
mathematics

Article

Numerical Investigation of MHD Pulsatile Flow of Micropolar
Fluid in a Channel with Symmetrically Constricted Walls

Amjad Ali 1 , Muhammad Umar 1 , Zaheer Abbas 2, Gullnaz Shahzadi 3,*, Zainab Bukhari 1 and Arshad Saleem 1

����������
�������

Citation: Ali, A.; Umar, M.; Abbas,

Z.; Shahzadi, G.; Bukhari, Z.; Saleem,

A. Numerical Investigation of MHD

Pulsatile Flow of Micropolar Fluid in

a Channel with Symmetrically

Constricted Walls. Mathematics 2021,

9, 1000. https://doi.org/10.3390/

math9091000

Academic Editor: Aihua Wood

Received: 23 March 2021

Accepted: 21 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University,
Multan 60800, Pakistan; amjadali@bzu.edu.pk (A.A.); muhammadumar@bzu.edu.pk (M.U.);
zainabbukhari398@gmail.com (Z.B.); arshad.saleem2100@gmail.com (A.S.)

2 Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
zaheer.abbas@iub.edu.pk

3 Department of Mechanical Engineering, École de Technologie Supérieure ÉTS, 1100 Notre-Dame W,
Montreal, QC H3C 1K3, Canada

* Correspondence: gullnaz.shahzadi.1@ens.etsmtl.ca

Abstract: This article presented an analysis of the pulsatile flow of non-Newtonian micropolar
(MP) fluid under Lorentz force’s effect in a channel with symmetrical constrictions on the walls.
The governing equations were first converted into the vorticity–stream function form, and a finite
difference-based solver was used to solve it numerically on a Cartesian grid. The impacts of different
flow controlling parameters, including the Hartman number, Strouhal number, Reynolds number,
and MP parameter on the flow profiles, were studied. The wall shear stress (WSS), axial, and micro-
rotation velocity profiles were depicted visually. The streamlines and vorticity patterns of the flow
were also sketched. It is evident from the numerical results that the flow separation region near
constriction as well as flattening of the axial velocity component is effectively controlled by the
Hartmann number. At the maximum flow rate, the WSS attained its peak. The WSS increased in
both the Hartmann number and Reynolds number, whereas it declined with the higher values of the
MP parameter. The micro-rotation velocity increased in the Reynolds number, and it declined with
increment in the MP parameter.

Keywords: micropolar fluid; constricted channel; MHD pulsatile flow; strouhal number; flow
pulsation parameter

1. Introduction

MP fluids are non-Newtonian fluids consisting of the dilute suspension with an
individual motion of thin, rigid cylindrical macromolecules. Incompressible MP fluids
have significance in the study of various phenomena such as blood rheology in medical
sciences and melted plastic mechanics in industries. MP fluid theory explains the micro-
rotation effects. Eringen [1] first described micro-inertia effects. Several numerical studies
have been conducted by researchers to study the behavior of internal and external MP fluid
flows. Agarwal et al. [2] examined MP fluid flow on a porous stationary surface with heat
transfer. The 2D stagnation point flow of MP fluid for the steady case over a stretching sheet
was examined by Nazar et al. [3]. Lok et al. [4] researched the steady mixed convection
boundary layer flow of MP fluid on a double-infinite, vertical flat plate near the stagnation
point. The flow behavior and heat transfer effects of mixed convection in MP fluid flow over
a vertical flat plate with conduction were analyzed by Chang et al. [5]. Magyari et al. [6]
examined the flow of quiescent MP fluid over a doubly infinite plate accelerated from
rest to a constant velocity. The impacts of radiation and viscous dissipation on MP fluid
stagnation-point flow to a nonlinearly stretching surface with suction and injection were
reported by Babu et al. [7]. The flow of MP fluid over a porous stretch surface with heat
transfer was analyzed by Turkyilmazoglu [8]. Waqas et al. [9] provided a mixed convection
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flow of MP liquid in the occurrence of the magnetic field on a nonlinear stretched surface.
Ramadevi et al. [10] carried out an analysis of the nonlinear MHD radiative flow of MP
fluid on a stretching surface.

MHD MP fluid over an oscillating, infinite vertical plate embedded in a porous
medium was analyzed by Sheik et al. [11]. Hussanan et al. [12] analytically examined MP
fluid flow over a vertical plate with Newtonian heating in the presence of the magnetic
field and the absence of thermal radiation. Kumar et al. [13] examined the heat transfer
mechanism with variable heat sink/source, a nonlinear approximation of Rosseland and
Biot number over a stretched field. Shamshuddin et al. [14] used the finite-element ap-
proach for solving MHD, incompressible, dissipative, and chemically reacting MP fluid
flow with heat transfer as well as mass transfer on an inclined heat source/sink plate.
Nadeem et al. [15] examined the flow of MP fluid over the Riga plate with exponential
surface temperature and heating effects.

Si et al. [16] investigated the behavior of MP fluid flow in a porous channel with
mutable walls. Lu et al. [17] considered the 2D creeping flow of MP fluid in a thin permeable
channel with a variable absorption rate. Fakour et al. [18] studied heat and mass transfer
of MP fluid flow inside a channel with permeable walls. Tutty [19] investigated the non-
uniform channel which is used as a simple model of a constricted arterial vessel. There are
several studies regarding fluid motion with pulsation in a constricted channel. Peristalsis
is a mechanism in which progressive transverse waves produced by flexible channel/tube
boundary walls transport the fluid. Peristaltic pumping is also very effective in the design
of several biomedical devices for maintaining blood supply during critical operations.
Mekheimer et al. [20] studied the effect of an induced magnetic field on the peristaltic
transport in a symmetric channel of an incompressible MP conductive fluid. Hayat and
Ali [21] examined the peristaltic wave motion for the endoscope impact via the distance
among two concentric tubes, finding the inner tube to be rigid when moving outwards to
allow the MP fluid to flow.

Under certain physical situations, the behavior of the pulsatile flow of Newtonian and
non-Newtonian fluids has been examined, usually with assumptions of long wavelength
and low Reynolds number to simplification. A numerical study of the MHD pulsatile
flow of Newtonian fluid was carried out by Bandyopadhyay and Layek [22] in a single-
constricted channel. Khair et al. [23] described the transition from laminar to the turbulent
regime in a constricted channel for pulsatile flow. The steady and pulsatile flow of MHD
Casson fluid in a constricted channel was studied by Ali et al. [24].

The present work’s objective is to investigate the magnetohydrodynamic (MHD)
pulsatile flow of non-Newtonian MP fluid in a channel having symmetrical constrictions on
both the walls under the influence of the Lorentz force. The numerical method to solve the
governing equations is based on the finite difference method on a Cartesian grid instead of
the cylindrical one. The impacts of various parameters on the axial velocity, shear stress,
and micro-rotation velocity are discussed. The streamlines and vorticity distributions of
the pulsatile MP fluid flow are also shown. The flow separation region generated due to
the constriction bumps is also discussed. The flow parameters under consideration for the
study include the Hartmann number (M), Strouhal number (St), Reynolds number (Re),
and MP parameter. The study finds applications in understating the blood flow, modeled
as non-Newtonian micropolar fluid, in stenotic arteries especially. The outcomes can be
used in designing the biomedical devices and techniques for cardiovascular treatments,
e.g., evaluating the thrombogenic potential of implantable cardiac devices [25]. The rest
of the article is structured as follows. Section 2 explains the mathematical formulation of
the problem and method. Section 3 presents the results and discussion. Section 4 displays
the conclusions.

2. Materials and Methods

A two-dimensional pulsatile flow of MP fluid was analyzed by a uniform magnetic
field applied perpendicular to the flow direction, as shown in Figure 1. The geometry under
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consideration was a constricted channel. The center of the constriction was placed at x = 0
with a total width of constriction as 2x0, as depicted in Equation (1). The constrictions on
the walls of the channel are formulated and implemented as:

y1(x) =


h1
2

[
1 + cos

(
πx
x0

)]
, |x| ≤ x0

0, |x| > x0

(1a)

y2(x) =

 1− h2
2

[
1 + cos

(
πx
x0

)]
, |x| ≤ x0

1, |x| > x0

(1b)

where y1 and y2 define the lower and upper walls with constriction heights h1 and
h2, respectively.
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∇ 푣 −

푘
휌
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휕푁
휕푡̂

+ 푢
휕푁
휕푥

+ 푣
휕푁
휕푦

= −
푘
휌푗

2푁 +
휕푢
휕푦

−
휕푣
휕푥

+
훾
휌푗

∇ 푁 (4) 
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The momentum equations of the unsteady flow are given by:

∂û
∂t̂ + û ∂û

∂x̂ + v̂ ∂û
∂ŷ = − 1

ρ
∂ p̂
∂x̂ +

(
µ+k

ρ

)
∇2û + 1

ρ (J× B)x +
k
ρ

∂N̂
∂ŷ (2)

∂v̂
∂t̂ + û ∂v̂

∂x̂ + v̂ ∂v̂
∂ŷ = − 1

ρ
∂ p̂
∂ŷ +

(
µ+k

ρ

)
∇2v̂− k

ρ
∂N̂
∂x̂ (3)

∂N̂
∂t̂ + û ∂N̂

∂x̂ + v̂ ∂N̂
∂ŷ = − k

ρj

(
2N̂ + ∂û

∂ŷ −
∂v̂
∂x̂

)
+ γ

ρj∇
2N̂ (4)

The continuity equation is given by:

∂û
∂x̂ + ∂û

∂ŷ = 0 (5)

Here the velocity components along the x̂- and ŷ-axis are û and v̂, respectively. p̂, ρ,
and ν represent pressure, density, and kinematic viscosity, respectively. N̂ represents the
micro-rotation velocity, k represents vortex viscosity, J ≡

(
Jx, Jy, Jz

)
the current density,

B ≡ (0, B0, 0) the magnetic field with uniform strength B0, σ the electric conductivity, and
µ the dynamic viscosity. γ = j(µ + k)/2 represents the spin gradient viscosity, where j
defines the micro-inertia density. If E ≡

(
Ex, Ey, Ez

)
indicates the electric field directed

along the normal to the flow plane, then E ≡ (0, 0, Ez). In addition, using Ohm’s law:

Jx = 0, Jy = 0, Jz = σ(Ez + ûB0) (6)

Maxwell’s equation ∇× E = 0 for stationary flow implies that Ez = a, where a is
a constant, assumed to be zero for simplicity. Then, Jz = σûB0. Therefore, applying
J× B = −σûB2

0 , Equation (2) becomes:

∂û
∂t̂ + û ∂û

∂x̂ + v̂ ∂û
∂ŷ = − 1

ρ
∂ p̂
∂x̂ +

(
µ+k

ρ

)
∇2û +

−σûB2
0

ρ + k
ρ

∂N̂
∂ŷ (7)
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We define the dimensionless quantities:

x = x̂
L , y = ŷ

L , u = û
U , v = v̂

U , t = t̂
T , St = L

UT ,

p = p̂
ρU2 , Re = UL

ν , N = N̂L
U , K = k

µ , M = B0L
√

σ
ρν (8)

Here, T is the period of flow pulsation, L the maximum channel width, Re the Reynolds
number, M the Hartmann Number, the micro-rotation velocity, and K the MP parameter.

Using the non-dimensional parameters from Equation (8), in Equations (7), (3), (4),
and (5), we attain:

St ∂u
∂t + u ∂u

∂x + v ∂u
∂y = − ∂p

∂x +
(

1+K
Re

)
∇2u− M2

Re u + K
Re

∂N
∂y (9)

St ∂v
∂t + u ∂v

∂x + v ∂v
∂y = − ∂p

∂y +
(

1+K
Re

)
∇2v− K

Re
∂N
∂x (10)

St ∂N
∂t + u ∂N

∂x + v ∂N
∂y = −K

Re

(
2N + ∂u

∂y −
∂v
∂x

)
+
(

1
Re +

K
2Re

)
∇2N (11)

∂u
∂x + ∂u

∂y = 0 (12)

2.1. Vorticity–Stream Function Formulation

The dimensionless stream function (ψ) and vorticity function (ω) for the flow under
consideration are as follows:

u = ∂ψ
∂y , v = − ∂ψ

∂x , ω = ∂v
∂x −

∂u
∂y (13)

Some manipulations with Equations (9) and (10) produce:

St
∂

∂t

(
∂v
∂x
− ∂u

∂y

)
+ u

∂

∂x

(
∂v
∂x
− ∂u

∂y

)
+ v

∂

∂y

(
∂v
∂x
− ∂u

∂y

)

=

(
1 + K

Re

)[
∂2

∂x2

(
∂v
∂x
− ∂u

∂y

)
+

∂2

∂y2

(
∂v
∂x
− ∂u

∂y

)]
+

M2

Re
u− K

Re

(
∂2N
∂x2 −

∂2N
∂y2

)
(14)

Using the quantities in Equation (13), we obtained the following vorticity transport
equation as:

St
∂ω

∂t
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=

(
1 + K

Re

)[
∂2ω

∂x2 +
∂2ω

∂y2

]
+

M2

Re
∂2ψ

∂y2 −
K
Re

(
∂2N
∂x2 −

∂2N
∂y2

)
(15)

Again, using the quantities in Equation (13), Equation (11) becomes:

St
∂N
∂t

+
∂ψ

∂y
∂N
∂x
− ∂ψ

∂x
∂N
∂y

=
−K
Re

(
2N +

∂2ψ

∂x2 +
∂2ψ

∂y2

)
+

(
1

Re
+

K
2Re

)(
∂2N
∂x2 −

∂2N
∂y2

)
(16)

The Poisson equation for ψ is:

∂2ψ

∂x2 + ∂2ψ

∂y2 = −ω (17)

Here, u, v, and N are primitive variables, and ω and ψ are non-primitive variables.

2.2. Boundary Conditions

The steady case of the fluid flow from Equation (7) is considered to obtain the boundary
conditions for the current problem:

− 1
ρ

∂ p̂
∂x̂ +

(
µ+k

ρ

)
∂2û
∂ŷ2 − 1

ρ (J× B) = 0 (18)
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where J× B = −σ(Ez + ûB0)B0. By substituting in Equation (18) and rearranging:

(ρν + k ) ∂2û
∂ŷ2 − σûB2

0 = ∂ p̂
∂x̂ + σEzB0 (19)

Using the dimensionless variables from Equation (8) and some manipulations results
in the following:

C d2u
dy2 −M2u = L2

ρνU

(
∂ p̂
∂x̂ + σEzB0

)
(20)

Here C = (1 + K). Approximating the term on the right-hand side of Equation (20):

M2 cosh(M
2 )

8sinh2(M
4 )

= − L2

ρνU

(
∂ p̂
∂x̂ + σEzB0

)
(21)

Solving Equation (20) gives:

u(y) = 1
8

[
cosh(M

2 )
[
cosh

(
M

2
√

C

)
−cosh

(
M√

C (y− 1
2 )
)]

sinh2(M
4 ) cosh

(
M

2
√

C

)
]

, v = 0, M 6= 0 (22)

The inlet velocity profile for M = 0 is:

u(y) = 1
C
(
y− y2), v = 0, M = 0 (23)

where u(y) represents the steady velocity profile given by Equations (22) and (23). A
sinusoidal time-dependent flow is considered for pulsatile flow:

u(y, t) = u(y)[1 + ε sin(2πt)], v = 0 (24)

Further, u = 0 and v = 0 (i.e., no-slip conditions) are considered on the walls. The
proper boundary conditions for N on both the walls are:

N = −
[
s ∂u

∂y

]
y=0

, N =
[
s ∂u

∂y

]
y=1

(25)

where 0 ≤ s ≤ 1. s = 0, s = 1/2, and s = 1 are for the flow with high concentration, weak
concentration, and turbulence, respectively. N = 0 is considered for the inlet boundary
condition of the micro-rotation velocity function. The outlet boundary conditions are set
considering the flow fully developed.

2.3. Coordinates Transformation

Consider the following relation for transforming the coordinates:

ξ = x, η = y−y1(x)
y2(x)−y1(x) (26)

For computation purposes, we mapped the constriction to a straight channel which
resulted in mapping the domain [y1, y2] to [0, 1]. Equations (15)–(17) on applying Equation
(26) result as follows:

St ∂ω
∂t + u

(
∂ω
∂ξ −Q ∂ω

∂η

)
+ vD ∂ω

∂η

=
(

1+K
Re

)[
∂2ω
∂ξ2 − (P− 2QR) ∂ω

∂η − 2Q ∂2ω
∂ξ∂η +

(
Q2 + D2) ∂2ω

∂η2

]
+ D2 M2

Re
∂2ψ

∂η2
∂2ω
∂ξ2

− K
Re

[
∂2 N
∂ξ2 − (P− 2QR) ∂N

∂η − 2Q ∂2 N
∂ξ∂η +

(
Q2 + D2) ∂2 N

∂η2

] (27)
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St ∂N
∂t + u

(
∂N
∂ξ −Q ∂N

∂η

)
+ vD ∂N

∂η

= −K
Re

[
2N + ∂2ψ

∂ξ2 − (P− 2QR) ∂ψ
∂η − 2Q ∂2ψ

∂ξ∂η +
(
Q2 + D2) ∂2ψ

∂η2

]
+
(

1
Re +

K
2Re

)[
∂2 N
∂ξ2 − (P− 2QR) ∂N

∂η − 2Q ∂2 N
∂ξ∂η +

(
Q2 + D2) ∂2 N

∂η2

] (28)

∂2ψ

∂ξ2 − (P− 2QR) ∂ψ
∂η − 2Q ∂2ψ

∂ξ∂η +
(
Q2 + D2) ∂2ψ

∂η2 = −ω (29)

where:
P = P(ξ, η) =

ηy′′2 (ξ)+(1−η)y′′1 (ξ)
y2(ξ)−y1(ξ)

, R = R(ξ) = y′2(ξ)−y′1(ξ)
y2(ξ)−y1(ξ)

,

Q = Q(ξ, η) =
ηy′2(ξ)+(1−η)y′1(ξ)

y2(ξ)−y1(ξ)
, D = D(ξ) = 1

y2(ξ)−y1(ξ)

(30)

The velocity components u and v becomes:

u = D(ξ)
∂ψ
∂η , v = Q(ξ, η)

∂ψ
∂η −

∂ψ
∂ξ (31)

The boundary conditions at the walls, in the (ξ, η) coordinate system for ψ, ω, and
N are:

ψ(η, t) =

[√
C cosh(M

2 )tanh
(

M
2
√

C

)
8Msinh2(M

4 )

]
[1 + ε sin(2πt)], at η = 0

ψ(η, t) =
cosh(M

2 )
8sinh2(M

4 )

[
1−

√
C

M tanh
(

M
2
√

C

)]
[1 + ε sin(2πt)], at η = 1

ω = −
[(

Q2 + D2) ∂2ψ
∂η2

]
η=0,1

N = −
[
sD2 ∂2ψ

∂η2

]
, at η = 0

N =
[
sD2 ∂2ψ

∂η2

]
, at η = 1 (32)

The value of ε determines the nature of the flow, where 0 and 1 represent the steady
and pulsatile flows, respectively.

2.4. Numerical Method

The finite difference method was employed to acquire the numerical solution of
Equations (27)–(29) over a uniform structured Cartesian grid

(
ξi, ηj

)
. The solution at time

level l + 1 = l + ∆t, for l = 0, 1, 2, · · · , was computed using the known solution at
time level l. To obtain the solution at the time level l + 1, firstly, the space derivatives
of Equation (29) were discretized using the central difference, and the resulting linear
system was solved for ψ = ψ(ξ, η) by the tri-diagonal matrix algorithm (TDMA) method.
Then, Equations (27) and (28) were solved for the vorticity function ω = ω(ξ, η) and
micro-rotation function N = N(ξ, η) by the alternating direction implicit (ADI) method.
The over-relaxation parameter used for computations was λ = 1.4. The execution time of
the calculations could be reduced by parallel implementation of the computer program,
Ali and Syed [26]. However, developing a parallel solution on any shared, distributed, or
hybrid memory programming paradigms is not a trivial task.

Equation (29) is discretized for the solution at advanced time level l + 1, and for
l = 0, 1, 2, · · · , is given by:

ψi+1,j−2ψi,j+ψi−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}ψi,j+1−ψi,j−1

2dη

−2Qi,j
ψi+1,j+1−ψi+1,j−1−ψi−1,j+1+ψi−1,j−1

4dξdη

+
{

Q2
i,j + D2

i

}
ψi,j+1−2ψi,j+ψi,j−1

(dη)2 = −ωl
i,j

(33)
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For the sake of simplicity, the l + 1 superscript from ψ is removed. Rearranging,
Equation (33) results as:

A(j)ψi,j−1 + B(j)ψi,j + C(j)ψi,j+1 = S(j) (34)

where A(j), B(j), C(j), and S(j) are given as:

A(j) =
Pi,j − 2Qi,jRi

2dη
+

Q2
i,j + D2

i

(dη)2

B(j) = − 2

(dξ)2 −
2

(dη)2

{
Q2

i,j + D2
i

}

C(j) = −
Pi,j − 2Qi,jRi

2dη
+

Q2
i,j + D2

i

(dη)2

S(j) = −ωl
i,j −

(
ψi+1,j + ψi−1,j

(dξ)2

)
+ 2Qi,j

ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4dηdξ
(35)

The solution of Equation (27) was computed at l + 1
2 time level by incorporating the

solution of level l in the ADI method’s first half. The explicit and implicit schemes at time
levels l and l + 1

2 in ξ-direction and η-direction, respectively, were used while discretizing
the derivatives of ω.

St
[

ωl+1/2
i,j −ωl

i,j
∆t/2

]
+ ui,j

[
ωl

i+1,j−ωl
i−1,j

2dξ −Qi,j
ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη

]
+vi,jDi

ωl+1/2
i,j+1 −ωl+1/2

i,j−1
2dη =

(
1+K
Re

)[ωl
i+1,j−2ωl

i,j+ωl
i−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη − 2Qi,j
ωl

i+1,j+1−ωl
i+1,j−1−ωl

i−1,j+1+ωl
i−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)ωl+1/2
i,j+1 −2ωl+1/2

i,j +ωl+1/2
i,j−1

(dη)2

]
+ M2

Re D2
i

ψi,j+1−2ψi,j+ψi,j−1

(dη)2

− K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]

(36)

Equation (36) can be rearranged as:

A1(j)ωl+1/2
i,j−1 + B1(j)ωl+1/2

i,j + C1(j)ωl+1/2
i,j+1 = S1(j)

where A1(j), B1(j), C1(j), and S1(j) are given as:

A1(j) = ui,j
Qi,j

2dη
− vi,j

Di
2dη
−
(

1 + K
Re

)Pi,j − 2Qi,jRi

2dη
−
(

1 + K
Re

)Q2
i,j + D2

i

(dη)2

B1(j) =
St

∆t/2
+

(
1 + K

Re

)2
(

Q2
i,j + D2

i

)
(dη)2 (1)

C1(j) = −ui,j
Qi,j

2dη
+ vi,j

Di
2dη

+

(
1 + K

Re

)Pi,j − 2Qi,jRi

2dη
−
(

1 + K
Re

)Q2
i,j + D2

i

(dη)2 (2)
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S1(j) =
(

ui,j
2dξ + 1

(dξ)2

(
1+K
Re

))
ωl

i−1,j +

(
− ui,j

2dξ + 1
(dξ)2

(
1+K
Re

))
ωl

i+1,j

+

(
St

∆t/2 + 2
(dξ)2

(
1+K
Re

))
ωl

i,j −
(

1+K
Re

)
2Qi,j

ωl
i+1,j+1−ωl

i+1,j−1−ωl
i−1,j+1+ωl

i−1,j−1
4dηdξ

+
M2D2

i
Re

ψi,j+1−2ψi,j+ψi,j−1

(dη)2 − K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]
The ω at both the walls is given as:

ωl
i,0 = −2

[
Q2

i, 0 + D2
i

]
ψi,1−ψi,0

(dη)2

ωl
i,m = −2

[
Q2

i, m + D2
i

]
ψi,m−1−ψi,m

(dη)2 (37)

In the second step of the ADI method, using the solution computed at l + 1/2 level,
the solution was obtained at the l + 1 time level. The explicit and implicit schemes at time
levels l + 1/2 and l + 1 in the η-direction and ξ-direction, respectively, were used while
discretizing the derivatives of ω.

St
[

ωl+1
i,j −ωl+1/2

i,j
∆t/2

]
+ ui,j

[
ωl+1

i+1,j−ωl+1
i−1,j

2dξ −Qi,j
ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη

]
+vi,jDi

ωl+1/2
i,j+1 −ωl+1/2

i,j−1
2dη =

(
1+K
Re

)[ωl+1
i+1,j−2ωl+1

i,j +ωl+1
i−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}ωl+1/2

i,j+1 −ωl+1/2
i,j−1

2dη − 2Qi,j
ωl+1/2

i+1,j+1−ωl+1/2
i+1,j−1−ωl+1/2

i−1,j+1+ωl+1/2
i−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)ωl+1/2
i,j+1 −2ωl+1/2

i,j +ωl+1/2
i,j−1

(dη)2

]
+

M2D2
i

Re
ψi,j+1−2ψi,j+ψi,j−1

(dη)2

− K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2 −
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη

− 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ +
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]

(38)

Equation (38) can be written as:

A2(i)ωl+1
i−1,j + B2(i)ωl+1

i,j + C2(i)ωl+1
i+1,j = S2(i) (39)

where A2(j), B2(j), C2(j), and S2(j) are given as:

A2(i) =
−ui,j

2dξ
− 1

(dξ)2

(
1 + K

Re

)

B2(i) =
St

∆t/2
+

2

(dξ)2

(
1 + K

Re

)
(3)

C2(i) =
ui,j

2dξ
− 1

(dξ)2

(
1 + K

Re

)
(4)
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S2(i) =

(
vi,jDi
2dη +

Pi,j−2Qi,jRi
2dη

(
1+K
Re

)
+

Q2
i,j+D2

i

(dη)2

(
1+K
Re

)
− ui,jQi,j

2dη

)
ωl+1/2

i,j−1

+

(
− vi,jDi

2dη −
Pi,j−2Qi,jRi

2dη

(
1+K
Re

)
+

Q2
i,j+D2

i

(dη)2

(
1+K
Re

)
+

ui,jQi,j
2dη

)
ωl+1/2

i,j+1

+

(
St

∆t/2 + 2
(dξ)2

(
1+K
Re

))
ωl+1/2

i,j − 2Qi,j
ωl

i+1,j+1−ωl
i+1,j−1−ωl

i−1,j+1+ωl
i−1,j−1

4dηdξ(
1+K
Re

)
+ M2

Re D2
i

ψi,j+1−2ψi,j+ψi,j−1

(dη)2 − K
Re

[
Ni+1,j−2Ni,j+Ni−1,j

(dξ)2

−
{

Pi,j − 2Qi,jRi
}Ni,j+1−Ni,j−1

2dη − 2Qi,j
Ni+1,j+1−Ni+1,j−1−Ni−1,j+1+Ni−1,j−1

4dηdξ

+
(

Q2
i,j + D2

i

)Ni,j+1−2Ni,j+Ni,j−1

(dη)2

]
In a similar way, using the ADI method, the solution of Equation (28) was computed.

3. Results and Discussion

A grid of 400× 50 was found to be suitable for the current work after a grid indepen-
dence test was carried out for multiple grids with −10 ≤ ξ ≤ 10 and 0 ≤ η ≤ 1. For ξ and
η directions, we considered the step length 0.05 and 0.02, respectively. The constriction
length, i.e., x0, was 2. The height of the constriction on both walls was considered as 0.35.
The time step, ∆t, was taken as 0.0001. We considered t = 0, 0.25, 0.50, 0.75 to show the
influence of the flow controlling parameters in a pulsatile cycle. These four time levels were
corresponding to the specific states of the flow pulsation: t = 0 corresponded to the start of
pulsation motion, t = 0.25 corresponded to the maximum flow rate, t = 0.50 corresponded
to the minimum flow rate, and t = 0.75 corresponded to the instantaneous zero flow rate.
The magnitude of the WSS was the same for the upper and lower walls. Therefore, the
WSS distribution was depicted only on the upper wall in the study.

Figure 2 presented the axial velocity (u) profile and micro-rotation velocity (N) profile
for the four pulsation cycles at different values of η and at the center of constriction (x = 0)
with M = 5, St = 0.02, K = 0.6, and Re = 700. The phase-amplitude of u profile increased,
whereas a decrease in the shifting phase was observed as the distance from the bottom wall
increased. An opposite behavior for N was observed. For validity of the present scheme,
Figure 3 compares the present study with Bandyopadhyay and Layek [22] for the WSS by
varying magnetic field strength. The results were found to be promising in the comparison.
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on the lower wall.

The WSS on the upper wall in a pulsatile cycle at different times for M = 0, 5, 10, and
15 with K = 0.6, St = 0.02, and Re = 700 is shown in Figure 4. At t = 0, the WSS tended to
increase with increasing M and attained its peak value at x = 0. The flow accelerated for
0 ≤ t ≤ 0.25 during the pulse cycle. At t = 0.25, the WSS reached its extreme value at the
maximum flow rate. During 0.25 < t < 0.75, the flow started to decelerate, and the WSS
decreased. The sign of the WSS changed at t = 0.75, when the net flow rate was zero. The
flow separation region was maximum for M = 0, whereas it diminished for M = 15. The
Hartmann number could be used to control the flow separation region.
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The WSS on the upper wall in a pulsatile cycle at different times for St = 0.02, 0.04,
0.06, and 0.08 with M = 5, K = 0.6, and Re = 700 is shown in Figure 5. During 0 < t < 0.25,
the WSS increased with an increment in St. The flow separation region did not change
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significantly with an increase in the value of St. At t = 0.25, the WSS achieved the same
peak value for all the values of St. During 0.25 < t < 0.75, the flow started to decelerate,
and the WSS decreased in the region with an increment in St and the flow separation region
expanded. At t = 0.75, the sign of the WSS was changed.

The WSS at the four time levels for K = 0.3, 0.6, 0.9, and 1.2 with St = 0.02, M = 5,
and Re = 700 is shown in Figure 6. The WSS fell with the increasing values of K during a
complete cycle. During 0 < t < 0.25, the flow separation region had an inverse relation
with K. At t = 0, a decrease in the WSS was witnessed with increasing K. At t = 0.25,
the WSS reached the maximum peak for all values of K. During 0.25 < t < 0.75, the flow
started to decelerate, and a decrease in the WSS for all the K’s was observed. The flow
separation region slightly expanded with the increasing values of K. The WSS altered its
sign at t = 0.75.

The WSS at the four time levels for Re = 500, 700, 900, and 1100 with St = 0.02, M = 5,
and K = 0.6 is shown in Figure 7. The WSS has an inciting trend towards Re. At t = 0, an
increase in the WSS was witnessed with increasing Re. At t = 0.25, the WSS reached the
maximum peak for all values of Re. The flow started to decelerate during 0.25 < t < 0.75
and a decrease in the WSS for all the Re’s was observed. The flow separation region
expanded with the increasing values of Re. The WSS altered its sign at t = 0.75.
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Figure 7. Impact on the WSS distribution on varying the values of Re with M = 5, St = 0.02, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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Figure 8 displays the plots of u-velocity profiles at x = −5, 2, 5, and 7 for M = 0, 5,
10, and 15 with K = 0.6, St = 0.02, and Re = 700 at t = 0.25, 0.5, and 0.75. The u profiles
became flattened as the value of M increased. There was flow symmetry at x0 = −2 and
x0 = 2. The flow separation region appeared larger near the constriction for lower values
of M. The flow separation region expanded at the end of the constriction. The backflow
occurred near the walls when incoming flow tended to be zero at t = 0.75. Asymmetric
behavior of the velocity contours can be seen in the case of M = 0. It was observed that in
a complete pulsation cycle, the u profile decreased. This happened because a resistive force
was produced due to the magnetic field, known as the Lorentz force, which opposed the
fluid flow.
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Figure 9a depicts the influence of K on N profile at x = 0 with fixed parameters M = 5,
St = 0.02, Re = 700, and K = 0.6. The oscillations in the N profile were observed. The
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amplitude of N had a direct relation with K near the lower wall of the constricted channel,
whereas it had an inverse relation with K near the upper wall. In Figure 9b,c, it can be
seen that near the lower wall, the micro-rotation velocity boundary layer had a declining
behavior towards Re and M. In contrast, it had inclining behavior towards Re and M near
the upper wall.
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micro-rotation velocity profile at t = 0.25.

Figure 10 presents the influence of M on the streamline at the four time levels. The
flow separation region had a direct relation with M. At t = 0, the streamlines ran smoothly
over the constriction. It can be seen that at t = 0.25 and t = 0.50, the flow separation region
was decreased for larger values of M. At t = 0.75, vortices took up the largest portion of
the channel. A symmetric behavior can be seen in the streamlines.

Figure 11 presents the effects of varying the Reynolds number on the streamline at the
four time levels for Re = 500, 700, 900, and 1100 with M = 5, K = 0.6, and St = 0.02. The
streamlines near the constriction were smooth. It is noted as well that the disturbance in
the flow tended to grow, leading towards the turbulence, as the value of Re was increased.
The flow separation region was maximum at t = 0.25 for Re = 1100, as can be seen in
Figure 11d.

Figure 12 presents the vorticity of the flow for different values of Re at the four time
levels. At t = 0, the vortex size had a direct relation with Re. Over time, the size of
these vortices increased with increasing values of Re and eventually occupied a greater
part of the channel downstream of the constrictions on increasing Re. The presence of
the backflow was observed at t = 0.75. Symmetric behavior of contours could also be
witnessed. Moreover, as the flow accelerated, a small vortex emerged near the constriction
on the upper wall, which became larger with increasing values of St. The vortex that
appeared near the constriction became smaller with increasing values of K.



Mathematics 2021, 9, 1000 15 of 19

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 19 
 

 

  
(a) (b) 

 
(c) 

Figure 9. Effects of (a) micropolar parameter (b) Reynolds number, and (c) Hartmann 
number on micro-rotation velocity profile at t = 0.25. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Streamlines of the pulsatile flow for different values of 푀 with 푆푡 = 0.02, 푅푒 = 700, 
and 퐾 = 0.6 at (a) 푡 = 0, (b) 푡 = 0.25, (c) 푡 = 0.50, and (d) 푡 = 0.75. 

Figure 10. Streamlines of the pulsatile flow for different values of M with St = 0.02, Re = 700, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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Figure 11. Streamlines of the pulsatile flow for different values of Re with M = 5, St = 0.02, and
K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.
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Figure 12. Vorticity contours of the pulsatile flow for different values of Re with M = 5, St = 0.02,
and K = 0.6 at (a) t = 0, (b) t = 0.25, (c) t = 0.50, and (d) t = 0.75.

4. Conclusions

The pulsatile flow, in a constricted channel, of non-Newtonian MP fluid under the
impact of the applied magnetic field was examined numerically on a Cartesian grid. The
effects of M, St, Re, and K on the WSS, u, and N profiles were studied. The key outcomes
of the present study are listed as follows:

• The direct relation between the WSS and M was observed, and the WSS attained its
peak value at t = 0.25. The flow began to decelerate as the flow rate tended to be zero.
The sign of the WSS changed when the net flow rate was zero;

• The WSS rose with an increasing value of St in the accelerating phase of the pulsation
cycle. The WSS attained the same peak value for all values of St when t = 0.25;

• The WSS was reduced with the increasing values of K during a complete cycle and
attained its peak value at t = 0.25;

• The dampening of the u profile was impacted by the magnetic field strength M. The
u profile was asymmetric in the absence of an external magnetic field. However, the
flow was symmetric at both ends of constrictions for M = 0. The flow parameters, M,
Re, and K, had significant effects on N. The amplitude of the N profile had a direct
relation with M and Re and an inverse relation with K;

• The streamlines became smoother as the value of M increases;
• The flow separation region was reduced by increasing M. The flow separation region

had a direct relation with Re. The flow downstream of the constriction showed abrupt
behavior as the value of Re increased.
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The study found applications in understating the blood flow, modeled as non-Newtonian
micropolar fluid, in stenotic arteries especially. The outcomes could be used in designing
the biomedical devices and techniques for cardiovascular treatments.
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Nomenclature

y1 lower wall of the constricted channel
y2 upper wall of the constricted channel
h1 height of lower wall constriction
h2 height of upper wall constriction
û velocity in x̌-direction
v̂ velocity in y̌-direction
p̂ pressure
ρ density
µ dynamic viscosity
k vortex viscosity
E electric field
Re Reynolds number
M Hartmann number
N micro-rotation velocity
K MP parameter
J current density
B magnetic field
B0 strength of uniform magnetic field
σ electrical conductivity
ν kinematic viscosity
j micro-interia density
γ spin gradient velocity
s switch for weak/strong concentrations/turbulence
L length between channel walls
T period of flow pulsation
St Strouhal number
ψ stream function
ω vorticity function
ε pulsating amplitude
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