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Abstract: Gravity and flexibility will cause fluctuations of the rotation angle in the servo system
for flexible manipulators. The fluctuation will seriously affect the motion accuracy of end-effectors.
Therefore, this paper adopts a control method combining the RBF (Radial Basis Function) neural
network and pole placement strategy to suppress the rotation angle fluctuations. The RBF neural
network is used to identify uncertain items caused by the manipulator’s flexibility and the time-
varying characteristics of dynamic parameters. Besides, the pole placement strategy is used to
optimize the PD (Proportional Differential) controller’s parameters to improve the response speed and
stability. Firstly, a dynamic model of flexible manipulators considering gravity is established based
on the assumed mode method and Lagrange’s principle. Then, the system’s control characteristics
are analyzed, and the pole placement strategy optimizes the parameters of the PD controllers. Next,
the control method based on the RBF neural network is proposed, and the Lyapunov stability theory
demonstrates stability. Finally, numerical analysis and control experiments prove the effectiveness
of the control method proposed in this paper. The means and standard deviations of rotation angle
error are reduced by the control method. The results show that the control method can effectively
reduce the rotation angle error and improve motion accuracy.

Keywords: flexible manipulator; servo system; neural network; dynamic modeling

1. Introduction

Flexible manipulators are complex systems with multiple inputs and multiple out-
puts. They are widely used in in-depth space exploration, industrial assembly, and other
fields [1,2]. Compared with the traditional rigid manipulators, flexible manipulators have
a larger radius of rotation and lighter weight. Flexible manipulators are more likely to
vibrate in a low-frequency area. In order to clarify the reasons for the vibration of flexible
manipulators, it is necessary to carry out a dynamic modeling analysis. At present, the
modeling methods of flexible manipulators are mainly divided into two categories. One
is the finite element (FE) method, and the other is the assumed mode method (AMM). In
literature [3–5], the dynamic equations of flexible manipulators with the rotation angle
coupled with modal coordinates are established by using the AMM. In literature [6], the FE
method is used to establish the dynamic equation of flexible manipulators with flexible
joints. Compared with the AMM, the FE method is more suitable for flexible manipulators
with irregular shapes [7]. Nowadays, in the dynamic modeling processes of flexible ma-
nipulators, it is usually assumed that flexible manipulators move in the horizontal plane,
as shown in the literature [8,9]. According to this assumption, the influence of gravity on
flexible manipulators can be ignored. However, in some practical applications of flexible
manipulators, the gravity factor needs to be considered [2,10]. In literature [11], the gravity
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factor is considered in modeling processes of the servo system for a manipulator with
flexible joints. Gravity is introduced into the dynamic equation as a strong nonlinear
term. Therefore, the gravity factor needs to be considered in the dynamic modeling of
flexible manipulators.

The control methods of the servo system for flexible manipulators mainly include
active control and passive control. The active control method is to obtain stable output
by changing controller parameters or controller structures. The passive control method is
to eliminate the resonant influence of the flexible manipulators by adding a notch device.
The active control methods mainly include PID (Proportional Integral Differentiation)
control [12,13], sliding mode control [14,15], robust control [16,17], etc. In literature [13],
the nonlinear self-tuning PID controller is used to control the flexible manipulators. In
literature [15], the sliding mode controller with observer is used to control the angle of
manipulators. In literature [16], the linear quadratic Gaussian and the weighted H infinity
controller are adopted to control flexible manipulators. Compared with rigid manipulators,
the nonlinear flexible factor is introduced into the dynamic equation of flexible manipula-
tors. This kind of flexible nonlinear factor brings difficulty to the design of the servo system
controller. If the gravity factor is considered in flexible manipulators’ dynamic modeling
processes, the nonlinear factor is introduced again. This further increases the difficulty of
the servo system controller design. In literature [18], internal control loops with nonlinear
terms are added to compensate for the influence of gravity factors on rigid manipulators.
There are some uncertain items in the servo system for flexible manipulators. These uncer-
tain items come from the errors in the dynamic modeling processes and the parameters’
time-varying characteristics during the motion of flexible manipulators. Neural networks
are widely used in the identification of system uncertain items. Literature [19,20] uses
the neural network to identify the uncertain items in the dynamic system of flexible-joint
manipulators, thus improving the control precision. Therefore, the neural network can be
used to identify the uncertain items in the dynamic system of flexible manipulators. Then,
the input torque can be compensated in the way of an internal control loop. Besides, the
controller parameters also affect the output of the servo system for flexible manipulators. In
literature [21,22], the controller parameters are optimized by adjusting the pole coefficients,
and the rigid manipulators obtain a good output.

According to the literature [23,24], a flexible manipulator is equivalent to a flexible
beam model in this paper. The dynamic equation of the servo system for flexible manipu-
lators is established by using the AMM. Gravity is taken into account in the modeling of
dynamics. Then the transmission of the servo system for flexible manipulators is analyzed
through dynamic equations. The controller parameters of the servo system also affect the
output accuracy. In this paper, a pole placement strategy is used to optimize the controller
parameters. Then, the RBF neural network is used to identify the uncertain items of the
servo system for flexible manipulators. Among them, the servo system’s uncertain items
are composed of the parameter time-varying part and the flexible part. After the neural
network identification, it is compensated into the control system again in the way of an
internal control loop. Therefore, the accuracy of the input torque of the servo system is
improved. This paper’s main contribution is to improve the control accuracy by using a
combination of pole placement strategy and neural network. The RBF neural network is
used to identify uncertain items containing flexible factors. The gravity factor’s influence
is considered in the modeling processes, and the gravity item in the dynamic equation is
compensated through the internal control loop.

The rest of the paper is organized as follows: Section 2 establishes the dynamic equa-
tion of the servo drive system for flexible manipulators with gravity found using the AMM
and Lagrange’s principle. Section 3 describes the servo system’s control characteristics and
uses the PD control strategy based on the pole placement strategy to control the position
loop. Section 4 uses the PD control strategy based on the RBF neural network to control the
servo system, and the stability of the servo system’s is proved by Lyapunov stability theory.
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Section 5 carries out the numerical simulation and experiments of flexible manipulators to
verify the proposed control strategy’s effectiveness. Section 6 states the conclusion.

2. Dynamic Modeling of the Flexible Manipulator Servo System

The servo system for flexible manipulators can be considered to be composed of
a motor side and a flexible load side, as shown in Figure 1. The motor side contains a
gear reducer that reduces the speed of the motor side. The flexibility of a flexible load is
equivalent to the flexibility of a flexible manipulator. According to the literature [25,26],
the flexible load can be equal to the Euler–Bernoulli flexible beam model.

Figure 1. Schematic diagram of the servo system for flexible manipulators.

where Tm, Tl, Ta represent the electromagnetic motor torque, the external torque of the load
side, the input torque of the flexible load; w(x, t) represents the deformation of the flexible
load; θm, θ represent the rotation angle of motor side, and the rotation angle of flexible
load; XOY, x0Oy0 represent the static coordinate and the moving coordinate; mg represents
the gravity.

If the torsional stiffness is ignored, the rotation angle of the motor side is equal to
the rotation angle of the flexible load. Wherein, the relationship between Tm, Tl, and Ta is
shown in Equation (1):

Ta = Tm − Tl . (1)

According to the literature [27], the deformation of flexible loads is considered to be
a two-dimensional function of the position of the load section x and time t. In the servo
system’s modeling processes for flexible manipulators, the above model can be equivalent
to the system that the cantilever beam rotates around the center. When the cantilever
beam rotates, the transverse deformation of the flexible load is obvious. The longitudinal
deformation occurs at the same time as the transverse deformation. According to the
literature [28], the longitudinal deformation of the flexible load can be ignored since the
longitudinal deformation is small. Therefore, the flexible load in the servo system for
flexible manipulators is equivalent to an Euler–Bernoulli beam.

2.1. Description of Flexible Load-Deformation

According to the vibration theory of flexible beams, the deformation of the flexible
load is described by the AMM. It is assumed that a flexible beam’s deformation is related
to the modal function and the modal coordinate. The deformation of the flexible load is
shown in Equation (2):

w(x, t) =
∞

∑
i = 1

φi(x)δi(t), (2)

where φi(x), δi(t) represent the modal function and the modal coordinate.
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The flexible manipulator’s external load is ignored, and the flexible load is equivalent
to the flexible cantilever beam. Thus, the flexible load boundary conditions can be obtained,
as shown in Equation (3): 

w(0, t) = 0
∂w(0,t)

∂x = 0

EI ∂2w(l,t)
∂x2 = 0

EI ∂3w(l,t)
∂x3 = 0

. (3)

According to the vibration theory, the partial differential equation of the flexible load’s
lateral vibration can be obtained, as shown in Equation (4):

ρA
∂2w(x, t)

∂t2 +
∂2

∂x2

[
EI

∂2w(x, t)
∂x2

]
= 0, (4)

where ρ represents the volume density of flexible load; A represents the cross-section area
of flexible load; EI represents the elastic modulus of flexible load.

Substituting Equation (2) into Equation (4), Equation (5) can be obtained:

δ′′ i(t)
δi(t)

= − EI
ρA

φi
(4)(x)

φi(x)
= −ω2

i , (5)

where ωi represents the modal frequency of the flexible load.
Equation (5) can be sorted out to get Equation (6):

EIφi
(4)(x)−ω2

i ρAφi(x) = 0. (6)

Assume the expression of the modal function solution, as shown in Equation (7):

φi(x) = esx. (7)

According to Equations (6)–(9) can be obtained:

β4
i =

ωi
2ρA
EI

, (8)

d4φi(x)
dx

= β4
i φi(x), (9)

where βi represents the characteristic root of the modal function. Its value is related to
the flexible load length and boundary conditions. When the boundary conditions of the
flexible load are consistent with the cantilever beam, the expression of the characteristic
root value of the modal function is shown in Equation (10):

cos βilchβil = −1. (10)

According to Equation (8), the relationship between the modal frequency of the
flexible load and the characteristic root of the modal function can be obtained, as shown in
Equation (11):

ωi =

√
EIβi

4

ρA
. (11)
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Thus, the characteristic equation and characteristic root of the modal function can be
obtained according to Equation (9), as shown in Equation (12):

s4 − β4 = 0
s1,2 = ±β
s3,4 = ±iβ

. (12)

According to Equation (12), the solution of the modal function can be obtained, as
shown in Equation (13).

φi(x) = D1 sin βix + D2 cos βix + D3shβix + D4chβix (13)

where D1, D2, D3, and D4 represent the coefficients that can be obtained by the bound-
ary conditions.

According to literature [27], Equation (13) is sorted out to obtain Equation (14).

φi(x) = chβix− cos βix + ςi(shβix− sin βix) (14)

where the expression of ςi can be obtained in Equation (15).

ςi = − shβil − sin βil
chβil + cos βil

(15)

2.2. Modeling of the Flexible Manipulator Servo System

If the flexible manipulator moves in the horizontal plane, it does not need to consider
gravity’s influence. In this case, the vector representation of any point on the flexible load
is shown in Equation (16): 

rT = [X, Y]
X = x cos θ − w(x, t) sin θ
Y = x sin θ + w(x, t) cos θ

. (16)

So, the kinetic energy of the flexible load is shown in Equation (17):

T = 1
2 ρA

∫ l
0

.
rT .

rdx

= 1
2 ρA

∫ l
0

[(
x2 + w(x, t)2

) .
θ

2
+
(

∂w(x,t)
∂t

)2
+ 2x ∂w(x,t)

∂t

.
θ

]
dx

(17)

The elastic potential energy of the flexible manipulator is shown in Equation (18):

V =
1
2

EI
∫ l

0

∂2y(x, t)
∂x2 dx. (18)

According to the Lagrange Lagrange’s principle, Equation (19) can be obtained:

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
+

∂V
∂qi

= Qi, (19)

where q1, q2 represent the rotation angle of flexible load and the modal coordinates; Qi
represents the generalized force.

Equation (19) can be obtained by Equation (20):
d
dt

(
∂T
∂

.
θ

)
− ∂T

∂θ + ∂V
∂θ = Ta

d
dt

(
∂T

∂
.
δi(t)

)
− ∂T

∂δi(t)
+ ∂V

∂δi(t)
= 0

. (20)
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Equation (20) can be finally sorted into the form of Equation (21):
..
θ
∫ l

0 ρAx2dx+
..
θ

∞
∑

i = 1
δi(t)

2 + 2
.
θ

∞
∑

i = 1
δi(t)

.
δi(t) +

∞
∑

i = 1

..
δi(t)

∫ l
0 ρAxφi(x)dx = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1

∫ l
0 ρAxφi(x)dx−

.
θ

2 ∞
∑

i = 1
δi(t) +

∞
∑

i = 1
ω2

iδi(t) = 0
. (21)

Equations (22) and (23) are defined:

Ia = ρA
∫ i

0
x2dx, (22)

Fai = ρA
∫ i

0
xφi(x)dx. (23)

According to Equations (22) and (23), the servo system’s dynamic equation for flexible
manipulators can be summarized in the form shown in Equation (24):

Ia
..
θ +

..
θ

∞
∑

i = 1
δi(t)

2 + 2
.
θ

∞
∑

i = 1
δi(t)

.
δi(t) +

∞
∑

i = 1

..
δi(t)Fai = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1
Fai −

.
θ

2 ∞
∑

i = 1
δi(t) +

∞
∑

i = 1
ω2

iδi(t) = 0
. (24)

After removing the nonlinear terms, Equation (24) can be sorted out, as shown in
Equation (25): 

Ia
..
θ +

∞
∑

i = 1

..
δi(t)Fai = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1
Fai +

∞
∑

i = 1
ω2

iδi(t) = 0
. (25)

Equation (25) represents the servo system’s dynamic equation for flexible manipulators
moving in the horizontal plane.

2.3. Modeling of Flexible Manipulator Servo System Considering the Gravity

If flexible manipulators move in the vertical plane, the influence of gravity needs to
be considered. The flexible manipulator’s kinetic energy is still shown in Equation (17),
but its potential energy can be approximately expressed, as shown in Equation (26):

V =
1
2

EI
∫ l

0

∂2y(x, t)
∂x2 dx +

1
2

gl sin θ
∫ l

0
ρAdx. (26)

According to Lagrange’s principle, the dynamic Equation of the servo system for
flexible manipulators considering the influence of gravity can be obtained, as shown in
Equation (27):

..
θ
∫ l

0 ρAx2dx+
..
θ

∞
∑

i = 1
δi(t)

2 + 2
.
θ

∞
∑

i = 1
δi(t)

.
δi(t) +

∞
∑

i = 1

..
δi(t)

∫ l
0 ρAxφi(x)dx + 1

2 gl cos θ
∫ l

0 ρAdx = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1

∫ l
0 ρAxφi(x)dx−

.
θ

2 ∞
∑

i = 1
δi(t) +

∞
∑

i = 1
ω2

iδi(t) = 0
(27)

Similarly, after removing the nonlinear term, the simplified dynamic equation can be
obtained, as shown in Equation (28):

..
θ
∫ l

0 ρAx2dx+
∞
∑

i = 1

..
δi(t)

∫ l
0 ρAxφi(x)dx + 1

2 gl cos θ
∫ l

0 ρAdx = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1

∫ l
0 ρAxφi(x)dx +

∞
∑

i = 1
ω2

iδi(t) = 0
. (28)
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According to Equations (22) and (23), Equation (27) can be sorted into the form shown
in Equation (29):

Ia
..
θ +

..
θ

∞
∑

i = 1
δi(t)

2 + 2
.
θ

∞
∑

i = 1
δi(t)

.
δi(t) +

∞
∑

i = 1

..
δi(t)Fai +

1
2 gl cos θ

∫ l
0 ρAdx = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1
Fai −

.
θ

2 ∞
∑

i = 1
δi(t) +

∞
∑

i = 1
ω2

iδi(t) = 0
. (29)

According to Equation (29), Equation (30) can be obtained after removing the nonlin-
ear term: 

Ia
..
θ +

∞
∑

i = 1

..
δi(t)Fai +

1
2 gl cos θ

∫ l
0 ρAdx = Ta

∞
∑

i = 1

..
δi(t) +

..
θ

∞
∑

i = 1
Fai +

∞
∑

i = 1
ω2

iδi(t) = 0
. (30)

Equation (29) represents the dynamic equation of the servo system for flexible manip-
ulators considering gravity. Equation (31) represents the simplified form when nonlinear
terms are not considered.

In order to study the influence of gravity on the input torque of flexible manipulators,
a single link maneuver proposed by the literature [29] is also adopted. The relationship
between the rotation angle and time is shown in Equation (31):

..
θ(t) =

{ .
θmax

15
(
1− cos 2π

15 (t)
)

0 ≤ t ≤ 15
0 15 ≤ t

. (31)

When gravity is taken into account, parameters such as the length and elastic modulus
of flexible manipulators will affect the input torque. If only the first-order model is
considered and the mass of the flexible manipulator is unchanged, the input torque can be
obtained according to Equations (25) and (30), as shown in Figure 2.

Figure 2. Cont.
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Figure 2. Input torque of flexible manipulator. (a) The effect of gravity on the input torque. (b) The input torque deviation
considering gravity. (c) The input torque deviation without considering gravity. In high speed, the maximum speed in
Equation (31) is set at 6 rad/s. While in the case of low speed, the maximum speed in Equation (31) is set at 3 rad/s. The
mass of the flexible manipulator is 1 kg.

According to Figure 2, the following conclusions can be drawn:

(1) If the flexible manipulator moves on the vertical plane, gravity’s influence on the
input torque is crucial and cannot be ignored.

(2) The input torque under the influence of gravity increases as the flexible manipulator’s
length increases.

(3) Without considering the factor of gravity, the input torque is affected by the maximum
rotation speed of the flexible manipulator, and the input torque increases with the
increase of speed.

If the factor of gravity is considered, the input torque of the flexible manipulator is
less affected by the maximum rotation speed. According to the above conclusion, when
the flexible manipulator moves in the vertical plane, the influence of gravity should not
be ignored.

3. Control Characteristics of Flexible Manipulator Servo System
3.1. Transfer Function of the Servo System

When the flexible manipulator moves in the horizontal plane, gravity’s influence
does not need to be considered. Equation (25) can be used as the dynamic equation of
the servo system for flexible manipulators. The dynamic equation shown in Equation (25)
can be regarded as a single-input multiple-output system. The input torque of the flexible
manipulator is taken as the input, and the rotation angle and the modal coordinates are
taken as the output.

After the Laplace variation of Equation (25), Equation (32) can be obtained:

s2θ

(
Ia −

∞

∑
i = 1

s2F2
ai(

s2 + ω2
i
)) = Ta, (32)

− Ia

∞

∑
i = 1

δi(t)
(
s2 + ω2

i
)

Fai
+

∞

∑
i = 1

δi(t)s2Fai = Ta. (33)
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Only the first-order model, the servo system’s transfer function for flexible manipula-
tors, can be obtained according to Equation (32), as shown in Equation (34):

θ

Ta
=

1

s2
(

Ia −
s2F2

a1
(s2+ω2

1)

) , (34)

δ1(t)
Ta

=
Fa1

s2F2
a1 − Ia

(
s2 + ω2

1
) . (35)

Equation (34) represents the transfer function from the input torque of flexible manip-
ulators to the rotation angle. Equation (35) illustrates the transfer function from the input
torque of flexible manipulators to the modal function.

If the effect of flexibility is not considered, the transfer function from the input torque
of the manipulator to the rotation angle is shown in Equation (36):

G1(s) =
1

s2 Ia
. (36)

If we consider that flexible manipulators have a third-order mode, the transfer function
from the input torque to the rotation angle is obtained, as shown in Equation (37):

G2(s) =
1

s2 Ia
(1−M)−1, (37)

where the expression of M is shown in Equation (38):

M =
s2F2

a1/Ia

(s2 + ω2
1)

+
s2F2

a2/Ia

(s2 + ω2
2)

+
s2F2

a3/Ia

(s2 + ω2
3)

. (38)

According to Equation (37), the open-loop Bode diagram from the input torque to the
flexible manipulator’s rotation angle can be obtained, as shown in Figure 3. According
to Figure 3, the flexibility of the manipulator will cause oscillation frequency. When the
oscillation frequency is close to the speed, it will cause more significant vibration. Therefore,
it is necessary to consider the flexibility of the manipulator.

Figure 3. Bode diagram of the input torque to the rotation angle.

The length and the elastic modulus of the flexible manipulator will impact the oscilla-
tion frequency of the open-loop transfer function, as shown in Figure 4.



Mathematics 2021, 9, 896 10 of 28

Figure 4. Distribution of the oscillation frequency. (a) The first mode. (b) The second mode. (c) The third mode

According to Figure 4, each mode’s oscillation frequency decreases with the increase
of the manipulator’s length and increases with the growth of the elastic modulus. The
manipulator will change the oscillation frequency in the telescopic movement due to the
flexible factor, so it has strong robustness. This robustness will cause the motion error of
the flexible manipulator and affect the accuracy. Therefore, the flexible factor should be
considered for high precision manipulator:

By comparing Equations (36) and (37), the flexibility of manipulators is mainly re-
flected in the flexible coupling part, and its expression is shown in Equation (39). Com-
pared with rigid manipulators, flexible manipulators have a flexible coupling part in the
transfer function:

H(s) =

(
1−

∞

∑
i = 1

s2F2
ai/Ia

(s2 + ω2
i )

)−1

. (39)

3.2. Design of the PD Controller Based on Pole Placement Strategy

In the servo system for flexible manipulators, it is considered in the literature [30] that
the control of the speed loop and current loop of the servo system has been completed.
Therefore, the influence of the current loop and speed loop is ignored in this paper and
considers position control. The position loop of the servo system adopts a PD control
strategy, as shown in Figure 5.
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Figure 5. Schematic diagram of position loop for flexible manipulators.

where Kp, Kd represent the proportion coefficient and the differential coefficient.
According to Figure 5, the closed-loop transfer function of position control of the

flexible manipulator can be obtained, as shown in Equation (40):

Gb(s) =

(
Kp + Kds

) 1
s2 Ia

(
1−

∞
∑

i = 1

s2F2
ai/Ia

(s2+ω2
i )

)−1

1 +
(
Kp + Kds

) 1
s2 Ia

(
1−

∞
∑

i = 1

s2F2
ai/Ia

(s2+ω2
i )

)−1 . (40)

When only the first-mode is considered, the position control’s closed-loop transfer
function is shown in Equation (41):

Gb(s) =
Kds3 + Kps2 + Kdω2

1s + Kpω2
1(

Ia − F2
a1
)
s4 + Kds3 +

(
Kp + Iaω2

1
)
s2 + Kdω2

1s + Kpω2
1

. (41)

According to the literature [21], the pole placement strategy is adopted to configure
the closed-loop transfer function’s poles. The denominator polynomial of Equation (41) is
written in the form shown in Equation (42):{ (

Ia − F2
a1
)
s4 + Kds3 +

(
Kp + Iaω2

1
)
s2 + Kdω2

1s + Kpω2
1 =

(
Ia − F2

a1
)

D
D =

(
s2 + 2ξa1ωa1s + ω2

a1
)(

s2 + 2ξb1ωb1s + ω2
b1

) , (42)

where ξa1, ξb1 denote the damping coefficients of the poles; ωa1, ωb1 denote the natural
frequency coefficients of the poles.

According to Equation (42), Equation (43) can be obtained:

(
s2 + 2ξa1ωa1s + ω2

a1

)(
s2 + 2ξb1ωb1s + ω2

b1

)
= s4 +

Kd(
Ia − F2

a1
) s3 +

(
Kp + Iaω2

1
)(

Ia − F2
a1
) s2 +

Kdω2
1(

Ia − F2
a1
) s +

Kpω2
1(

Ia − F2
a1
) . (43)

Therefore, Equations (44)–(47) can be obtained:

2ξa1ωa1 + 2ξb1ωb1 =
Kd(

Ia − F2
a1
) , (44)

ω2
a1 + ω2

b1 + 4ξa1ξb1ωa1ωb1 =

(
Kp + Iaω2

1
)(

Ia − F2
a1
) , (45)

2ξa1ωa1ω2
b1 + 2ξb1ωb1ω2

a1 =
Kdω2

1(
Ia − F2

a1
) , (46)

ω2
a1ω2

b1 =
Kpω2

1(
Ia − F2

a1
) . (47)

The determination of PD controller parameters is the core of using the PD control method
to control the servo system for flexible manipulators. According to Equations (44)–(47), pole
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placement strategy is used to calculate controller parameters. The PD controller parameters
are shown in Equations (48) and (49):

Kp =
ω2

a1ω2
b1

(
Ia − F2

a1
)

ω2
1

, (48)

Kd = (2ξa1ωa1 + 2ξb1ωb1)
(

Ia − F2
a1

)
. (49)

In this paper, the pole placement strategy with the same damping coefficient is used
to determine the controller parameters. That means that the closed-loop transfer function
of the system has the same damping coefficient. Substitute ξa1 = ξb1 = ξ1 into the
Equations (44)–(47), and Equations (50) and (51) can be obtained after sorting out:

2ξ1(ωa1 + ωb1) =
Kd(

Ia − F2
a1
) , (50)

ω2
a1 + ω2

b1 + 4ξ1
2ωa1ωb1 =

(
Kp + Iaω2

1
)(

Ia − F2
a1
) . (51)

According to Equations (50) and (51), Equations (52) and (53) can be obtained:(
ω2

a1 + ω2
b1

ωa1ωb1

)
+ 4ξ1

2 =

(
Ia − F2

a1 + Ia
)(

Ia − F2
a1
) =

(
2Ia − 2F2

a1 + F2
a1
)(

Ia − F2
a1
) =

F2
a1

Ia − F2
a1

+ 2, (52)

ω2
1 = ωa1ωb1. (53)

According to Equations (52) and (53), Equations (54) and (55) can be obtained:

ωa1 =

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4−
√

F2
a1

Ia−F2
a1
− 4ξ2

1

2
ω1, (54)

ωb1 =

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4 +
√

F2
a1

Ia−F2
a1
− 4ξ2

1

2
ω1. (55)

According to Equations (54) and (55), the control parameters can be obtained as shown
in Equations (56) and (57):

Kd = 2ξ1

(
Ia − F2

a1

)√ F2
a1

Ia − F2
a1
− 4ξ2

1 + 4ω1, (56)

Kp =
(

Ia − F2
a1

)
ω2

1. (57)

According to the control parameters, the servo system’s closed-loop transfer function
for flexible manipulators can be obtained, as shown in Equation (58):

Gb(s) =

(
2ξ1

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4
)

ω1s3 + ω2
1s2 +

(
2ξ1

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4
)

ω3
1s + ω4

1

s4 +

(
2ξ1

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4
)

ω1s3 +

(
ω2

1 +
Iaω2

1
Ia−F2

a1

)
s2 +

(
2ξ1

√
F2

a1
Ia−F2

a1
− 4ξ2

1 + 4
)

ω3
1s + ω4

1

. (58)

The parameters of the PD controller can be adjusted indirectly by adjusting the
damping coefficient of the poles. The controller parameters can be calculated according to
Equations (56) and (57) to achieve a stable and fast output of the system.
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4. Control Method of Flexible Manipulators Based on RBF Neural Network

When flexible manipulators move in a vertical plane, the gravity factor cannot be
ignored. Due to the nonlinear factors caused by gravity and flexibility, the difficulty of
flexible manipulators control is increased. Therefore, the nonlinear control method of
flexible manipulators is adopted in this paper. Nonlinear compensation is introduced into
the inner control loop to offset the influence of gravity nonlinear term. The nonlinear part
caused by flexibility is regarded as the disturbance term, which increases uncertain items
in the system. During the compound motion of flexible manipulators, the parameters such
as inertia have significant time-varying characteristics. Therefore, the servo drive system
for flexible manipulators has strong robustness, bringing difficulty to precise control. In
order to solve the uncertain items caused by flexibility and time-varying characteristics of
the parameters, the RBF neural network is used to approximate the uncertain items. The
accurate input torque of flexible manipulators can be obtained by introducing an internal
control loop with nonlinear terms and identify the system’s uncertain items with the RBF
neural network. Then, the angle error and the vibration amplitude of flexible manipulators
are reduced.

According to Equation (30), the servo system’s dynamic equation for flexible manipu-
lators considering gravity can be obtained. Equation (30) is simplified into a general form,
as shown in Equation (59):

Ia
..
θ + C(θ)

.
θ + G(θ) = τ + d

G(θ) = 1
2 gl cos θ

∫ l
0 ρAdx

τ = Ta

d = −
(

2
.
θ

∞
∑

i = 1
δi(t)

.
δi(t) +

∞
∑

i = 1

..
δi(t)Fai

) , (59)

where C(θ), G(θ), represent the damping coefficient and the gravity item respectively. If the
damping effect is ignored, then C(θ) = 0. The symbol τ and d represent the input torque of
the flexible load and the disturbance term respectively.

4.1. Internal Control Loop with Nonlinear Compensation Term

According to Equation (30) and Figure 2, the gravity factor cannot be ignored during
the movement of flexible manipulators in a vertical plane. When calculating the input
torque of flexible manipulators, whether the gravity factor is considered or not has a
significant difference in the calculation results. In this paper, the inner control loop is added
based on the PD control strategy that controls the servo system’s position loop for flexible
manipulators. The parameters of the PD controller are determined by pole placement
strategy. A nonlinear gravity compensation term is added to the internal control loop.
The input torque generated by the system can compensate for the influence of gravity in
real-time. The schematic diagram of the servo system’s internal control loop for flexible
manipulators with nonlinear compensation is shown in Figure 6.

It is assumed that the uncertain items are not considered in the servo system for
flexible manipulators. According to Figure 6, the control law of the PD control strategy
with the inner control loop can be obtained, as shown in Equation (60):

τ = Iau + C(θ)
.
θ + G(θ)

u =
..
θ
∗
− Kd

.
e− Kpe

e = θ − θ∗
.
e =

.
θ −

.
θ
∗

..
e =

..
θ −

..
θ
∗

. (60)
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Thus, the closed-loop system equation under this control strategy can be obtained, as
shown in Equation (61):

..
e + Kd

.
e + Kpe = 0. (61)

Figure 6. The internal control loop of the servo system for flexible manipulators.

4.2. Control Law Considering the Uncertain Items

Due to the time-varying characteristics of parameters and flexible nonlinear terms in
the servo system for flexible manipulators, proper system parameters cannot be obtained.
Therefore, only nominal models can be established. For the nominal system, the control
law is shown in Equation (62):

τ = Îa

( ..
θ
∗
− Kd

.
e− Kpe

)
+ Ĉ(θ)

.
θ + Ĝ(θ), (62)

where Îa, Ĉ(θ), Ĝ(θ) represent the nominal coefficients of the inertia, the damping coeffi-
cient, and the gravity item respectively; θ∗ represents the desired angular trajectory.

By substituting the control law of the nominal system into Equation (59), Equation (63)
can be obtained:

Îa

( ..
θ
∗
− Kd

.
e− Kpe

)
+ Ĉ(θ)

.
θ + Ĝ(θ) + d = Ia

..
θ + C(θ)

.
θ + G(θ). (63)

After simplification of Equation (63), Equation (64) can be obtained:

Îa

[( ..
θ −

..
θ
∗)

+ Kd
.
e + Kpe

]
=
(

Îa − Ia
) ..
θ +

(
Ĉ(θ)− C(θ)

) .
θ +

(
Ĝ(θ)− G(θ)

)
+ d. (64)

Equation (64) shows the closed-loop system equation with deterministic considera-
tions, as shown in Equation (65):

..
e + Kd

.
e + Kpe = Îa

−1
(

∆Ia
..
θ + ∆C(θ)

.
θ + ∆G(θ) + d

)
∆Ia = Îa − Ia
∆C(θ) = Ĉ(θ)− C(θ)
∆G(θ) = Ĝ(θ)− G(θ)

, (65)
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where ∆Ia, ∆C(θ), and ∆G(θ) represent the difference between nominal coefficients and real
coefficients of the inertia, the damping coefficient, and the gravity item, respectively.

According to Equation (65), the uncertain items can be obtained, and its expression is
shown in Equation (66):

f = Îa
−1
(

∆Ia
..
θ + ∆C(θ)

.
θ + ∆G(θ) + d

)
. (66)

Based on Equations (65) and (66), the error state equation of the system can be obtained
under the condition of considering system uncertain items, as shown in Equation (67):

..
e = −Kpe− Kd

.
e + f . (67)

Equation (67) can be written as shown in Equation (68):

.
x = Ax + B f

x =
[

e
.
e
]T

A =

[
0 1
−Kp −Kd

]
B =

[
0 1

]T
. (68)

Assuming that the uncertain items are known, the control law of servo system for
flexible manipulators is shown in Equation (69):

τ = D̂(θ)
( ..

θ
∗
− Kd

.
e− Kpe− f

)
+ Ĉ(θ)

.
θ + Ĝ(θ). (69)

By substituting Equation (68) into Equation (59), the stable closed-loop system equa-
tion can be obtained, as shown in Equation (61).

Because flexible manipulators’ parameters are time-varying and the flexible item is
nonlinear, the uncertain items cannot be obtained. Therefore, it is necessary to identify the
uncertain items to ensure the precise input torque of flexible manipulators.

4.3. RBF Neural Network to Identify the Uncertain Items of the Model

In this paper, the RBF neural network is used to approximate the uncertain items of
the servo system for flexible manipulators. The result after approximation by the neural
network replaces the real uncertain items of the system.

In the RBF neural network, the most common activation function is Gaussian [31].
The Gaussian activation function has the following advantages:

(1) The representation is simple. It does not add too much complexity to multi-variable input.
(2) Radial symmetry.
(3) The smoothness is good, and the derivative of any order exists.

In this paper, the Gaussian function is used as the activation function of the RBF
neural network, and the output of the ith node of the neural network can be expressed by
Equation (70): ui(x) = exp

(
(x−ci)

T(x−ci)

2σ2
i

)
, i = 1, 2, · · · , n

x = [x1 x2 · · · xn]
T =

[(
e1,

.
e1
) (

e2,
.
e2
)
· · ·

(
en,

.
en
)]T , (70)

where ui (x) represents the output of the ith hidden node; σi represents the normalizing
constant of the ith hidden node; n represents the number of nodes of the hidden layer; ci
represents the center vector of the ith hidden node of the Gaussian function; x represents
the input samples.
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The hidden layer of the RBF neural network to the output layer realizes linear mapping.
The result of the output layer is shown in Equation (71): yk = wku =

n
∑

i = 1
wkiui

yk = f̂
, (71)

where yk represents the output of the kth node of the output layer; wk represents the weight
coefficient vector; wki represents weight coefficient. In this paper, there is only one output
node, which represents the system uncertain items.

According to Equations (70) and (71), it can be known that the system uncertain items
are a function of the input samples and the weight coefficient vector. Use the f̂ (x, wk) to
represent the uncertain items of the system identified by the neural network. The real
uncertain items are a function of the state vector of the error. Use the f (x) to represent the
uncertain items of the real system.

This article makes the following assumptions:

(1) The RBF neural network output continuously.
(2) The output of the RBF neural network approximates a continuous function f (x), and

there is a very small positive number ε0 that satisfies the condition of Equation (72):

max
∥∥∥ f̂ (x, w∗k )− f (x)

∥∥∥ ≤ ε0. (72)

According to the above assumptions, the error state-space equation shown in Equation
(68) can be written into the form shown in Equation (73):

.
x = Ax + B

{
f̂ (x, w∗k ) +

[
f (x)− f̂ (x, w∗k )

]}
, (73)

where w∗k represents the neural network weight coefficient vector for the optimal identifi-
cation of system uncertain items. Its expression is shown in Equation (74):

w∗k = arg
(

min
{

sup
∥∥∥ f (x)− f̂ (x, wk)

∥∥∥}). (74)

This paper uses the η to represent the neural network error, and its expression is
shown in Equation (75):

η = f (x)− f̂ (x, w∗k ). (75)

According to Equation (75), the error state space-equation is written in the form shown
in Equation (76):

.
x = Ax + B

{
f̂ (x, w∗k ) + η

}
. (76)

After training, the neural network’s weight coefficient vector becomes w∗k , then the
output value of the neural network at this time is shown in Equation (77):

f̂ (x, w∗k ) =
n

∑
i = 1

w∗kiui. (77)

According to Equation (66), the error state-space equation is written in the form shown
in Equation (78):

.
x = Ax + B

{
n

∑
i = 1

w∗kiui + η

}
. (78)

After applying the RBF neural network to identify the uncertain items, the servo drive
system’s control law for flexible manipulators is shown in Equation (79):

τ = Îa

( ..
θ
∗
− Kd

.
e− Kpe− f̂ (x, ŵk)

)
+ Ĉ(θ)

.
θ + Ĝ(θ), (79)
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where ŵk represents the estimated value of w∗k .
After using the RBF neural network to identify the uncertain items, the control loop’s

schematic diagram is shown in Figure 7.

Figure 7. Schematic diagram of control method of flexible manipulators based on the RBF neural network.

4.4. Proof of Stability

The RBF neural network is used to approach the uncertain items of the servo system
for flexible manipulators. The control law is obtained, as shown in Equation (79). By
substituting Equation (79) into Equation (59), Equation (80) can be obtained:

..
e + Kd

.
e + Kpe = f̂ (x, w∗k ) + f (x)− f̂ (x, w∗k )− f̂ (x, ŵk). (80)

According to Equation (80), Equation (81) can be obtained:

..
e + Kd

.
e + Kpe = f̂ (x, w∗k )− f̂ (x, ŵk) + η =

n

∑
i = 1

w∗kiui −
n

∑
i = 1

ŵkiui + η. (81)

Equation (82) is established:

w̃ki = ŵki − w∗ki. (82)

Then, Equation (81) is written as shown in Equation (83):

..
e + Kd

.
e + Kpe = f̂ (x, w∗k )− f̂ (x, ŵk) + η = −

n

∑
i = 1

w̃kiui + η. (83)
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According to Equation (83), the error state-space equation can be obtained, as shown
in Equation (84):

.
x = Ax + B

{
−

n

∑
i = 1

w̃kiui + η

}
= Ax + B

{
−w̃k

Tu(x) + η
}

, (84)

where w̃k represents the difference between the optimal weight coefficients vector of neural
network after training and the estimated weight coefficients vector; u(x) represents the
output vector of the hidden node of the neural network.

The Lyapunov function is defined as Equation (85):

V =
1
2

xTPx +
1

2γ
‖w̃k‖

2, (85)

where γ is a positive number; P is a positive definite matrix and satisfies the Lyapunov
function, as shown in Equation (86):

PA + ATP = −Q, (86)

where Q is a positive definite matrix.
According to Equation (85), Equation (87) can be obtained:

V = V1 + V2
V1 = 1

2 xTPx
V2 = 1

2γ‖w̃k‖
2

. (87)

According to Equation (87), Equation (88) can be obtained:

.
V1 = 1

2
.
xTPx + 1

2 xTP
.
x = 1

2
(
xTAT + MT)Px + 1

2 xTP(Ax + M)
= 1

2 xT(ATP + PA
)
x + 1

2 MTPx + 1
2 xTPM

= − 1
2 xTQx + 1

2
(
MTPx + xTPM

)
= − 1

2 xTQx + xTPM
.

V2 = 1
γ w̃k

T
.

w̃k
.

V =
.

V1 +
.

V2 = − 1
2 xTQx + xTPM + 1

γ w̃k
T

.
w̃k

. (88)

In Equation (88), the expression of M is shown in Equation (89):

M = B
{
−w̃k

Tu(x) + η
}

. (89)

So, Equation (90) can be obtained:
.

V = −1
2

xTQx + xTPB
{
−w̃k

Tu(x) + η
}

= −1
2

xTQx + xTPBη+
1
γ

w̃k
T
(
−γxTPBu(x) +

.
w̃k

)
. (90)

The adaptive law of the RBF neural network is shown in Equation (91):

.
w̃k = γxTPBu(x). (91)

By substituting Equation (91) into Equation (90), the derivative of the Lyapunov
function can be obtained as shown in Equation (92):

.
V = −1

2
xTQx + xTPBη. (92)

By choosing the matrix Q and the small error η, the Lyapunov function’s derivative
can be less than 0. Under this condition, the servo system for flexible manipulators is stable.
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5. Numerical Simulation Analysis and Experiment

In this paper, the control method combining the pole placement strategy and the RBF
neural network is used to improve the motion accuracy of flexible manipulators. The PD
controller parameters are optimized according to the pole placement strategy. Besides, the
RBF neural network is used to identify the uncertain items of flexible manipulators. So,
the input torque of flexible manipulators is more accurate. Therefore, the precision of the
rotation angle of flexible manipulators is improved. In order to verify the effectiveness
of the proposed control strategy, numerical simulation and physical control experiments
of flexible manipulators are carried out in this paper. Firstly, the influence of the physical
parameters of flexible manipulators on the input torque and resonance frequency are ana-
lyzed by numerical simulation experiments. Next, the influence of the damping coefficient
of poles on the rotation angle is analyzed. Finally, the numerical simulation experiment
and experiment of the servo control for flexible manipulator are carried out.

5.1. The influence of Physical Parameters of the Manipulator

The length and elastic modulus of flexible manipulators will affect the servo system’s
input torque and resonance frequency. Among them, the value of the input torque is closely
related to the length of the manipulator. Besides, the input torque is closely associated with
the gravity term. In this paper, according to Equation (25), Equation (30), and Equation (31),
the relationship between input torque and time under different manipulators’ lengths is
respectively calculated in two conditions, as shown in Figure 8. One of the cases ignores
the gravitational factor, and the other case considers the gravitational factor.

Figure 8. The change of the input torque for flexible manipulators. (I) The length of the flexible manipulator is 0.6 m.
(II) The length of the flexible manipulator is 2 m. (III) The length of the flexible manipulator is 3 m. (IV) The length of
the flexible manipulator is 5 m. (V) The relationship between the maximum input torque and the length of the flexible
manipulator. The flexible manipulator has the same mass and elastic modulus. The mass is set to 1 kg, and the elastic
modulus is set to 400 kgm2.
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According to Figure 8, the servo system’s maximum input torque increases with the
increase of the length of manipulators. Among them, the gravity factor has a more signif-
icant influence on the maximum input torque. Relative to the manipulator’s length, the
gravity factor is the dominant factor for the maximum input torque. Therefore, the internal
control loop with nonlinear term compensation can effectively reduce the maximum input
torque. Moreover, this control strategy can effectively reduce the fluctuation degree of the
servo system’s output torque.

The length and elastic modulus reflect the flexibility of manipulators. They also have
an impact on the resonance frequency of the servo system. According to Equation (37),
the influence of the flexible manipulator’s physical parameters on the resonant frequency
can be obtained, as shown in Figure 9. According to Figure 9, the flexible manipulator’s
resonance frequency decreases as the length increases and increases as the elastic modulus
increases. The conclusion drawn in Figure 9 is the same as that in Figure 4. It can be
seen that the stronger the flexibility of manipulators, the smaller the resonance frequency.
Vibration is more likely to occur in the low-frequency phase.

Figure 9. Bode diagram of the flexible manipulator’s servo system under different parameters. (a) The influence of length
on the resonance frequency. (b) The influence of elastic modulus on the resonance frequency
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5.2. The Influence of Coefficients of the Pole on the Rotation Angle

Before using the RBF neural network to compensate for the uncertain items, the
PD controller parameters need to be determined. The value of the controller parameter
directly affects the control accuracy of the servo system output. In this paper, the pole
placement strategy is used to optimize the parameters of the PD controller. It provides a
theoretical basis for the parameter selection of the PD controller. According to the pole
placement strategy, the selection of controller parameters can be attributed to selecting the
damping coefficient of poles. Different damping coefficients of poles will affect the output
of the servo system. The unit step signal is used as the system’s input signal to obtain
the variation rules of rotation angle with time, as shown in Figure 10. Among them, the
numerical simulation selected 4 different parameters, as shown in Table 1.

Figure 10. The influence of the damping coefficient of poles on the rotation angle. (I) Condition1. (II) Condition2.
(III) Condition3. (IV) Condition4.

Table 1. Parameters of flexible manipulators.

Parameters Condition1 Condition 2 Condition 3 Condition 4

Flexible load length l/m 2 3 4 5
Flexible load mass m/kg 1 1 1 1
Elastic modulus of flexible load EI/Nm2 2000 1600 800 400
Linear density of flexible load ρA/kg/m2 0.5 0.3333 0.25 0.2
Flexible load inertia Ia/kgm2 1.333 3 5.333 8.33
Flexible modal coupling coefficient Fa1/kg1/2m 1.1376 1.7064 2.27521 2.8440
Modal frequency of the flexible load ω1/rad/s 55.5869 27.0633 12.4296 6.2889
Characteristic root of modal function β1 0.9375 0.625 0.4688 0.375

According to Figure 10, it can be seen that the variation rule of the rotation angle is
not only related to the damping coefficient of poles but also closely related to the length
and elastic modulus of flexible manipulators.

In this paper, three indexes of maximum overshoot, peak time, and adjustment time are
selected to evaluate the output characteristics [21]. Among them, the maximum overshoot
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reflects the system’s dynamic accuracy; the peak time and adjustment time reflect the
rapidity of the system. If the maximum overshoot is smaller, the system is more stable. On
the contrary, it shows that system stability is poor. If the peak time and adjustment time are
shorter, the system rapidity is better. On the contrary, it indicates that the system reflects
slowly. The influence law of the length, elastic modulus, and damping coefficient of poles
on the evaluation index is shown in Figure 11.

According to Figure 11, as the flexible manipulator’s length increases, the maximum
overshoot of rotation angle does not change, but the adjustment time and peak time increase
significantly. It can be seen that with the rise in the length of flexible manipulators, the
flexibility of the manipulator rises, and it takes a long time to stabilize the system. With the
increase of flexible manipulators’ elastic modulators, the maximum rotation angle does
not change, but the adjustment time and peak time decrease. It can be seen that with the
increase of the elastic modulus, the flexibility of manipulators is weakened, and it takes
a shorter time to stabilize the system. However, the damping coefficient of poles has a
greater influence on the overshoot. With the increase of the damping coefficient of poles,
the overshoot decreases gradually. The damping coefficient of poles has a weak effect on
the adjustment time and peak time. According to Figure 11, it is appropriate to select poles’
damping coefficient between 0.5 and 0.7. In this interval, the system can obtain a faster
response and receive a smaller overshoot.

Figure 11. Cont.
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Figure 11. Distribution diagram of evaluation index. (a) The influence of length and the damping coefficient of poles on the
maximum overshoot. (b) The influence of elastic modulus and the damping coefficient of poles on the maximum overshoot.
(c) The influence of length and the damping coefficient of poles on the peak time. (d) The influence of elastic modulus
and the damping coefficient of poles on peak time. (e) The influence of length and the damping coefficient of poles on
adjustment time. (f) The influence of elastic modulus and the damping coefficient of poles on adjustment time.

5.3. Control Method Based on the Combination of RBF Neural Network and Pole
Placement Strategy

In order to verify the effect of the combination control method, the parameters in
Table 1 are selected to carry out a numerical simulation experiment. The simulation
experiment takes the sine function as the input signal and obtains a change in the rotation
angle over time, as shown in Figure 12. The influence of the manipulator’s length and
elastic modulus on the rotation angle error under different control strategies is shown in
Figure 13.

According to Figure 12, if the pole placement strategy is used alone, stable tracking
can be achieved when manipulators’ length is small. With the increase of the length of ma-
nipulators, pole placement’s control strategy cannot satisfy the precise tracking. However,
after using the neural network to compensate for the uncertain items, the combination
control method can ensure the system’s stability.

According to Figure 13, it can be seen that the control method using pole placement
strategy alone will have a large error. Additionally, the error increases as the length of
manipulators increases. The error decreases with the increase of elastic modulus. It is
shown that the control method using pole placement strategy can only satisfy the condition
of low flexibility. The control effect is not suitable for the situation of large flexibility.
However, the combined control method is not affected by the flexibility of manipulators.
The combined control method can obtain a better control effect in any cases.
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Figure 12. The simulation result of rotation angle. (I) Condition1. (II) Condition2. (III) Condition3. (IV) Condition4.

Figure 13. The influence of the length and elastic modulus on error. (a) Pole placement strategy. (b) Combined control strategy.

5.4. Experiment

This paper builds an experimental platform to verify flexible manipulators’ control
strategy, as shown in Figure 14. The experimental platform is composed of a servo motor, a
transmission tendon-sheath, and a flexible manipulator. The tendon-sheath transmits the
input torque generated by the servo motor to the flexible manipulator. The input torque
of the flexible manipulator can be accurately calculated through the tension sensor on the
tendon-sheath. The control platform uses CRIO-9053 as the lower computer that inputs the
collected feedback signals into LabVIEW’s control program. Simultaneously, the control
program’s output signal is transmitted to the NI-9246 module to control the output torque.
Magnetic encoders collect the feedback signal. The magnetic encoder is installed at the
back of the flexible manipulator to collect the angle signal. The control principle of the
experimental platform is shown in Figure 15.
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Figure 14. Experimental platform of the flexible manipulator.

Figure 15. The control principle of the experimental platform.

The flexible beam is used to simulate the flexible manipulator in the control experiment
platform. Flexible beams with lengths of 0.5, 1, and 1.5 m are used to simulate flexible
manipulators of different lengths. Two different control methods are used to experiment
with rotation angle control. One of the control methods is to use the pole placement strategy
alone, and the other is to use the combined control method. The relationship between the
rotation angle with a length of 0.5 m and its error are shown in Figure 16. Six groups of
experimental data can be obtained through the experiment. The statistical results of the
rotation angle errors of the experimental data groups are shown in Figure 17. What is more,
the error indicators of six groups of experimental data can be obtained as shown in Table 2.
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Figure 16. Control experiment results. (a) Rotation angle. (b) Error.

Figure 17. The data statistics results of the rotation angle error.

Table 2. Error indicators of six groups of experimental data.

Robot Arm Is 0.5 m Robot Arm Is 1 m Robot arm Is 1.5 m

Error Indicators Combined
Control Strategy

Pole Placement
Strategy

Combined
Control Strategy

Pole Placement
Strategy

Combined
Control Strategy

Pole Placement
Strategy

Error standard
deviation 0.0337 0.0967 0.0407 0.0634 0.1741 0.2654

Mean error 0.0023 0.0041 0.0018 0.0053 0.0034 0.2654

It can be seen from Figure 16 that the combined control method has a smaller error.
According to Figure 17 and Table 2, it can be seen that the combined control method can
make the flexible beams of different lengths get smaller tracking errors. However, the pole
placement strategy alone cannot guarantee the flexible beam’s tracking accuracy in the case
of a long length. Therefore, the effectiveness of the control strategy proposed in this paper
is verified through experiment.

6. Conclusions

In this paper, a dynamic model of flexible manipulators with gravity is established.
The innovation of this paper is to consider the factor of gravity and the combined control
strategy is used to improve the motion accuracy. The control method combining the
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pole placement strategy and the RBF neural network is applied to reduce the fluctuation
of the rotation angle of flexible manipulators. Then, the motion precision of flexible
manipulators is improved. Among them, the RBF neural network is used to distinguish
the uncertain items of the system. The uncertain items include both the flexible factors
and the time-varying characteristics of the dynamic parameters. Simulation analysis
and experiments show that the proposed control method can effectively suppress the
rotation angle’s vibration and improve the motion accuracy of the end-effector. The specific
conclusions are as follows:

(1) Gravity factors will seriously affect the input torque of flexible manipulators. If
flexible manipulators move in the vertical plane, the gravity factor should be taken
into account.

(2) Its length and elastic modulus determine the flexibility of manipulators. The PD
controller can control the manipulator with less flexible. The pole placement strategy
is used to optimize the PD controller’s parameters to obtain a stable output of the ro-
tation angle. However, for the manipulator with strong flexibility, the pole placement
strategy cannot receive a stable output of the rotation Angle. Using the RBF neural
network control strategy to identify the uncertain items containing the flexible factors
can effectively reduce flexibility.

(3) The simulation and experimental results show that the control method combined
with the RBF neural network and the pole placement strategy can effectively reduce
the error of the flexible manipulator’s rotation angle. According to the Table 2,
compared with pole placement strategy alone, the mean error is reduced by nearly
60%. Therefore, the combined control method can effectively reduce the angle error.
Therefore, the control method proposed in this paper can effectively improve the
control accuracy of the flexible manipulator.

This paper uses the control method to improve the motion accuracy of flexible ma-
nipulators. It is hoped that the vibration isolation device can be added between flexible
manipulators and end-effectors in the future. In this way, the motion accuracy of flexible
manipulators can be improved.
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