements (additional information or presence of intermediate payoffs and valuation, just to
mention a few examples). It is essentially a one period setup where the initial sigma algebra
is assumed to be the trivial one {Ω, ∅}. In order to be able to consider the more realistic
multiperiod setting, a further step consisting of selecting a general sub sigma algebra
G ⊆ F and quantifying the risk of a position X given the information modeled by G is required.
The resulting conditional Risk Measure will then be a map ρG having a range in L0(Ω,G,P).
This well established technique in the literature has mostly been applied in the framework
of univariate dynamic Risk Measures. Among the first contributions on conditional convex
Risk Measures, we mention [81]. Since then, this approach has gained more and more
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attention in the literature. We refer the reader to [82] for an overview on univariate dynamic
Risk Measures. Several results have been obtained for the case of quasi-convex conditional
maps and Risk Measures, see [32] and [83,84]. A vast amount of literature has focused
on conditional counterparts to classical static results regarding dual representation and
separation properties, using L0-modules. Among the many contributions in this stream
of research, we mention [85–89] and references therein. Overall, the fact that the natural
conditional counterparts hold for static results is not so surprising. The two are intrinsically
related by a Boolean Logic principle. As seen in [90], traditional Theorems carry over to
the conditional setup assuming that suitable concatenation properties hold.

A Conditional Systemic Risk Measure is a map

ρG : LF → L0(Ω,G,P)

that associates to a N-dimensional risk factor X∈LF ⊆ (L0(Ω,F ,P))N a G-measurable
random variable. This means that a conditional Systemic Risk Measure quantifies the risk
of a given system taking into account the fact that more and more information accumulates
over time. Conditional Systemic (multivariate) Risk Measures were first studied by [41,42].
In the latter, it is emphasized how additional information might also be of a spatial na-
ture, namely concerning systemic relevant structures. The sigma algebra G might then
incorporate information on the state of a subsystem, see [91] or [92].

The papers [41,42,93] consider only the conditional extension of (static) Systemic
Risk Measures of the “first aggregate, then allocate ” form. Multivariate and set-valued
conditional Risk Measures, and related time consistency aspects, have also been analyzed
in [94–98]. As can be easily guessed, a natural counterpart of Systemic Risk Measures
of the form “first allocate, then aggregate” can also be defined in the conditional setting.
This is the object of the analysis in [99], on which this section is based. Most properties
of Shortfall Systemic Risk Measures, i.e., those in forms similar to (13), are seen to carry
over to the conditional setting. Furthermore, the usual recursive property in the classical
theory of time consistency for univariate Risk Measures can be replaced in the systemic
conditional case by a new consistency property, this time of vector type, with respect to
sub sigma algebrasH ⊆ G ⊆ F . Further details on this will be provided in the following:
For conditional Systemic Risk Measures ρG in rather general form (conditionally convex
and monetary, monotone maps), the following conditional dual representation holds:

ρG(X) = ess sup
Q∈QG

(
N

∑
n=1

EQn [−Xn|G]− α(Q)

)
, X ∈ LF , (26)

where QG is a set of vectors of probability measures and α(Q) ∈ L0(Ω,G,P) is a penalty
function. A specific interesting case of such maps ρG is the class of Conditional Shortfall
Systemic Risk Measure, associated with a multivariate utility functions U of the form U(x) =
∑N

j=1 uj(xj) + Γ(x), already introduced in the previous section. These are inspired by the
static ones (13), and defined by

ρG(X) := ess inf

{
N

∑
n=1

Yn | Y ∈ CG , E[U(X + Y)|G] ≥ B

}
. (27)

Here, B is a bounded, G-measurable random variable and the set of G-admissible
allocations is

CG ⊆
{

Y ∈ (L1(Ω,F , P))N such that
N

∑
n=1

Yn ∈ L∞(Ω,G, P)

}
.

Observe that each Yn is an F -measurable random variable, but ∑N
n=1 Yn is required

to be G-measurable. These definitions clearly mimic those in (13) and (8). In the case of
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CG and CR, it is particularly evident how deterministic amounts have been substituted by
G-measurable ones, which are “known once the information in G is known” .

For the trivial selection G = {∅, Ω}, the authors in [99] extend the results in [53] to
the more general aggregator U.

Theorem 5.4 of [99] summarizes the fundamental properties of the Conditional Short-
fall Systemic Risk Measure ρG and, in particular, shows that

(i) the functional ρG takes values in L∞(Ω,G, P) and is both continuous from below and
from above;

(ii) the essential infimum in (27) is actually a minimum, attained at the vector of allocations
Y(G, X) = [Y1(G, X), ..., YN(G, X)] ∈ CG ;

(iii) ρG admits a dual representation which specializes the one in (26) with a more explicit
formulation of the penalty function α and of the set QG .

(iv) the supremum in the dual representation (26) of ρG is actually a maximum, with op-
timizer Q(G, X) = [Q1(G, X), ..., QN(G, X)] which is a vector of probability measures
also satisfying:

N

∑
n=1

EQn(G,X)[Y
n(G, X) | G] =

N

∑
n=1

Yn(G, X) = ρG(X) P− a.s. .

Similarly to the static case described in Section 5.2, in the exponential case, it is possible
to explicitly determine formulas for ρG(X), the value of the Conditional Shortfall Systemic
Risk Measure , for the primal minimizer Y(G, X) of ρG(X) and for the dual optimum vector
of probability measures Q(G, X). Such formulas closely resemble those in Theorem 2,
with expectations replaced by conditional expectations w.r.t. G.

As anticipated before, for given sub sigma algebras H ⊆ G ⊆ F , a new type of
consistency property holds. Such a property seems to have no direct counterpart in the well-
known univariate case. Indeed, the consistency ρH(−ρG(X)) = ρH(X), which is the usual
time consistency property in the univariate case, is not even well defined in the systemic
setting, as a Systemic Risk Measure maps a random vector into a single random variable.
Nevertheless, time (or information) consistency properties turn out to be well defined
for: (i) the vectors of primal minimizers Y(G, X) (for ρG(X)) and Y(H,−Y(G, X)) (for
ρH(−Y(G, X))); (ii) the initial time allocation vectors (a(G, X))k := (EQk(G,X)[Y

k(G, X)|G])k
(for ρG(X)) and a(H,−a(G, X)) (for ρH(−a(G, X))). Such consistency properties take the
following form:

Y(H, −Y(G, X)) = Y(H, X) + Y(H, 0),

dQ̂k

dP
(G, X)

dQ̂k

dP
(H, −Y(G, X)) =

dQ̂k

dP
(G, X)

dQ̂k

dP
(H, −a(G, X)) =

dQ̂k

dP
(H, X),

a(H, −a(G, X)) = a(H, X) + a(H, 0) .

It is also shown in [99] how the primal and dual optimal allocations for Shortfall Systemic
Risk Measures, in both the static and dynamic cases, admit an interpretation in the sense of
(a dynamic extension of) Multivariate Systemic Optimal Risk Transfer Equilibrium.

8. Conclusions

In this work, we presented an axiomatic theory for Systemic Risk Measures which
extends the classical univariate framework. Such Systemic Risk Measures map the original
risk carried by a system of financial institutions to real numbers that quantify the risk
level for the system as a whole. The problem of determining such an amount is intimately
related to allocation procedures, since it is implicit in these systemic risk measurement
regimes that the total amount should serve to secure the system via allocation to each
participant. We presented how different allocation procedures can be considered, before or
after aggregation of individual risky positions on the one hand, at an initial or at terminal
time on the other hand. In the case of terminal time random allocations and for Systemic
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Risk Measures of shortfall type, we presented how allocation procedures can be viewed
as fair and satisfactory for both the system as a whole and the single agents in it. This
is intimately related to the fact that optimal allocations in this case are suitably defined
equilibria for the system (SORTE). We also showed how possible additional information at
an initial time can be incorporated in the axiomatic theory for the systemic case using a
conditional approach inspired by the univariate case.

As briefly sketched in the previous sections, the theory of Systemic Risk Measures is
rich and still has unexplored or partially unexplored ramifications.

In the univariate setting, the study of Risk Measures in a continuous time framework gen-
erated several theoretical developments in different areas. Just to mention a few examples,
connections have been found with BSDEs ([82,100–102]) and Nonlinear Expectation ([103]).

We believe that also, in the systemic, multivariate case, the continuous time theory
may herald new and interesting research topics.

Risk Measures have frequently been studied in the presence of a financial market.
Indeed, given a securities stochastic market, let the subset G ⊆L0(Ω,F , P) describe the ter-
minal time values of (self financing) trading strategies in the available securities. The market
adjusted Risk Measure is then the functional ρ : L∞(Ω,F , P)→ [−∞,+∞] defined by

ρ(X) := inf{m ∈ R | ∃g ∈ G : m + X + g ∈ A}. (28)

In such a risk measurement regime, it is possible to trade in the underlying financial market
in order to achieve an acceptable terminal position. A detailed study of these market
adjusted Risk Measures and their relationship with the notion of no arbitrage can be found
in [28] Section 4.8. Very recently, a similar approach has been developed for Systemic Risk
Measures in [104], also in connection with some systemic notion of arbitrage. A deeper
study of these connections, including equilibrium aspects, is still to be developed.

A further topic for future investigation concerns the robust version of Systemic Risk
Measures theory. In the last decade, many papers were aimed at establishing the funda-
mental Theorems of asset pricing and the key pricing-hedging duality in a probability free
setup, or in a non dominated setting. In the latter case, a class of—a priori non dominated—
probability measures replaces the usual single reference probability P, leading to the theory
of Quasi-Sure Stochastic Analysis ([105–109], just to mention only a few). In the former case,
instead, a pathwise and more radical approach is preferred (see, for example, [110–112]).

The above-mentioned papers only treat the (robust) univariate case. A first attempt to
examine Systemic Risk Measures in a probability free environment is elaborated by [104],
and we foresee that a more detailed inspection on this subject could be very fruitful.

As is well known, Martingale Optimal Transport theory is an extremely powerful tool
when aiming at pathwise pricing-hedging duality results ([113–118]). We observe that also
in the recent theory of Entropy Martingale Optimal Transport (see [119]) the connections in
the robust setup between Optimal Transport and Utility Functionals/Risk Measures arise
quite naturally from the main duality relation.
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