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Abstract: The coagulation of aerosol particles plays an important role in the structural morphological
changes of suspended particles at any time and in any space. In this study, based on the Smoluchowski
equation of population balance, a kinetic model of aerosol coalescence considering Brownian motion
collision is established. By applying the developed Lie group method, we derive the allowed
infinitesimal symmetries and group-invariant solutions of the integro-differential equation, as well
as the exact solution under some special conditions. We also provide detailed steps and a discussion
of the properties. The content and results provide an effective analytic solution for the progressive
evolution of aerosol particle size considering boundary and initial conditions. This solution reveals
the self-conservative phenomena in the process of aerosol coalescence and also provides validation
for the numerical algorithms of general dynamics equations.
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1. Introduction

Aerosols are an important part of the atmosphere and can affect various physical and
chemical reactions, leading to changes in the environment and even direct effects on human
health [1]. The dynamic process of aerosols mainly includes agglomeration, condensation
(polymerization), evaporation reduction, advection and convection transport, diffusion,
sedimentation, and chemical reactions. The coagulation process is the key component
that makes the aerosol particle size increase and the quantity concentration decrease.
This component also has an important impact on the uniformity and stability of the aerosol
system. Therefore, the particle size distribution, coagulation efficiency, and control of the
condensation process are important issues in studying the multiphase flow behaviors of
aerosols, which are directly related to the radiation intensity and residence time of the
aerosols [2]. From a mathematical point of view, the existing model is a nonlinear integro-
differential equation developed from the group equilibrium equation, so determining the
approximate solution or the exact solution for aerosol particle size distribution is a very
basic task. Many researchers all over the world have carried out scientific calculations
and experiments related to aerosol condensation dynamics [3–13]. However, conventional
scientific calculations have some faults (such as numerical errors and the inability to carry
out continuous quantitative factor analysis) and no single algorithm is generally applicable.
The relevant experiments are also time-consuming and labor-intensive. As described in [14],
the Lie group analysis proposed by Sophie Lie is very effective for obtaining an analytic
solution of differential equations. For linear or nonlinear equations, ordinary differential
equations, and partial differential equations, the algorithm steps of Lie group analysis are
fixed and unified, making this method suitable for large-scale computer programming.
Therefore, Lie group analysis is also applicable to aerosol dynamics.

The application of Lie group analysis to research on multiphase hydrodynamics has
made some progress. For example, the influence of fluid viscosity and the deposition of
thermophoretic particles on free heat and mass transfer under different flow conditions
was studied using Lie group transformation in [15]. Further, using Lie group analysis,
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the conserved quantity and changes in the velocity and temperature field were obtained
for the boundary layer problem of fractional viscoelastic fluid in [16]. These results prove
that Lie group analysis is the best method besides numerical simulation. On the one hand,
Lie group analysis enables complex problems in hydrodynamics to be solved creatively;
on the other hand, this analysis promotes the further development of the Lie group’s theory.
However, Lie group analysis has not been used to study the condensation behaviors of
aerosols. In this paper, considering the dynamic process of aerosol condensation and using
the Lie group analysis algorithm, we develop some Lie symmetries and group-invariant
solutions for the kinetic equations of aerosol condensation and obtain an accurate analytical
general solution expression of particle size distribution, as well as explaining the relevant
properties of the solution.

2. Brownian Condensation Dynamic Equation for Aerosols

The size distribution of aerosol particles determines the degree of the aerosol’s in-
fluence. Coagulation is an important physical process in particle growth, as shown in
Figure 1. This figure illustrates how the aerosol particles and coagulant rapidly undergo
electric neutralization/double-electric layer compression destabilization and then coag-
ulate into a micro-flocculent. The general dynamic equation (with collision efficiency of
100%) of the size distribution function of aerosol particles only considering condensation is
as follows [3]:

∂n(v, t)
∂t

=
1
2

∫ v

0
β(v− v1, v1)n(v− v1, t)n(v1, t)dv1 − n(v, t)

∫ ∞

0
β(v, v1)n(v1, t)dv1 (1)

where n(v, t) is the particle size distribution function with time t and volume v, and β is
the collision frequency function.
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Figure 1. Physical model of the coagulation process.

The collision mechanism of aerosol particles mainly features Brownian motion, shear col-
lision, and differential sedimentation. Brownian motion plays a leading role in collision
for systems with smaller particle sizes and higher particle concentrations. The frequency
function of monomer collision caused by Brownian motion is expressed in the continuous
medium area as [17]

βBrown(vi, vj) =
2kBT

3µ
(v1/3

i + v1/3
j )(v−1/3

i + v−1/3
j ) (2)

where kB is the Boltzmann constant, T is the gas temperature, and µ is the dynamic
viscosity coefficient.

There is a coefficient difference only between the collision frequency function of aerosol
particles in the free molecular region and that in the continuous medium region; at the
same time, the structure of the initial spherical aggregates will change, and a phenotypic
phenomenon will occur in the free molecular region. Thus, this paper does not discuss the
free molecular region or transition region. Equation (2) features an important property for
the nonzero constant a:

βBrown(avi, avj) = βBrown(vi, vj). (3)
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3. Lie Symmetry of the Dynamic Equation of Condensation

Firstly, the dimensionless transformation of Equation (1) is carried out:

v = v0v, t = t0t, n(v, t) = n0n(v, t),
v1 = y = vs = v0vs = v0y, β(v, y) = β0β(v, y)

(4)

where v0, t0, n0, β0 are all positive real numbers.
Using Formula (4), Equation (1) is transformed into

n0∂n(v,t)
t0∂t = 1

2 v0v
∫ 1

0 β0β(v(1− s), vs) · n0n(v(1− s), t) · n0n(vs, t)ds
−n0n(v, t)

∫ ∞
0 β0β(v, y) · n0n(y, t)dv0y

(5)

Then, taking n0 = 1
v0t0β0

, Equation (5) is transformed into

∂n(v,t)
∂t = 1

2 t0n0β0v0v
∫ 1

0 β(v(1− s), vs) · n(v(1− s), t) · n(vs, t)ds
−t0n0β0v0n(v, t)

∫ ∞
0 β(v, y) · n(y, t)dy

= 1
2 v
∫ 1

0 β(v(1− s), vs) · n(v(1− s), t) · n(vs, t)ds− n(v, t)
∫ ∞

0 β(v, y) · n(y, t)dy
(6)

We next introduce a transformation group with a single parameter ε:

v∗ = v + εξ1(t, v, n), t∗ = t + εξ2(t, v, n), n∗ = n + εη(t, v, n). (7)

Using the second-order extension of the Lie group, we can obtain the integral generator
of Formula (7):

φ(t, v, n) = η(t, v, n)− ξ1(t, v, n)nv − ξ2(t, v, n)nt (8)

According to the algorithm in [18], under transformation (7), Equation (6) retains form
invariance, so we obtain

∂n∗(v∗ ,t∗)
∂t∗ = 1

2 v∗
∫ 1

0 β∗(v∗(1− s), v∗s) · n∗(v∗(1− s), t∗) · n∗(v∗s, t∗)ds
−n∗(v∗, t∗)

∫ ∞
0 β∗(v∗, y) · n∗(y, t∗)dy
⇒

[φt + φnnt − v
∫ 1

0 β(v(1− s), vs)n(v(1− s), t)φ(vs, t)ds+
φ
∫ ∞

0 β(v, y)n(y, t)dy + n
∫ ∞

0 β(v, y)φ(y, t)dy)]
∣∣∣the (6) is established = 0

. (9)

We next obtain the corresponding solution of Equation (9):

ξ1 = c1v, ξ2 = −(c1 + c2)t + c0, η = c2n (10)

where c0, c1 and c2 are arbitrary constants. We define the commutator operation—i.e., the lie
bracket [, ]—in the partial differential operator space X constructed by all group generators
of Equation (6) and obtain the corresponding Lie algebraic structure of three dimensions,
which have the following basement:

X1 =
∂

∂t
, X2 = v

∂

∂v
− t

∂

∂t
, X3 = t

∂

∂t
− n

∂

∂n
(11)

where X1 represents the time shift transformation, and X2 and X3 represent the stretch-
ing transformation.

4. The Invariant Solution of the Dynamic Equation of Condensation

If u = J(x) is the invariant solution of the partial differential equation Fm(x, u, ∂u, ∂2u) = 0
and results from the infinitesimal generator X = ξi(x, u) ∂

∂xi
+ ηi(x, u) ∂

∂ui , then X(J) = 0.
The group-invariant solution of the equation combined with the method of separating
variables can reduce the number of independent variables and can then be transformed
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into an ordinary differential equation, which provides a way to obtain the exact solutions
of a given partial differential equation [19].

Aerosols with particle sizes less than 1 µm can be regarded as a single spherical dis-
persion system. Furthermore, the collision frequency response function can be reduced to

β =
8kBT

3µ
. (12)

In this way, Equation (6) for aerosol particles in a single dispersion system under the
action of single Brownian motion becomes

∂n(v, t)
∂t

=
1
2

v
∫ 1

0
n(v(1− s), t)n(vs, t)ds− n(v, t)

∫ ∞

0
n(y, t)dy, (n0 =

3µ

t0v08kBT
). (13)

For the generator X2 + 2X3, the invariant is

v
∂J
∂v

+ t
∂J
∂t
− 2n

∂J
∂n

= 0, λ1 = v/t, λ2 = t2n. (14)

In this way, we can obtain the general form of the invariant solution of Equation (13):

n(v, t) = t−2 f (λ1). (15)

Substituting Formula (15) into Equation (13), we obtain

λ1 f ′ +
1
2

λ1

∫ 1

0
f (λ1(1− s)) f (λ1s)ds + (2−

∫ ∞

0
f (λ1)dλ1) f = 0. (16)

Thus, the specific forms of the group-invariant solution and explicit solution of the
coagulation dynamic equation are

f (λ1) = e−
1
2 λ1 , n(v, t) = t−2e−

v
2t . (17)

Formula (17) indicates that lim
t→+∞

n(v, t) = 0, lim
v→+∞

n(v, t) = 0, so solution (17) is

asymptotically stable, and the population density distribution function of any particle of
sufficient size (mass and volume) will inevitably tend to zero.

Supporting the correctness of the results obtained in this paper, several previous
studies [20,21] have also shown that the size distribution of aerosol coagulation flocs
possesses self-similarity. That is to say, the size distribution shape does not change with
time and occurs without consideration of the initial conditions. After a long enough time
period, the size distribution of particles will eventually achieve an exponential distribution,
so the final conservative spectrum will have a relatively concentrated particle distribution.

The total number N(t) and total volume Φ of particles in unit volume are as follows:

N(t) =
∫ ∞

0 n(v, t)dv = 2/t
Φ =

∫ ∞
0 vn(v, t)dv = 4

. (18)

Then, the dimensionless volume ζ and the dimensionless density function Ψ(ζ) are

ζ =
vN
Φ

= v/2t, Ψ(ζ) = n(v, t)Φ/N2 = e−ζ . (19)

Formula (19) shows that the density function accords with the properties of self-
conservation and reduction, which is different from any other method used in the past.
We applied the results of the Lie group analysis to demonstrate that the coagulation process
of aerosols is self-conservative. Even though the particle collision is complex, the overall
particle size distribution in the coagulation process can be predicted.
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5. Conclusions

Due to the universality and excellent structural properties of the Lie group, the Lie
group analysis method is widely used in engineering, mathematics, and physics. These ap-
plications have shown that the Lie group analysis algorithm is very effective and agile.
To study aerosol evolution dynamics, we used the developed Lie symmetry method to
determine the invariance of the aerosol condensation dynamic process under Brownian
action and obtain a three-dimensional Lie algebra structure. Then, we reduced the equation
and obtained the invariant solution and analytic exact solution of the original equation.
The results show that the size distribution of agglomerated flocs of spherical aerosol par-
ticles in a single dispersed-phase system possesses self-similarity. In the model itself,
the process is rigorous and widely applicable. This method provides a new way to explain
the evolutionary characteristics of aerosol physicochemical processes, which have certain
theoretical and practical significance. This method could be further extended to other
nonlinear dynamics of aerosols.
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