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Abstract: One of the main problems in the analysis of real data is often related to the presence of
anomalies. Namely, anomalous cases can both spoil the resulting analysis and contain valuable
information at the same time. In both cases, the ability to detect these occurrences is very important.
In the biomedical field, a correct identification of outliers could allow the development of new
biological hypotheses that are not considered when looking at experimental biological data. In this
work, we address the problem of detecting outliers in gene expression data, focusing on microarray
analysis. We propose an ensemble approach for detecting anomalies in gene expression matrices
based on the use of Hierarchical Clustering and Robust Principal Component Analysis, which allows
us to derive a novel pseudo-mathematical classification of anomalies.

Keywords: anomaly; low rank decomposition; gene expression; clustering; outliers

1. Introduction

Real datasets often contain observations that behave differently from the majority of
the data. If an occurrence differs from the dominant part of the data, or if it is sufficiently
unlikely under the assumed data probability model, it is considered an anomaly or outlier.

Outliers may be caused by errors, but they may also result from exceptional cir-
cumstances or belong to a different population of data. On the one hand, anomalies
may adversely affect the conclusions drawn from data analysis; on the other hand, they
may contain important information. Thus, outlier detection is about the interest in the
outliers themselves or the fact that they may contaminate the subsequent statistical anal-
ysis. In statistics, an outlier is an observation that falls outside the overall pattern of a
distribution [1]. However, it is difficult to determine how much a value must deviate to be
called an outlier. Robust statistics are designed to detect outliers by first fitting the majority
of the data and then flagging data points that deviate [2]. In the biomedical field, the correct
identification of outliers is of great importance: depending on the type of analysis to be
performed, biologists can decide whether or not these data should be removed.

In this work, we address the problem of detecting outliers in Gene Expression Profiling
(GEP) data, focusing on microarray data containing gene expression values for a given
number of samples labeled with a biological class (tumor type or experimental condition).
In this type of data, there are generally two main types of outliers, which refer to the case
where the instances are genes or samples, respectively [3]. The former is present when a
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gene has abnormal expression values in one or more samples from the same class, whereas
the latter can be dually seen as samples that belong to a different class present in the data
(often referred to as mislabeled samples) or as samples that do not belong to any class
present in the data (called abnormal samples or outliers).

The origin of these outliers may be ambiguous; they may result from an undiscovered
biological class, poor class definitions, experimental error, or extreme biological variability.
Note that, when we say that an anomalous sample does not belong to its class, we are
not necessarily disputing the validity of its designation. Indeed, a sample may still be a
tumor, but at the same time it could have expression levels that are significantly different
from those of other tumor samples. Using learning models to analyze data affected by
outliers may even lead to incorrect conclusions. In the past, the impact of outliers was
rarely considered when analyzing data from standard microarrays. According to the new
current, outlier detection is used as preprocessing for data cleaning. However, it is essential
to emphasize that, in many cases, outliers may simply be the result of natural variability in
the data.

In this paper, we propose a novel ensemble approach that combines Hierarchical
Clustering and Robust Principal Component Analysis to detect outliers in GEP data
(these two techniques are generally not used for this purpose in this context), with an
additional decision-making model (the anomaly detection tool) that can provide a pseudo-
mathematical classification of outliers based on their biological nature.

The paper is organized as follows. Section 2 gives a brief overview of anomaly
detection algorithms, also focusing on the microarray context, while Section 3 illustrates
the proposed ensemble mechanism. Section 4 describes the experimental results obtained
when applying the proposed methodology to six different datasets (two artificial and
four real medical databases), discussing also some biological aspects and considerations.
In Section 5, comparisons with the most commonly used anomaly detection techniques
are reported with some discussions on the advantages of the proposed approach. Finally,
conclusions and directions for future research are outlined in Section 6.

2. Methods for Outliers Detection

Detecting anomalies in real-world data is a difficult problem that can be addressed
using a variety of mathematical techniques, ranging from standard univariate strategies
to more comprehensive multivariate analysis. A comprehensive and complete review of
the most commonly used methods can be found in References [4,5]. In the context of a
multivariate approach, clustering and Low-Rank reduction mechanisms proved to be the
most important. Clustering is an unsupervised learning mechanism capable of finding
structures and similar patterns in collections of unlabeled data [6]. A cluster refers to
a group of objects that are “similar” to each other (with respect to some measure) and
“dissimilar” to objects belonging to other clusters.

Thus, the outliers are those samples that belong to a separate micro-cluster because
they are far away from most of the other data. They are usually identified by increasing the
number of clusters and for this reason it is necessary to define a measure of dissimilarity
between clusters. In the analysis of gene expression data, the correlation-based measure
(i.e., the one based on Pearson Correlation Coefficient) is considered the most appropriate
dissimilarity measure when clusters of observations with the same overall profiles are
obtained. Correlation works well for gene expression in clustering of samples and genes,
although Pearson’s correlation is quite sensitive to outliers. In samples clustering, this
issue is irrelevant because the correlation is among thousands of genes, whereas when
genes have to be clustered, it is important to be aware of the possible impact of outliers.
Assigning weight values to samples [7] is a possible way to improve the performance of the
Pearson distance in handling outliers. On the other hand, distance is not the only choice to
be made in clustering algorithms; the appropriate mechanism that defines how to separate
two different clusters is also a task to be addressed. To tune these hyperparameters, either
the Cophenetic Correlation Coefficient (CCC) and the Silhouette coefficient [8] could be
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adopted. The CCC expresses the correlation between the original dissimilarity matrix
and the one derived based on the classification. Usually, a CCC ≥ 0.8 means a good
match, while CCC < 0.8 indicates that the dendrogram is not a good representation of the
relationships between the objects.

We give below the definition of the Silhouette coefficient, used to validate the quality
of the clustering. Based on the clustering vector and the set of distances, the algorithm
computes the dissimilarity of a point xi to its current class and the lowest dissimilarity of
the point to other classes, through a(xi) and b(xi), respectively, defined as follows, for all
xi ∈ Ci:

a(xi) =
1

|Ci| − 1 ∑
j∈Ci ,i 6=j

d(xi, xj), and (1)

b(xi) = min
k 6=i

1
|Ck| ∑

j∈Ck

d(xi, xj). (2)

Then, the Silhouette coefficient is set to zero when |Ci| = 1 by definition and usually
ranges in [−1, 1], in the other cases it can be defined as

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
. (3)

Its maximum value 1 indicates a better match with the current cluster, while−1 means
that the point actually belongs to the other class or a so-called “neighboring cluster”. Table 1
shows the range values of the Silhouette coefficients associated with the corresponding
structures and usually adopted in literature panorama [9].

Table 1. Structures corresponding to particular Silhouette coefficient ranges.

SC Interpretation

0.71–1.0 A strong structure was found.
0.51–0.70 A reasonable structure was found.
0.26–0.50 The structure is weak and may be artificial.

<0.25 No substantial structures have been found.

Among Low Rank reduction mechanisms, Robust Principal Component Analysis
(ROBPCA) has been widely used in GEP data analysis to identify subgroups with specific
biological characteristics that correlate with different clinical behaviors [10–12]. It combines
the strengths of Projection-Pursuit techniques (PP) [13] and robust covariance estimation.
The former is used to reduce initial dimensionality, while the latter, particularly the Mini-
mum Covariance Determinant (MCD) estimator, is used to obtain a smaller data space. To
our knowledge, however, this is the first time that ROBPCA has been applied to outlier
detection in microarray data, although it has recently been used for the analysis of RNA-seq
data, which requires a more complex sample preparation protocol and analysis compared
to microarray data [14].

Formally, consider a data matrix Xn,p ∈ Rn×p, where n indicates the number of the
observations, and p the original number of variables, and the ROBPCA method proceeds
in three main steps:

1. the data is preprocessed so that the transformed data lies in a subspace whose dimen-
sion is at most n− 1;

2. a preliminary covariance matrix S0 is constructed and used to select the number of
components k that are subsequently retained, resulting in a k-dimensional subspace
that is well fitted to the data;

3. data points are projected onto this subspace, where their location and scatter ma-
trix are robustly estimated, from which their k non-zero eigenvalues `1, . . . `k are
computed. The corresponding eigenvectors are the k robust principal components.
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Let Pp,k be the p× k eigenvector matrix (with orthogonal column vectors); the location
estimate is denoted by the p-variate column vector ν̂ and called the robust center. The
scores are the entries of the n× k matrix

Tn,k = (Xn,p − 1nν̂>) · Pp,k. (4)

The k robust principal components generate a p × p robust scatter matrix S of rank k
given by

S = Pp,kLk,kP>p,k, (5)

where Lk,k is the diagonal matrix with the eigenvalues `1, . . . `k.
Similar to classical PCA, the ROBPCA method is locationally and orthogonally equiv-

ariant, properties that are non-trivial for other robust PCA estimators [2,15]. It should
be emphasised that one of the advantages of using PCA-related mechanisms is a feasible
outlier classification that takes into account the positions of outliers with respect to the
projected subspace and also provides a useful interpretation of these positions.

An example of this behavior is shown in Figure 1, where four types of points can
be distinguished, depending on the location of the observation. These points can be
categorized as: Regular Observations (ROs), which form a homogeneous group near
the PC subspace generated by the principal components; Good Leverage Points (GLPs),
which are at the same plane as the PC subspace but distant from the ROs; Orthogonal
Observations (OOs), which have a large orthogonal distance to the PC subspace, but whose
projection is on the PC subspace; and, finally, Bad Leverage Points (BLPs), which have a
large orthogonal distance such that the projection on the PC subspace is away from ROs.

Figure 1. Graphical representation of the outlier classification (with p = 3 and k = 2) according to
the location of each observation with respect to the PCA subspace.

To understand and quantify how far an observation is from the center of the ellipse,
defined by ROs (score = 0 was chosen as reference), two distances can be used: the Score
Distance, SDi, and the Orthogonal Distances, ODi, defined as follows:

SDi =

√√√√ k

∑
j=1

t2
ij

`j
, for i = 1, . . . , n, (6)

with ` the eigenvalues of the dispersion matrix MCD, and tij the robust scores for each
j = 1, . . . , k, is a measure of the distance between an observation belonging to the PC
k-dimensional subspace and the origin of this subspace; and
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ODi = ‖xi − µ̂− Pp,kt>i ‖, for i = 1, . . . , n, (7)

where each t>i is the i-th row of Tn,k, and µ̂ is the robust estimate of the center, which mea-
sures the deviation (i.e., lack of fit) of an observation from the PC k-dimensional subspace.

Based on these measures, the diagnostic plot (DD-plot or outlier map) can be plotted
with SDi on the horizontal axis and ODi on the vertical axis to distinguish between ROs
and the three types of outliers. To classify all observations, two cutoff lines are drawn
according to the data. Since it is known that the distance adopted to construct the tolerance
ellipsoid (the squared Mahalnobis distances for normally distributed scores) follows a
χ-squared distribution approximately, the cutoff value of the horizontal axis is obtained
from the 0.975 quantile of this distribution with k degrees of freedom:

cutoffSD =
√

χ2
k,0.975. (8)

On the other hand, even if the distribution of the ODi for the generic i, it is not
known exactly, literature results allow to approximate them by a normal distribution with
particular mean and variance estimated using the MCD [10]. Defining in this way the
cutoff for the vertical axis as:

cutoffOD = (µ̂ + σ̂z0.975)
3
2 , (9)

where µ̂ and σ̂ are the MCD estimates for the mean and standard deviation of the above
normal distribution, and z0.975 is the 97.5% quantile of the Gaussian distribution. Figure 2
illustrates an example of the outlier map described.
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Figure 2. Outlier map created using Robust Principal Component Analysis (ROBPCA) (Rospca
package available in the R environment) on a simulated dataset. Based on the previous classification,
the first quadrant (top-right) of the DD-plot (Distance-Distance plot) contains the BLPs, the second
quadrant (top-left) encloses the OOs, the third quadrant (bottom-left) has the ROs, and, finally, the
fourth quadrant (bottom-right) contains the GLPs.

As with standard PCA approaches, their robust variants require a criterion for selecting
the number of principal components. We adopt the mechanism proposed in Reference [10],
which selects k components according to the following empirical Rayleigh rule:

k
∑

j=1
`j

r
∑

j=1
`j

≈ 90%, (10)
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where `j for j = 1, . . . , k are the eigenvalues of S0, the robust covariance matrix of the data
and r the rank of S0. However, there are some other criteria proposed in literature for
selecting k, ranging from the use of the formula `k

`1
≥ 10−3 to the use of more complex

information based criteria and cross-validation approaches [16–18].
In the context of gene expression array analysis, state-of-the-art standard methods

for detecting anomalies in microarrays, which are considered reference methods, are im-
plemented in the Bioconductor package arrayQuality [19,20]. These perform univariate
analysis based on two independent methods that assign a rank to each sample. The first
technique takes one sample at time and compares its probability distribution to that of the
entire dataset using a Kolmogorov-Smirnov statistic, assuming the intrinsic similarity mea-
sure is that based on the statistical distribution. Instead, the other technique simply ranks
each sample according to that sample’s total information across all genes (by summing
over expression levels). In both approaches, the outlier sample is selected at the end by
performing the standard univariate detection method according to the rank score.

3. Proposed Approach

To detect anomalous samples in microarray datasets and provide a possible feasible
outlier classification, we combined Hierarchical Clustering (HC) and Robust PCA perform-
ing them sequentially. The ensemble approach obtained uses the first technique to derive
a preliminary view of the dataset, where the choice of the distance is determined by the
CCC and the clustering is validated by the Silhouette coefficient. The second technique
for characterizing the nature of the outlier is based on the position of the sample on the
DD-plot. The workflow of the proposed approach detailed with the packages used to
perform each block is depicted in Figure 3.

Figure 3. Workflow of the proposed ensemble approach for detecting anomalies in gene expression
matrices. The input data matrix firstly undergoes to Hierarchical Clustering (R package eclust) which
provides the intermediate output. Then, Robust PCA (R package rospca) is applied to derive the
final characterized nature of anomalies as described in Algorithm 1. The labels reported in the figure
referred to: R = Regular Observation, O = Outier, O = Orthogonal Outlier, B = Bad Leverage Point,
A = Alert Sample type.
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The proposed framework identifies different categories of samples based on the fitting
of the data by the two techniques performed sequentially and on the classification in the
Section 2, that labels data samples as ROs, GLPs, BLPs, and OOs. In addition, an Alert
Sample-type (AS) is included: this is identified as an observation with a lower silhouette
(below a pre-selected threshold) and they should not indicate strictly anomalous samples,
but samples not properly fitting the data. The Algorithm 1 describes the identification
procedure that encodes the sample classification mentioned above.

Algorithm 1: Alert Samples identifier

A→ dataset ;
Ci → cluster ;
if |Ci| << |A| then

x = outlier;
else if sil = 0 (sil: Silhouette coefficient for each sample) then

x = outlier;
else if sil < threshold then

x = pseudo-alert;
if x ∈ top-right quadrant then

x = Alert Sample;
else if x ∈ top-left quadrant then

x = Alert Sample;
else

x = no outlier;
end

else
x = regular observation;

end

4. Experimentation

This section is devoted to evaluating the performance of the proposed methodology
on both artificial and real biological datasets. All numerical results were obtained testing
the proposed approach in the R environment [21] run on a 16Gb RAM, I7 octa core machine.

Concerning the HC, as discussed in Section 2, we have used this general framework
with the Pearson distance, while the CCC was adopted to select the most appropriate
method. On the other hand, referring to the approach Low-Rank, the number of PCs was
selected according to the empirical criterion in (10).

4.1. Synthetical Datasets

Two artificial datasets were constructed to investigate different key aspects of this
study. The first dataset aims to simulate the typical structure of the cancer dataset [22–24]
to estimate the biological aspects of the chosen techniques. The second artificial dataset
was designed instead to investigate, from a mathematical point of view, the nature of the
outliers and to try to mimic what happens in a biological context.

As a first step for our study, we simulated a typical cancer dataset with known outliers
as proposed in Reference [24]. Each dataset contains two clearly distinguishable sample
classes. The abnormal samples do not belong to either class or are simply mislabeled.

We have 1000 genes in the rows and 100 samples in the columns (50 for each class).
The first 900 rows are drawn from the same normal distribution for both classes, and the
remaining 100 were drawn from different distributions for samples of classes C1 and C2,
respectively. In addition, three samples of class C1 were swapped with three samples of the
second class C2. Finally, the last sample of each class was replaced by one with a different
distribution (e.g., the Poisson distributions with λ1 = 30 and λ2 = 35, respectively).
A graphical representation of this structure can be found in Figure 4.
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Figure 4. The heatmap of the first synthetic dataset, sizing 1000× 100, in which rows and columns
ideally correspond to genes and samples, respectively. The map evidences the changes of samples
10, 15, and 20 of class C1 with samples 60, 65, and 70 of class C2 and the different distribution of last
sample of each class into the 100 last rows of the data matrix.

Table 2 and Figure 5 give the CCC value and the Silhouette index, respectively, which
are used to validate the quality of the clustering. In particular, in Table 2, the CCC values
for different methods allow the selection of the average linkage as the best method for this
clustering. The clustering associated with the highest CCC value was then validated by the
Silhouette coefficient, which is equal to 0.35. As can be seen in Figure 5, the two techniques
give the same results, in particular HC positions the mislabeled outliers in the right class,
while the abnormal type outliers form a separate cluster.

Table 2. Cophenetic Correlation Coefficient (CCC) corresponding to the various methods.

Linkage Method Average Ward.D2 Complete Single Centroid

CCC 0.92 0.35 0.58 0.9 0.64

Subsequently, the ROBPCA method detects more qualitative information, as described
in Section 2. In this case, the “mislabeled” samples are labeled as GLPs, as shown in Figure 6.

A second artificial dataset was created to check whether outliers detected by the
proposed ensemble methodology can be endowed with some statistical properties.

From a statistical point of view, an outlier is seen as an observation that lies outside the
overall pattern of a distribution, so the dataset was constructed so that most samples satisfy
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a normal distribution, with only a few anomalous samples generated with probability
distributions that do not verify the Central Limit Theorem (CLT). Specifically, the data
matrix Xn,m, with n = 1000 and m = 300, s = m − 4 has normal X:j ∼ N (0, 1) (for
j = 1, . . . , s) samples and only four anomalies.
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Figure 5. Circular dendrogram of first artificial dataset. The two classes are clustered correctly,
respectively, in blue and in red. From the graph, it can be seen that the samples moved from one class
to another (in the labels underlined with the word “shift”) are repositioned in the correct class. The
two samples with different distribution are in green.
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Figure 6. DD-plot of the first simulated dataset.

We reproduce a bimodal trend of the sampling distributions by setting 100 rows in
Xn,m to a normal distribution N (3, 0.5). As for the four outliers, two of them retain the
normal distribution, with different mean and variance (1 and 1.1 for the means and 1 and 0.9
for the values of the second pulse); while the remaining two are generated without central
t-students with 2 and 2.1 degrees of freedom and 2 and 2.2 without central parameter,
respectively.
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The results obtained by applying the proposed ensemble method are described below.
The Silhouette coefficient is equal to 0.44, confirming the fit of clustering to synthetic data;
the CCC is equal to 0.97, confirming that the choice of Pearson distance with the Average
method generates a clustering that fits to the data very well. Looking at the DD plot shown
in Figure 7, one can notice that the two outliers with the t-student distribution are called
BLPs, while the two samples with normal distributions different from the other samples
are OOs. For a more detailed discussion of this behavior, see Section 5.
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Figure 7. DD-plot of the second synthetic dataset. The two BLPs are in red in the top-right quadrant,
and the two OOs are in orange in the top-left quadrant.

Figure 8 shows the density of each outlier sample: this plot qualitatively confirms the
data assumptions above. The ROs show the typical bimodal trend present in real datasets,
the OOs have a different trend but with the same distribution, while the two BLPs with
t-student distribution (as expected) show a different trend.
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Figure 8. Density plot of samples of second synthetic dataset, grouped by clustering.

4.2. Real Dataset

To test the effectiveness of the proposed ensemble methods in the context of microarray
outlier detection, four real cancer datasets were used. These cancer datasets were selected
to verify the robustness of the approach in different loading situations where either solid
and biologically similar samples are outliers.
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We generated four different datasets (hereafter referred to as Datasets A, B, C, and
D, respectively) from real tumor gene expression profiling data characterized by patients
with the same cancer type. In each dataset, we added some “true outliers” derived from
patients with different cancer diagnoses, and attempted to simulate a gradient of biological
distance between the “true outliers” and all other samples. Specifically, Dataset A, C, and
D were added with samples derived from different tumor types or cell types, while Dataset
B was added with samples having the same cell of origin of the main dataset. Specifically,
Dataset A consisted of 591 samples of diffuse large B-cell lymphoma (DLBCL), a particular
type of aggressive Non-Hodgkin Lymphoma (NHL) derived from B cells, and two samples
of ovarian cancer (OC) [12,25–31].

Dataset B consisted of 591 DLBCL and 6 samples of other NHL subtypes also derived
from B cells (two Follicular Lymphomas FL, two Mantle Cell Lymphomas MCL , and
two Burkitt Lymphoma BL) [32–34]. In this dataset, the choice of the Pearson’s distance
is essential because the FL, MCL, and BL outliers differ little from the other samples
as they come from the same type of tumor. Dataset C was created by grouping three
types of hematological cancers originating from different types of hematological cells,
namely 448 cases of Chronic Lymphocytic Leukemia (CLL) and three cases of T-Acute
lymphoblastic leukemia (T-ALL) and three cases of Myelodysplastic Syndrome (MDS).
Finally, Dataset D was created by adding three cases of breast cancer samples to 448
CLL [35].

Table 3 summarizes the used datasets and their main characteristics.

Table 3. Description of the dataset.

Disease Series References

Dataset A DLBCL+OC GSE10846, GSE132929, GSE23501 [12,25–31]
GSE34171, GSE87371, GSE98588,

GSE9891
Dataset B DLBCL+FL+MCL+BL GSE10846, GSE132929, GSE23501 [12,25–29]

GSE34171, GSE87371, GSE98588, [32–34]
GSE12195, GSE55267,GSE26673

GSE21452
Dataset C CLL+ T-ALL+MDS GSE13159 [35]
Dataset D CLL+ Breast Cancer E-MTAB-2501 [36]

Raw data (In particular, samples related to DLBCL are associated to GSE10846,
GSE132929, GSE23501, GSE34171, GSE87371 and GSE98588; samples of ovarian cancer
to GSE9891; whereas the other six samples in Dataset B were randomly chosen from
GSE12195,GSE55267, GSE93261, GSE26673, and GSE21452. For the other two datasets, the
baseline of 448 CLL with the particular six samples are associated to GSE13159, while the
remaining three sample of breast cancer were from E-MTAB-2501 series.) were downloaded
from Gene Expression Omnibus and Array Express databases and preprocessed removing
background, normalizing and batch effect correction procedures (needed when raw data
come from different series/laboratories). In detail, these operations allow to remove back-
ground from native files (such as CEL extension files), normalize arrays in order to have
comparable samples, and correct batch effects due to systematic technical differences (such
as Laboratory, time, day, or instrument used for the biological experiment [37–39]).

Table 4 reports the quality metric values of clustering and the number of outliers
identified in the numerical experiments, while Table 5 summarizes the cardinality of each
cluster and the associated averaged Silhouette (which indicates the contribution of each
cluster for every dataset). High value of the CCC, as well as the values of the Silhouette
coefficient, confirm the presence of a reasonable clustering structure.

It should be emphasized that the detected samples correspond to the expected outliers
in all datasets (i.e., the two samples with a solid ovarian tumor in the Dataset A, the six
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samples divided in FL, MCL, and BL in Dataset B, three in Dataset C, and the remaining
three samples of Breast cancer in Dataset D) and that the majority of them are in the
quadrant of the ROBPCA and then classified as BLPs with the exception of the three
samples from Dataset C, which were classified as OOs. In addition, the approach identifies
other “not expected” samples as outliers: these need further investigation from a biological
point of view.

Table 4. Results obtained for each dataset. We highlight that, in Dataset C, the second cluster has
seven samples instead of the expected six mislabeled samples. In the first analysis, one could think
of an error in the clustering technique; in fact, the study of the degradation of the samples suggests
that this sample shows a similar behavior with respect to the Normalized Unscaled Standard Error
(NUSE) graph as the mislabeled samples of the cluster in which it was inserted.

CCC SC Bad Leverage
Points

Alert
Samples

Orthogonal
Outliers

Regular
Observations

Dataset A 0.92 0.48 4 4 1 584
Dataset B 0.87 0.55 8 3 1 585
Dataset C 0.88 0.55 7 2 3 442
Dataset D 0.90 0.67 6 5 0 440

Table 5. Silhouette coefficient value of each dataset.

Cluster Size Average Sil Width

Dataset A
1 589 0.47
2 2 0.90
3 2 0.56

Dataset B
1 589 0.55
2 2 0.98
3 6 0.42

Dataset C

1 444 0.56
2 7 0.24
3 1 0
4 1 0
5 1 0

Dataset D

1 445 0.67
2 3 0.69
3 1 0
4 1 0
5 1 0

For readability, we discuss here only the results obtained when considering Dataset A,
and refer the reader to the Appendices A–D for a detailed discussion of the full results for
all datasets. Considering the distributions and positions on the DD-plot (see Figure 9) of
the samples identified as novel outliers (i.e., expected a priori to be an outlier), they are
correctly referred to as BLPs, ASs, and OOs. To assess the results of our approach, several
density plots are performed. First, the density plot in Figure 10 illustrates the different
distribution between samples labeled according to their cluster membership.

Figure 11 illustrates the density of the individual outliers obtained accordingly to their
classification. The mislabeled samples (in this case the two Ovarian Cancer) are depicted
in light blue and blue; BLPs are the samples in dark green and pink, whereas OOs are
reported in green color.



Mathematics 2021, 9, 882 13 of 26

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●●●

●

●
●

●

● ●
●●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●●

●

●

● ●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●●

●●

●●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●● ●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●●

●

● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●
●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
● ●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

● ●● ●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0
50

10
0

15
0

20
0

25
0

Robust PCA

Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

Regular Observation 
Bad Leverage Point 
Mislabeled Sample 
Alert Sample 
Orthogonal Point
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Figure 10. Density Plot of samples of Dataset A, grouped by classification.
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4.3. Biological Analysis

We used the four datasets to detect the outliers using both HC and Robust PCA.
Interestingly, we observed that both methods were able to identify the “true outliers”;
however, we also detected “unanticipated outliers” within the group of main samples. To
analyze these results, we examined the array quality of each outlier by analyzing RNA
degradation plots that analyze mean intensity in relation to probe numbers and help
identify samples with low RNA quality; relative log expression (RLE) and Normalized
Unscaled Standard Error (NUSE), implemented in the AffyRNAdeg R package. The
former is calculated by subtracting the median gene expression estimate across arrays
from each gene expression estimate, while the latter provides a measure of the precision
of its expression estimate on a given array relative to other arrays in the batch [40]. In
Dataset A, two DLBCL samples (GSM844275 and GSM2601431) were classified as BLPs
along with the two “true” OC outliers and showed an irregular RNA degradation plot,
NUSE and RLE, compared to the other outliers, suggesting poor array quality. Similarly,
in Datasets B, the same DLBCLs were classified as BLPs, along with the FL, MCL, and BL
“true outlier” samples, which instead did not show poor array quality according to RNA
degradation plots, NUSE and RLE. Note that we also detected “non-expected outliers” in
the CLL groups of datasets C and D, which also showed array parameters of poor quality.
Interestingly, “true outliers” in Dataset C and D were characterized by good quality. We also
detected OOs in Dataset A and B that were characterized by a single DLBCL case, while, in
Dataset C, three MDS “true outliers” were identified as OOs outliers. All OOs showed array
parameters of good quality. Finally, we identified another outlier category called “Alert” in
all analyzed datasets that were displayed in the threshold range of BLPs in the DD plots,
these samples were characterized by ambiguous quality array parameters. We want to
specify that Alert samples are samples that may have a pre-degraded state. The algorithm
signals them, and then it is up to the domain expert to verify the actual degradation state.
Detailed figures regarding this point can be found in the Supplementary Materials.

4.4. Comparison with Existing Methods

To strengthen the study on the reliability of our method, we compared it with standard
techniques proposed in the microarray literature (as explained in Section 2): (i) the method
based on Kolmogorov-Smirnov distribution, hereafter referred to as KS, and (ii) SUM (Sum
operation by column), the mechanism that assumes total weight among genes. As before,
only the results for Datasets A are reported here (see Appendices A–D for the complete
overview of all biological datasets). KS individuates 34 outliers: this is a high number
compared to the nature of biological outliers, which are expected to be very small. The
reason is probably that the KS procedure is based on a probability distribution distance.
In contrast, SUM finds several outliers and only one outlier compared to our approach.
Figure 12 shows the Euler-Venn diagram (drawn using an online tool for comparing
and visualizing biological lists with area-proportional Venn diagrams) [41] for the sets of
outliers detected by the three mechanisms on Dataset A, and, Figure 13 shows the study of
the degradation of the additional samples obtained by the comparison techniques.

Based on these results, we can assume that our approach combines the concept of
Bad Leverage points with the concept of degradation, an aspect that the other comparison
techniques do not have. Indeed, it can be observed in the figure that the degraded samples
are the ones identified by our approach, while the others are not degraded.
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34 8 7 1 4

Figure 12. Euler-Venn diagrams comparing the results obtained by the three methods for Dataset A.
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Figure 13. Degradation plot of outliers obtained by Kolmogorov-Smirnov (KS) and SUM techniques
applied on Dataset A.

5. Discussion

An ensemble mechanism combining Robust PCA and Hierarchical Clustering with
opportune distances has been proposed to search for anomalies in gene expression matrices
in a more reasonable way. The strength of this method is to provide a pseudo-classification
model of the outliers. Figure 14 shows a possible interpretation about the reason why each
sample is in a particular quadrant of the PC plane.

The figure shows that from left to right we have the samples that have a distribution
from most similar to least similar. From top to bottom, we have the samples that have a
degradation status from highest to lowest. The threshold is plotted in red. According to the
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above discussion, we could assume that outliers that are of “low quality” are considered as
very extremely bad outliers above a certain threshold. On the contrary, the “mislabeled”
type outliers are on the borderline between the “orthogonal” type outliers and the bad
leverage points. In general, the more the distribution of the anomalous samples deviates
from the majority of the data, the more the outlier is on the right side of the plot.
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Figure 14. Pseudo-classification of the outlier position.

From a biological perspective, our results provide a reliable tool to better understand
the outlier properties. It has been widely demonstrated that a small percentage of publicly
available arrays are of poor quality and that these samples can affect downstream analysis.
When an outlier is detected, it is likely to be associated with poor quality values. Beyond
analysis of degradation and quality data, our combined approach to outlier detection is able
to identify samples with putative biological significance that may be worth investigating
in terms of putative biological significance and clinical characteristics. It may also be
interesting to integrate these observations with other high-throughput analyses, such as
genome sequencing, to investigate what changes might be responsible for such peculiar
transcriptional patterns.

By the way, a very important aspect is to establish the threshold beyond which to
consider a sample degraded or not. This problem is configured as a search and optimization
problem of the optimal hyperparameter [42] for which our ensemble method can be
considered a possible decision model for the search for anomalies in this type of data.

6. Conclusions and Future Works

In this work, we present a new ensemble approach to anomaly detection that combines
HC and Low-Rank methods. It is configured as an additional tool and allows deriving a
pseudo-mathematical classification of outlier samples in GEP data focusing on microarray.
Since recent work has focused only on RNA-seq data [14], we will extend our approach to
be interchangeable between different platforms, such as RNA-seq and GEP from Nanos-
tring Technologies. The preliminary experimental results performed using the proposed
approach have shown that it is possible to pseudo-classify the outliers based on their nature.
Future work should be carried out to identify the thresholds within which it is possible
to associate the mathematically defined outlier with the biological outlier. The results
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obtained are quite promising and indicate the usefulness of the proposed mechanism as a
preprocessing tool for the analysis of datasets that need further investigation. For example,
the proposed mechanism shows that it is able to eliminate degraded samples, perform
analysis on specific samples, and possibly reclassify mislabeled outlier types. Moreover,
the proposed method was preliminary used in same recent prognostic studies related to
LXR (Liver x receptor) protein [43], confirming its ability to identify some samples to be
removed. This result helped to improve the discriminating prognosis ability of considered
patient with respect to clinical outcome and the confirmed the possible applicability of the
proposed procedure also in prognostic biological context.

Future research should be devoted to the construction of a new decision model that
incorporates the proposed ensemble mechanism as a data preprocessing method to identify
the anomalies, and integrate the anomaly detection tool into the context of microarrays for
searching and classifying samples that can generate new biological hypotheses.
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Appendix A. Dataset A

Figure A1 collects the figures illustrating the quality measures that have been previ-
ously detailed when Dataset A is used.

 

Figure A1. Summary of quality array measures for Dataset A.

Appendix B. Dataset B

Figure A2 collects the figures illustrating the quality measures used when Dataset B
is analyzed. This dataset was derived from Dataset A only replacing the ovarian tumor
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samples with the samples with FL, MCL, and BL tumors. As can be seen from the Robust
PCA, the MCL, FL, and BL tumor type samples are outliers. Specifically, these are Bad
Leverage Outliers, as they are in the first quadrant. For the samples of FL, MCL, and BL
tumors shown in blue, a different distribution is observed than for the other samples shown
in green. The previously found outliers are shown in red. Degradation analysis was also
performed in this case, giving the same results for the BAD samples, but, in this dataset,
two of the three Alert samples found by our method are in a pre-degradation state.

 

Figure A2. Summary of quality array measures for Dataset B.
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Figure A3 illustrates the degradation plot of outliers obtained by the KS and SUM
techniques and the Euler-Venn diagrams comparing the results of the proposed method
with those of standard techniques. The same consideration drawn for Dataset A can be
done also for these pictures.

Figure A3. Dataset B: (left) outlier degradation plot of detected outliers and (right) Euler-Venn diagrams comparing the
results obtained by three outlier detection methods.

Appendix C. Dataset C

Figure A4 collects the figures illustrating the quality measures used when Dataset C is
analyzed. As can be seen from the DD-plot, the samples show a more dispersed behavior
than in the previous cases. We can observe that the ensemble method identifies 3 Bad
Leverage points, depicted in red in the plot. It detects the mislabeled samples colored in
blue and between the samples at the border between the Bad Leverage points and the Good
Leverage points, where there are some Alert samples that result in a pre-degradation state.

Figure A5 illustrates the degradation plot of outliers obtained by the KS and SUM
techniques and the Euler-Venn diagrams comparing the results of the proposed method
with those of standard techniques.
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Figure A4. Summary of quality array measures for Dataset C.
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Figure A5. Datset C: (left) outlier degradation plot of detected outliers and (right) Euler-Venn diagrams comparing the
results obtained by three outlier detection methods.

Appendix D. Dataset D

Figure A6 collects the figures illustrating the quality measures used when Dataset C is
analyzed. Similar to Dataset C, the DD plot in this case also shows a dispersive scattering
behavior of the samples. The ensemble method identifies 3 Bad Leverage points, depicted
in red in the plot. It identifies the Mislabeled Samples in blue between the samples on the
border between the Bad Leverage points and the Good Leverage points, where there are
some Alert samples. We get the same reasoning as in the previous case.

Finally, Figure A7 illustrates the degradation plot of outliers obtained by the KS and
SUM techniques and the Euler-Venn diagrams comparing the results of the proposed
method with those of standard techniques.
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Figure A6. Summary of quality array measures for Dataset D.
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Figure A7. Dataset D: (left) outlier degradation plot of detected outliers and (right) Euler-Venn diagrams comparing the
results obtained by three outlier detection methods.
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