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Abstract: Minkowski Pythagorean hodograph curves are widely studied in computer-aided geomet-
ric design, and several methods exist which construct Minkowski Pythagorean hodograph (MPH)
curves by interpolating Hermite data in the R2,1 Minkowski space. Extending the class of MPH
curves, a new class of Rational Envelope (RE) curve has been introduced. These are special curves in
R2,1 that define rational boundaries for the corresponding domain. A method to use RE and MPH
curves for skinning purposes, i.e., for circle-based modeling, has been developed recently. In this
paper, we continue this study by proposing a new, more flexible way how these curves can be used
for skinning a discrete set of circles. We give a thorough overview of our algorithm, and we show a
significant advantage of using RE and MPH curves for skinning purposes: as opposed to traditional
skinning methods, unintended intersections can be detected and eliminated efficiently.

Keywords: medial axis transform; Minkowski Pythagorean hodograph curves; Rational Envelope
curves; envelope; interpolation; skinning; intersection
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1. Introduction

The concepts of medial axis (MA) and medial axis transform (MAT) have always
played an important role both in computer graphics and image processing, and the bound-
ary reconstruction of a given planar domain with its associated MAT has several application
areas as well. Special curves in the R2,1 Minkowski space, such as Minkowski Pythagorean
hodograph (MPH) curves, are very suitable to describe MATs, and one of the advantages
of MPH curves is the rationality of the corresponding envelope. Furthermore, the offsets
of the envelope curves are also rational [1–3], which is a valuable property in many ap-
plications such as robotics and computer numerical control (CNC) machining. Several
interpolation methods have been published to construct MPH curves, see, e.g., in [4–9].
Bizzarri et al. [10] introduced a class of RE curves that is broader than the class of MPH
curves, yet still yielding rational envelopes. If we consider an RE curve in R2,1 as a MAT
of a given planar domain, then the obtained envelope is rational. The advantage of RE
curves lies in its simple construction—compared to the existing MPH constructions that are
generally computation-heavy. Nevertheless, with the proposed method of Bizzarri et al. it
is possible to construct MPH curves as well, and they showed that any MPH curve can be
formulated as an RE curve. An application area of RE curves is blending canal surfaces, as
suggested in [10,11]. Note that there is a strong connection between MATs and cyclography,
specifically the cyclographic image of a curve. That is, a spatial curve can be regarded as
a MAT, and the cyclographic image of the curve can be regarded as the envelope of the
MAT [12,13].
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Another interesting area of computer-aided geometric design is skinning of circles,
which is often mentioned along with MATs. Skinning is a special approach in modeling,
when the user defines a sequence of circles as the input, and the aim is to construct two
curves (so-called skins) that touch each circle at one point. The resulting skinning curves
bound the input circles and create an aesthetic shape for modeling purposes. In the last
decade, several skinning methods has been developed [14–17]. The idea has been extended
to branched systems of circles to obtain more complex shapes, and also to 3D, introducing
the skinning of simple and branched system of spheres. Skinning techniques can be useful
in such scenarios when modeling with circles or spheres is more straightforward than
the application of traditional point-based methods. They can be helpful in areas such as
character animation, molecular biology [18,19], and medical image processing [20,21].

While the process of boundary reconstruction using MATs and skinning of circles
might seem similar, they are fundamentally different as they deal with reversed problems.
Note that there is no initial domain or shape assumed in the case of skinning, and the input
is only a discrete set of circles with ordered sequence, defined by the user.

Kruppa presented a method [22] with which it is possible to use RE curves (constructed
with the G1 interpolation method by Bizzarri et al. [10]) for skinning purposes. The main
focus was how to transform the discrete set of circles into an input data set of the RE curve
interpolation algorithm and how to solve those problematic cases that might come from
the inappropriate positions of the generated touching points of the envelope curves. The
proposed method applies for generally any curve interpolation method in R2,1, e.g., for
interpolations by MPH curves as well. Kruppa also discussed that applying RE and MPH
curves for skinning purposes is beneficial in CNC machining as the trimming process of
the offset curves of the envelope is simple and cost-efficient. Moreover, in the case of MPH
curves, the envelopes are PH curves with their offsets being rational, which is utterly useful
in many areas, such as path planning and motion control [23,24].

In this paper, we provide a new, improved solution of skinning circles by curves in
the R2,1 Minkowski space. The thorough overview of the algorithm proves that there is
significant advantage of our method over preceding approaches in a crucial problem of
skinning: the detection and elimination of unintentional intersections of the skins.

The paper is organized as follows. In Section 2, we briefly recall the concepts of RE
curves, and how Kruppa proposed to apply them for skinning purposes. Then, in Section 3
we explain our proposal in detail and present our new algorithm. Section 4 presents the
most important advantage of using RE curves for skinning: we can detect and eliminate
intersections much easier than by using traditional skinning methods. Last, we close the
paper in Section 5 with the conclusions.

2. Motivation and Previous Work
2.1. Rational Envelope (RE) Curves

Let us recall the construction of RE curves given by Bizzarri et al. [10]. Let p0 and p1
denote two endpoints, and t0 and t1 two end tangent vectors that we are to G1 interpolate
in R2,1, that is, y : [0, 1]→ R2,1 is to be constructed so that

y(0) = p0, y(1) = p1,

y′(0) = β0t0, y′(1) = β1t1, β0, β1 ∈ R \ {0}.
(1)

If n ∈ R2,1 and n = (nx, ny, nz), let us denote its projection as
O
n = (nx, ny). If n ∈ R2

and n = (nx, ny), let us denote its rotation as n⊥ = (ny,−nx). The construction of the
interpolation can be seen in Figure 1. As a first step of the algorithm, we get the touching
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points q±i ∈ R2 (i = 0, 1) of the corresponding envelope curve by directly applying the
well-known envelope formula [2,3] as

q±i =
O
pi − piz

tiz
O
ti ±

O
ti

⊥
√
‖
O
ti‖2 − t2

iz

‖
O
ti‖2

(2)

Figure 1. Constructing the RE curve y(t) for input data p0, p1, t0, and t1, using the method of Bizzarri et al. [10].

The algorithm relies on one side, and in what follows, qi = q+
i . The next step is to

determine the corresponding tangent vectors vi ∈ R2 (i = 0, 1) as

vi = αi
(qi −

O
pi)
⊥∥∥∥qi −

O
pi

∥∥∥ , αi ∈ R. (3)

Next, the planar curve x : [0, 1] → R2 is constructed, which interpolates q0 and q1
with their tangent vectors v0 and v1, respectively. The medial axis y(t) is then defined as a
one-sided (right) offset of x(t):

y(t) = x(t) + r(t)
x′⊥(t)
||x′(t)|| = x(t) + f (t) x′⊥(t) (4)

which is rational only if f (t) = r(t)
||x′(t)|| is a rational function. To assure that the resulting

curve interpolates the initial input data as shown in (1), f (t) : [0, 1] → R has to be
constructed as follows. Based on the equations y(i) = pi,

f (i) = f̃i =
piz
‖vi‖

, i = 0, 1. (5)

By solving equations y′(i) = βiti, we get

βi =
vi · vi − f̃i x′′(i) · v⊥i

ti · vi
,

then

f ′(i) = f̃ ′i = −
O
ti · ( f̃i x′′(i)− v⊥i )

O
ti · vi

, i = 0, 1. (6)
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Therefore, the function f (t) has to be constructed in a way that it satisfies the conditions
(5) and (6). Finally, by lifting the medial axis back to R2,1, the MAT is in the form

y(t) =
(

xx(t) + x′y(t) f (t), xy(t)− x′x(t) f (t), f (t)
√

x′2x (t) + x′2y (t)
)

. (7)

The resulting y(t) curve (7) is an RE curve. Note that if the planar interpolating curve
x(t) is a PH curve, then the resulting MAT is not only an RE curve, but an MPH curve, so
the offsets of the envelope are rational as well. For further details on RE curves, see in [10].

2.2. Applying RE/MPH Curves for Skinning

In [22], Kruppa started to analyze how RE and MPH curves can be applied for skinning
purposes, i.e., how to use its envelope curves as skinning curves for a discrete set of circles,
given by the user. Note that the input data of these interpolation algorithms are two points
and two tangent vectors, and in skinning, only a discrete set of circles is given. Thus, the
challenge is to appropriately choose the input data for the interpolation algorithm using
only the circles.

Let us assume that a sequence of circles is given in the form C = {c1, c2, . . . , cn}, where
n ∈ N. The aim is to determine the point pi and tangent vector ti for every circle ci, so that
we can construct an RE curve for each pair of circles in C. Therefore, we aim to obtain the
sequence of points P = {p1, p2, . . . , pn} and tangent vectors T = {t1, t2, . . . , tn}. With the
help of cyclographic mapping, we can map the circles to points in R2,1, so for each circle
ci—with center oi

(
oix , oiy

)
and radius ri—the corresponding spatial point is

pi =
(

oix , oiy , ri

)
, pi ∈ R2,1. (8)

The obstacle that we face now is that we do not have any additional information about
how we should define the tangent vectors T = {t1, t2, . . . , tn}. Kruppa showed [22] that it
may seem obvious to choose the tangent vectors based on the newly created spatial points,
for example, using the Catmull–Rom interpolation, but two problems arise: First, the
defined tangent vectors might be time-like, but to obtain real envelopes, they are required
to be space-like (i.e., their angle with the xy-plane must be less than π

4 ). Second, if we
construct the corresponding RE/MPH curve and the envelope curves, we can see that the
touching points might lie inside the neighboring circles, thus the envelopes intersect the
circles. To resolve these problems, an inverse approach was presented. For each circle, we
first define the touching points (e.g., with the localization method of the skinning technique
by Kunkli and Hoffmann [14], as it guarantees that the touching points always lie outside
the neighboring circles), then we construct those exact tangent vectors which provide
exactly the same points of contact of the envelope curves using (2). Kruppa showed that
this approach solves both of the aforementioned problems and provides results suitable
for skinning purposes. The approach can be adapted to any kind of interpolation method
with MPH curves. Recently, Bizzarri and Lávička [25] applied MPH B-spline curves for
skinning purposes; however, the problems accentuated by Kruppa [22] would still arise.

3. Using RE/MPH Curves for Skinning with More Flexibility

In this section, we introduce a new approach how to use the RE/MPH curve interpo-
lation algorithm [10] in order to create skinning curves of a discrete set of circles.

3.1. Determining the Tangent Vectors

In previous approaches, the first step was to fix the location of two touching points on
each circle [22]. By contrast, our idea is to fix the location of a single touching point on each
circle. This approach can seem somewhat natural as the whole construction of the RE curve
is based on only one side (as shown in Section 2.1), using the left touching point q+

i = qi.
As a first step, let us determine the left touching point for each circle ci in C, and let

us denote them by w+
i (i = 1, 2, . . . , n). Our aim is to reconstruct the tangent vector ti that
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if we substitute into (2), w+
i = q+

i holds. What we can observe is that there are infinitely
many solutions. To geometrically construct the vector, let its starting point be pi. We can
find the endpoints of appropriate tangent vectors on the plane Ti that is tangent to the
representing cone of pi (coming from the cyclographic representation) and that touches
ci at w+

i . In order to determine the endpoint si of ti, we construct a circle which is on the
plane Ti and its center is pi. We define Ti by the vectors

pi −
(
w+

i , 0
)

and
((

w+
i −

O
pi

)⊥
, 0
)

. (9)

The endpoint si can be found along a semicircle of this circle. However, in practice, there
is no specific need to use a circle; thus, we can cut the costs of normalizing the vectors (9).
Consequently, we define si along a semi-ellipse as follows:

si = pi + cos(ui)

pix − w+
ix

piy − w+
iy

piz

+ sin(ui)

w+
iy − piy

pix − w+
ix

0

, ui ∈ ]0, π[ (10)

Then, vector ti is given as si − pi; thus, we can formulate it as

ti = cos(ui)

pix − w+
ix

piy − w+
iy

piz

+ sin(ui)

w+
iy − piy

pix − w+
ix

0

, ui ∈ ]0, π[. (11)

The approach is shown in Figure 2. Coming from the construction itself, it is guaran-
teed that the angle of ti and the xy-plane is less than π

4 , i.e., ti is always space-like.

Figure 2. Computation of an appropriate tangent vector. We fix the location of the touching point w+
i , which leaves the

user the freedom to choose the endpoint of the tangent vector ti along a semi-ellipse.

Using the geometric interpretation of envelopes [12,13], we can obtain the other
touching point easily as well. Let ki denote the line that goes through si and pi. Then, w−i
can be determined using the other tangent to circle ci from the piercing point of ki. As the
intersection line of Ti and the xy-plane always touches the circle at w+

i , and as the other
touching point is determined using the other tangent line, it is proved that w±i = q±i .

This approach may be beneficial if the user would like to have more control of the final
shape. By changing the value of ui in (11), the user is able to easily modify the position of
w−i . Moreover, as we will discuss in Section 4, it can be useful for eliminating intersections
of the envelope curves.
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Note that while in Kruppa’s method [22], the special case of w+
i , w−i , and

O
pi being

collinear has to be handled separately; our new method can handle all different situations
uniformly. The collinearity happens when ti is parallel to the xy plane, but this is not a
special case in the new method.

The method has its limitations as well. As opposed to the work in [22], as the position
of the right touching point w−i is not fixed, we cannot guarantee that it always lies outside
the neighboring circles—however, it can be guaranteed for w+

i .

3.2. Constructing the Envelope Curves

Now we have created the appropriate input set for circle set C = {c1, c2, . . . , cn}, n ∈ N.
That is, we obtained the set of spatial points P = {p1, p2, . . . , pn} and the corresponding
tangent vectors T = {t1, t2, . . . , tn} to construct the envelope. We will then apply the RE
curve interpolation algorithm [10] for each circle pair; therefore, for each pair of pi, ti, and
pi+1, ti+1 (i = 1, 2, . . . , n− 1).

Technically, we may omit the first step of the algorithm (see Section 2.1) as we have
already defined the touching points w±i for each circle ci . We continue with the next step
and construct the corresponding tangent vectors v+

i and v+
i+1 for the touching points w+

i
and w+

i+1. For this step, Bizzarri et al. leave the αi values as free parameters in (3). As
Kruppa showed in [22], we may use the idea of Kunkli and Hoffmann [14] to define the
corresponding tangent vectors based on the radical lines of the circles as follows:

vj = 2 d(w+
j , li)

(
w+

j −
O
pj

)⊥
∥∥∥w+

j −
O
pj

∥∥∥ , j = i, i + 1, (12)

where li is the radical line of circles ci and ci+1, and d() denotes the Euclidean distance.
Then, we follow the remaining steps of the algorithm [10]. We construct the curve xi(t)
interpolating w+

i , w+
i+1, vi, and vi+1, for example, using Hermite interpolation. To define

the medial axis, we construct the polynomial function fi with the following boundary
conditions, based on (5 and 6):

fi(0) =
piz
‖vi‖

, fi(1) =
pi+1z

‖vi+1‖
(13)

and

f ′i (0) = −
O
ti · ( fi(0) x′′i (0)− v⊥i )

O
ti · vi

, f ′i (1) = −
O

ti+1 · ( fi(1) x′′i (1)− v⊥i+1)
O

ti+1 · vi+1

. (14)

The function fi can be constructed in various ways, e.g., we may apply polynomial
functions of degree 3 using Hermite interpolation. In the next section, we discuss how
various choices of the function fi affect the shape of the envelope curves. The RE curve
yi(t) is obtained as

yi(t) = (y(t), r(t))

=
(

xix (t) + x′iy(t) fi(t), xiy(t)− x′ix
(t) fi(t), fi(t)

√
x′2ix

(t) + x′2iy (t)
)

.
(15)

Finally, we apply the envelope formula [1] for yi, and we yield the x± : [a, b] → R2

envelope curves as

x±(t) = y(t)− r(t)
r′(t) y′(t)± y′⊥(t)

√
‖y′(t)‖2 − r′(t)2

‖y′(t)‖2 . (16)
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As shown by Bizzarri et al. [10], yi is an RE curve and the x± envelope curves are
rational. To sum up, Algorithm 1 shows how we can apply the RE curve interpolation
algorithm for circle skinning. As a result, we obtain a G1 continuous spline of RE curves,
while the yielded envelope curves also have G1 continuity. Generally, our approach can be
applied for any kind of MPH curve interpolation method using two endpoints and two
tangent vectors.

Algorithm 1 A flexible approach for using RE/MPH curves for skinning purposes

Require: An admissible sequence of circles C = {c1, c2, . . . , cn}
Ensure: The skinning curves as envelope curves with G1 continuity

1: w±1 = getByCommonTangentLines(c1, c2)
2: w±n = getByCommonTangentLines(cn−1, cn)
3: for i = 2 to n− 1 do
4: w±i = getFromApollonianSolutions(ci−1, ci, ci+1)

5: for i = 1 to n do
6: pi = (oix , oiy , ri)

7: ti = getTVector(pi, w+
i ) . see (11)

8: skin = {∅}
9: for i = 1 to n− 1 do

10: vi = getV(pi, w+
i )

11: vi+1 = getV(pi+1, w+
i+1) . see (12)

12: xi(t) = interpolate(w+
i , w+

i+1, vi, vi+1)
13: fi(t) = getF(pi, vi, ti, pi+1, vi+1, ti+1, xi) . see (13) and (14)
14: yi(t) = getMAT(xi, fi) . see (15)
15: x±i (t) = getEnvelopeCurves(yi) . see (16)
16: skin.add(x±i )

17: return skin

In Figure 3, we make a comparison between Kruppa’s approach [22] and our newly
proposed method. In Figure 3a, two touching points are fixed on each circle and the right
envelope curve intersects itself. In Figure 3b, we use our solution for the same input. Fixing
the location of a single touching point gives the freedom to modify the final shape of the
model, and we can eliminate the intersection. More complex models can be seen in Figure 4
that highlights the advantages of our proposed method.

(a) (b)

Figure 3. (a) Fixing the location of two touching points on each circle, using the method of Kruppa [22]. (b) By fixing the
location of a single touching point, we get more freedom to modify the shape of the envelope curves. It is possible that this
way we eliminate certain self-intersections.
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(a) (b) (c) (d)

Figure 4. Comparison of the previous method [22] and our solution. (a) Snake model using the solution in [22]. (b) With
our method, the unintended broader parts of the snake and intersections at the tail have been eliminated. (c) Crane bird
model with the method in [22]. (d) By using our solution, we obtain the bill of the crane without intersections.

Furthermore, from a practical point of view, our solution and Kruppa’s method [22]
can be combined; thus, the user can decide for each circle separately whether to fix the
location of only a single or both touching points. This combination of the methods provides
the most efficient and flexible solution for the user.

4. Intersections of the Envelope Curves

In skinning, as generally in all types of modeling, we always strive for aesthetic
results. One aspect can be to achieve visual smoothness [26], and another one is the lack of
intersections. Now, we are focusing on intersections of the skinning curves with each other,
and not on self-intersections of each curve. The detection of the intersections and computing
the points of intersections is a challenging issue. There are many general approaches based
on Bézier curves, for example, the subdivision scheme of the de Casteljau algorithm and
clipping methods [27,28]. However, few studies have been carried out specifically for
intersections of skinning curves. In [17], Kruppa et al. gave an algorithmic approach to
resolve the intersections by modifying the tangent lengths of the Hermite interpolants.

In this section, we examine the detection and elimination of intersections of envelope
curves in our specific case. For the admissible circle set C = {c1, c2, . . . , cn}, n ∈ N, we
examine the intersections of the envelope curves created for each circle pair ci and ci+1
(i = 1, 2, . . . , n− 1). For the sake of simpler notations, we will use yi, yi, xi, x±i , and fi
without indices, i.e., as y, y, x, x±, and f .

4.1. Intersection Detection

Looking at the envelope curves, we can observe an interesting property for the y(t)
curve considered as a MAT. If there exists a point of y(t) with the third coordinate being
zero, then the envelope curves intersect each other at this exact point, and actually the MA
and the MAT intersect each other at this point too. Moreover, the intersections happen at
the same parameter value for each curve. Figure 5 shows an example to this property.

Moreover, examining the problem from an algebraic viewpoint, we can deduce that if
y(t) has a tangent vector that is light-like, then the envelope curves will intersect each other
at the corresponding parameter value. Based on these two observations, we can formalize
the following theorem.
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Figure 5. The envelope curves x+, x−, the medial axis y, and the y medial axis transform intersect each other at the same
point at the same parameter value.

Theorem 1. If y : [a, b]→ R2,1, y(t) = (y(t), r(t)) is considered as the medial axis transform of
a given planar domain, then its associated envelope curves x+(t) and x−(t) intersect each other at
a parameter value tj ∈ [a, b] (i.e., x+(tj) = x−(tj)), if and only if

• r(tj) = 0, or
•

∥∥y′(tj)
∥∥

M = 0, that is, the tangent vector of y at the parameter value tj is light-like.

Proof of Theorem 1. If the envelope curves intersect each other at the parameter value
tj, then x+(tj) = x−(tj) has to hold (tj ∈ [a, b]). Based on (16), we can suppose that
‖y′(t)‖ 6= 0, ∀t ∈ [a, b]. We rewrite the x+(tj) = x−(tj) equation into

r(tj)
r′(tj) y′(tj) + y′⊥(tj)

√∥∥y′(tj)
∥∥2 − r′(tj)2∥∥y′(tj)

∥∥2

= r(tj)
r′(tj) y′(tj)− y′⊥(tj)

√∥∥y′(tj)
∥∥2 − r′(tj)2∥∥y′(tj)

∥∥2 .

Then, the following two cases arise:

• If r(tj) = 0, then x+(tj) = x−(tj) = y(tj) = y(tj).
• If r(tj) 6= 0, then the equation can be written as

y′⊥(tj)
√∥∥y′(tj)

∥∥2 − r′(tj)2 = −y′⊥(tj)
√∥∥y′(tj)

∥∥2 − r′(tj)2.

Since
∥∥y′(tj)

∥∥ 6= 0, rearranging the equation we get√∥∥y′(tj)
∥∥2 − r′(tj)2 = 0,

thus,
∥∥y′(tj)

∥∥
M = 0.

If r(tj) 6= 0 and
√∥∥y′(tj)

∥∥2 − r′(tj)2 6= 0, then based on the above, x+(tj) 6= x−(tj). Then,
x+(tj) = x−(tj)

(
tj ∈ [a, b]

)
if and only if r(tj) = 0 or y′(tj) is light-like.

Remark 1. Theorem 1 can be also proved using a cyclographic approach.

• If the third coordinate is zero for a point on the MAT, then it means that the radius of the
corresponding cycle is zero. A cycle of zero radius is called null-cycle, and it is interpreted as a
point. Moreover, the tangent lines drawn to this null-cycle touch it at the same point, thus
this point becomes the point of the envelopes, i.e., x+(tj) = x−(tj).

• If the tangent vector of the MAT at parameter value tj is light-like, then the tangent line at
y(tj) is a generator line of the representing cone of y(tj). In this case, the piercing point of the
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tangent line and the xy plane is a point on the cycle. As it is not possible to draw tangent lines
from this point to the cycle, then the point of the envelope cannot be anything else than the
point itself, so x+(tj) = x−(tj).

In all other cases, the touching points of a cycle always differ.

If we examine the intersections of the envelopes of RE/MPH curves specifically, then
we obtain a special case of Theorem 1.

Corollary 1. Given the y : [0, 1]→ R2,1, y(t) = (y(t), r(t)) =
(

xx(t) + x′y(t) f (t),

xy(t)− x′x(t) f (t), f (t)
√

x′2x (t) + x′2y (t)
)

RE curve, the envelope curves x+, x− : [0, 1] → R2

intersect each other at a parameter value tj ∈ [0, 1] (thus, x+(tj) = x−(tj)) if and only if

• x(t) is irregular and x(tj) is a singular point;
• x(t) is regular, but f (tj) = 0 holds; or
•

∥∥y′(tj)
∥∥

M = 0, i.e., the tangent vector of the RE curve at the parameter value tj is light-like.

Proof of Corollary 1 . The r(t) = f (t)
√

x′2x (t) + x′2y (t) coordinate-function of the y RE

curve is zero if and only if f (tj) = 0 or
√

x′2x (t) + x′2y (t) = 0, thus x′(tj) = 0. The third case
of Corollary 1 is the second case of Theorem 1.

Based on Corollary 1, to detect the points of intersections in the case of the RE curves,
we need to find those tj parameter values for which x′(tj) = 0, f (tj) = 0, or

∥∥y′(tj)
∥∥

M = 0.
The complexity of finding the singular points of x depends on the choice of x. If x is a cubic
Hermite interpolant, then the equation x′(tj) = 0 is quadratic. If x is regular, then the roots
of the equation f (t) = 0 has to be found in the interval [0, 1]. If f is a cubic polynomial,
then the roots may be obtained even directly by the formula of Cardano. Looking at the
third case of Corollary 1, the intersection points of the envelope curves can be obtained by
solving

∥∥y′(tj)
∥∥2 − r′(tj)

2 = 0.

4.2. Eliminating the Intersections

Now, we provide a method to eliminate the problem when there exist a parameter
value tj ∈ [0, 1] for which f (tj) = 0; thus, the envelope curves intersect each other (see
Corollary 1). Let us assume that x is regular and the tangent vectors y′(t), ∀t ∈ [0, 1] are
space-like. As f (tj) = 0, x+(tj) = x−(tj). Our task is to achieve that f does not have any
real roots in the interval [0, 1]; thus, the envelope curves do not intersect each other.

One solution is to fine-tune the parameter value ui in (11), which results in modifying
the location of the touching point w−i ; thus, the shape of the envelope curves changes too.
We modify ui iteratively in the interval ]0, π[ until

f (t) > 0, ∀t ∈ [0, 1] (17)

holds. This can be achieved in most cases as we have seen in practice; however, it is not
guaranteed that we can find such a value. Figure 6 shows that by slightly modifying ui+1
(and thus ti+1) we achieved that the intersections are eliminated.
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(a) (b)

Figure 6. (a) The envelope curves intersect each other. (b) By modifying the value of ui in (11), we obtain that f (t) > 0; thus,
we resolve the intersections. With this solution, the location of one of the touching points on the second circle is changed.

Another solution is modifying the function f itself. As shown in Section 2.2, f has
to be constructed such that it satisfies the given boundary conditions. If f is created with
Hermite interpolation yielding a polynomial function of degree 3, and it has real root(s)
in the interval [0, 1], then we may increase its order. There exist infinitely many quartic
polynomials that satisfy the given boundary conditions, and we need to choose one solution
for which (17) holds. For this, let f be defined as

f (t) = t4 + a3t3 + a2t2 + a1t + a0 (18)

where

a3 = f̃ ′0 + f̃ ′1 + f̃0 − 2 f̃1 − 2k,

a2 = 3 f̃1 − 3 f̃0 − 2 f̃ ′0 − f̃ ′1 + k,

a1 = f̃ ′0,

a0 = f̃0,

(19)

and f̃0, f̃1, f̃ ′0, f̃ ′1 are the boundary conditions (5) and (6). In order to eliminate the intersec-
tions, we need to find such values for k ∈ R in (19) for which (17) holds. As f (0) and f (1)
are always positive, f can always be constructed in a way that f (t) > 0, ∀t ∈ [0, 1]—though
it might be even higher in degree.

If f has a degree greater than three, then we obtain the intersection points by solving
the equation f (t) = 0 using numerical methods, e.g., the Newton–Raphson method.
Furthermore, as f can be written in a Bézier–Bernstein representation, we can specifically
use Bézier clipping, which deals with finding the roots of a univariate polynomial function
within a given interval in efficient ways [27,29–33].

Figure 7 shows that by increasing the degree of f (t) and choosing a suitable value for
k, we eliminate the intersections. Note that neither the touching points, nor the tangent
vectors have been changed, while the intersections are resolved.
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(a) (b)

Figure 7. (a) The envelope curves intersect because f (t) has real roots in the interval [0, 1]. (b) If we increase the order of the
function, then f (t) can be constructed in a way that we eliminate the intersection of the envelope curves. Note that the
positions of the touching points do not change.

5. Conclusions

In this work, we improved the method of applying RE and MPH curves for skinning
purposes. As it was clear from the previous approach [22], choosing appropriate input data
for the RE construction method [10] is critical to create the envelope curves of a discrete
set of circles. We gave a new method by fixing the location of a single touching point on
each circle, which gives more freedom for the user to modify the shape of the resulting
envelope. Furthermore, we examined the crucial problem of unintentional intersections.
As skinning is a modeling technique, the lack of intersections of the envelope curves
is of utmost importance. We showed that a significant advantage of using MATs (and
specifically RE and MPH curves) for skinning is the easy detection and elimination of
intersections of the envelope curves. We provided a method to detect the intersection of
envelope curves and gave two possible ways to eliminate the intersections. The discussed
results greatly contribute towards the advantageous usage of RE and MPH curves in
circle-based modeling.
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