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Abstract: In this paper, we introduce a robust version of the empirical likelihood estimator for
semiparametric moment condition models. This estimator is obtained by minimizing the modified
Kullback–Leibler divergence, in its dual form, using truncated orthogonality functions. We prove
the robustness and the consistency of the new estimator. The performance of the robust empirical
likelihood estimator is illustrated through examples based on Monte Carlo simulations.
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1. Introduction

A moment condition model is a familyM(1) of probability measures (p.m.), all defined
on the same measurable space (Rm,B(Rm)), such that (s.t.)∫

Rm
g(x, θ) dQ(x) = 0 for all Q ∈ M(1),

where B(Rm) is the Borel σ-field. The parameter of interest θ belongs to a compact set
Θ ⊂ Rd and the function g := (g1, . . . , g`)>, with ` ≥ d, is defined on Rm × Θ, each
component gi being real valued function. Denote by M(1) the set of all probability measures
on (Rm,B(Rm)), and for each θ ∈ Θ define

M(1)
θ :=

{
Q ∈ M(1) s.t.

∫
Rm

g(x, θ) dQ(x) = 0
}

,

so that
M(1) =

⋃
θ∈Θ

M(1)
θ . (1)

Let X1, . . . , Xn be an i.i.d. sample with unknown p.m. P0. We assume that the equation∫
g(x, θ) dP0(x) = 0 has a unique solution (in θ), which will be denoted θ0. We consider

the estimation problem of θ0 from the data X1, . . . , Xn. The traditional way of estimating
the parameter θ0 is given by the Generalized Method of Moments (GMM) [1]. The GMM
estimators are consistent and have asymptotically normal distribution. Despite their desir-
able asymptotic properties, the finite sample performance of the GMM estimators is not
satisfactory. Some other alternative methods have been proposed in the literature. The
Continuous Updating (CU) estimator [2], the Empirical Likelihood (EL) estimator [3–5],
and the Exponential Tilting (ET) [6], are three of the most known examples. Imbens [7]
showed that EL and ET estimators are characterized by lower bias than GMM in nonlin-
ear models. Newey and Smith [8] studied the theoretical properties of EL, ET, and CU
estimators, by including them into the Generalized Empirical Likelihood (GEL) family of
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estimators, and showed that all GEL estimators are characterized by lower asymptotic bias
than GMM. The information and entropy econometric (IEE) techniques have been proposed
in order to improve the finite sample performance of the GMM estimators and tests [4,6].
Ronchetti and Trojani [9] and Lo and Ronchetti [10] have proposed robust alternatives for
GMM estimators and tests, respectively, for the IEE techniques, keeping also the finite
sample accuracy. Felipe et al. [11] proposed empirical divergence test statistics based on
exponentially tilted empirical likelihood estimator with good robustness properties. Bronia-
towski and Keziou [12] proposed a general approach for estimation and testing in moment
condition models, which includes some of the above-mentioned methods. This approach,
based on minimizing divergences with their dual forms, allows the asymptotic study of
the estimators (called minimum empirical divergence estimators) and of the associated test
statistics, both under the model and under mis-specification of the model. The approach
based on divergences and duality was firstly considered in the case of parametric models,
for example, in [13–15]. Applications of the minimum dual divergence estimators in model
selection problems are considered in [16].

The EL paradigm enters as a special case of the general methodology from Bronia-
towski and Keziou [12], namely, when using the modified Kullback–Leibler divergence.
Although the EL estimator is preferable to other estimators due to higher-order asymptotic
properties, these properties are valid only in the case of the correct specification of the
moment conditions. On the other hand, when the support of the p.m. corresponding to
the model and the orthogonality functions are not bounded, the EL estimator may cease
to be root n consistent (Schennach [17]) under mis-specification. It is a known fact that
the EL estimator for moment condition models is not robust. This fact is also justified by
the results from [18], where it is shown that the influence function of a minimum dual
divergence estimator, and particularly that of the EL estimator, is linear related to the
orthogonality function g corresponding to the model. Thus, the influence function of the
EL estimator is bounded if and only if the function g corresponding to the underlying
model is bounded. Hence, the EL estimator is usually not robust, since the function g could
be unbounded on the observation. For this reason, in practice, the classical EL estimator, as
well as the minimum dual divergence estimators and also GMM estimators, is unstable
even under small deviations from the assumed model.

As examples in this context, we mention models for which the orthogonality functions
are unbounded [9]. The autoregressive models with heteroscedastic errors [19] can be
written under the form of moment condition models, but the orthogonality functions
defining the orthogonality conditions are unbounded. Moreover, the nonlinear empirical
asset pricing models [20] can be written under the form of moment condition models and
have natural orthogonality conditions (given by the given asset pricing equations), which
are given by unbounded orthogonality functions. We also recall the following classical
example, which is used in the last section of the paper, in the Monte Carlo simulation study.

Example 1 ([3] p. 302). Consider a random variable X with unbounded support (R or R+ for
instance). Let E(X) = θ, and assume that E(X2) = h(θ), with h(·) being a known function. The
aim is to estimate the parameter θ using an i.i.d. sample X1, . . . , Xn of X. The information on
the probability distribution P0 of X can be expressed in the context of model (1), with d = 1 and
` = 2, by taking g(x, θ) =: (g1(x, θ), g2(x, θ))> = (x− θ, x2 − h(θ))>. One can see that the
orthogonality functions g1(·, θ) and g2(·, θ) are unbounded (with respect to x).

For such models, the lack of robustness of the EL estimator, as well as the lack of
robustness of other classical estimators, represents the motivation to study some robust
alternatives.

In the present paper, we propose a locally robust version of the EL estimator for
moment condition models. Locally robust in the sense that the functional associated with
this estimator is locally approximated by the means of the influence function, and then,
the boundedness of the influence function will imply the fact that, in the neighborhood of
the model, the asymptotic bias of the estimator cannot become arbitrarily large (see [21]).
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The new estimator is defined by minimization of an empirical version of the modified
Kullback–Leibler divergence in dual form, using truncated orthogonality functions. This
leads to a robust EL estimate. Moreover, we prove the consistency of this estimator, Finally,
we present an example based on Monte Carlo simulations illustrating the performance of
the robust EL estimator in the case of contaminated data.

2. A Robust Version of the Empirical Likelihood Estimator
2.1. Statistical Divergences

Let ϕ be a convex function on R onto [0,+∞] valued, satisfying ϕ(1) = 0. Let P be
some p.m. on the measurable space (Rm,B(Rm)). For any signed finite measure Q, on
the same measurable space (Rm,B(Rm)), absolutely continuous with respect to P, the
ϕ-divergence (sometimes we simply say divergence) between Q and P is defined by

Dϕ(Q, P) :=
∫
Rm

ϕ

(
dQ
dP

(x)
)

dP(x), (2)

where dQ
dP is the Radon–Nikodym derivative. When Q is not absolutely continuous with

respect to P, we set Dϕ(Q, P) = +∞. This definition extends the one given in [22] for
divergences between p.m.’s. A known class of divergences between p.m.’s is the class of
Cressie–Read divergences, introduced in [23] and defined by the functions

ϕγ : x ∈ R+ 7→ ϕγ(x) :=
xγ − γx + γ− 1

γ(γ− 1)
, (3)

for γ ∈ R \ {0, 1}, ϕ0(x) := − log x + x− 1 and ϕ1(x) := x log x− x + 1. For any γ ∈ R, if
ϕγ(0) is not defined, we set ϕγ(0) := limx→0+ ϕγ(x), which may be finite or infinite. The
Kullback–Leibler divergence (KL) is associated to ϕ1, the modified Kullback–Leibler (KLm)
to ϕ0, the χ2 divergence to ϕ2, the modified χ2 divergence (χ2

m) to ϕ−1 and the Hellinger
(H) distance to ϕ1/2. The ϕ-divergence between some set Ω of probability measures and a
probability measure P is defined by

Dϕ(Ω, P) := inf
Q∈Ω

Dϕ(Q, P). (4)

2.2. Definition of the Estimator

We consider a reference identifiable model {Pθ ; θ ∈ Θ} of probability measures such
that, for each θ ∈ Θ, Pθ ∈ Mθ , which means that

∫
Rm g(x, θ) dPθ(x) = 0, and assume that θ

is the unique solution of the equation. We assume that the p.m. P0 of the data corresponding
to the true unknown value θ0 of the parameter to be estimated belongs to this reference
model. The reference model will be associated with the truncated orthogonality function
that will be used to define the robust version of the EL estimator of the parameter θ0. We
will use the notation ‖ · ‖ for the Euclidean norm. Similarly as in [9], using the reference
model {Pθ ; θ ∈ Θ}, we define the function gc : Rm ×Θ→ R`,

gc(x, θ) := Hc(Aθ [g(x, θ)− τθ ]), (5)

where Hc : R` → R` is the Huber’s function

Hc(y) :=

{
y ·min

(
1, c
‖y‖

)
if y 6= 0,

0 if y = 0,
(6)

and Aθ , τθ are, respectively, `× `-matrix and `-vector, defined as the solutions of the system
of implicit equations { ∫

gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)> dP0(x) = I`,

(7)
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where I` is the `× ` identity matrix and c > 0 is a given positive constant. Therefore, we
have ‖gc(x, θ)‖ ≤ c, for all x and θ. We also use the function

hc(x, θ, A, τ) := Hc(A [g(x, θ)− τ]), (8)

when needed to work with the dependence on the matrix A and on the vector τ. Therefore,

gc(x, θ) = hc(x, θ, Aθ , τθ). (9)

For given Pθ from the reference model, the triplet (θ, Aθ , τθ) is the unique solution of
the system 

∫
g(x, θ) dPθ(x) = 0,∫
gc(x, θ) dPθ(x) = 0,∫
gc(x, θ) gc(x, θ)> dP0(x) = I`

(10)

see [9], p. 48.
Consider the estimating problem of the triplet (θ0, Aθ0 , τθ0) on the basis of a sample

X1, . . . , Xn ∼ P0, P0 ∈ Mθ0 . For each θ ∈ Θ, using the p.m. Pθ from the reference model,
we define Âθ and τ̂θ , solutions of the system{ ∫

hc(x, θ, Âθ , τ̂θ) dPθ(x) = 0,∫
hc(x, θ, Âθ , τ̂θ) hc(x, θ, Âθ , τ̂θ)

> dPn(x) = I`,
(11)

where Pn(·) is the empirical measure associated with the sample,

Pn(·) :=
1
n

n

∑
i=1

δXi (·),

with δx(·) being the Dirac measure at the point x, for any x. We denote

gc
n(x, θ) := hc(x, θ, Âθ , τ̂θ) = Hc

(
Âθ [g(x, θ)− τ̂θ ]

)
. (12)

Note that gc
n(x, θ) depends on both the data and the reference probability Pθ . We now

consider the moment condition model associated to the function gc
n(x, θ), namely,

Mc,n :=
⋃

θ∈Θ

Mc,n
θ , (13)

where

Mc,n
θ :=

{
Q ∈ M(1) s.t.

∫
gc

n(x, θ) dQ(x) = 0
}

, ∀θ ∈ Θ. (14)

The p.m. P0 belongs toMc,n
θ0

.
In what follows, we consider the modified Kullback–Leibler divergence, which corre-

sponds to the strictly convex function ϕ(x) := − log x+ x− 1, if x > 0, respectively ϕ(x) :=
+∞, if x ≤ 0. The convex conjugate, called also the Fenchel–Legendre transform, of any
function f : x ∈ R 7→ f (x) ∈ R, is the function defined by f ∗(u) := supx∈R{ux− f (x)},
for all u ∈ R. A straightforward calculus shows that the convex conjugate of the convex
function ϕ, denote it ψ, is given by ψ(u) = − log(1− u) if u < 1, respectively ψ(u) = +∞,
if u ≥ 1. For given θ ∈ Θ, we define the set

Λ
c,n
θ (P0) :=

{
t := (t0, t1, . . . , t`)> ∈ R1+` s.t.

∫
|ψ
(

t> gc
n(x, θ)

)
| dP0(x) < ∞

}
, (15)

where gc
n := (1Rm , gc

n
>)>. We denote Λ

c,n
θ := Λ

c,n
θ (P0) and Λ

c,n,n
θ := Λ

c,n
θ (Pn).
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Since gc
n(x, θ) is bounded (with respect to x), on the basis of Theorem 1.1 in [24] and

Proposition 4.2 in [12], the following dual representation of KLm-divergence holds

KLm(Mc,n
θ , P0) = sup

t∈Λ
c,n
θ

∫
mc

n(x, θ, t) dP0(x), (16)

where
mc

n(x, θ, t) := t0 − ψ(t>gc
n(x, θ)) = t0 + log(1− t>gc

n(x, θ)), (17)

and the supremum in (16) is reached, provided that KLm(Mc,n
θ , P0) is finite. Note that

mc
n(x, θ, t) depends on the reference p.m. Pθ , since gc

n(x, θ) depends on Pθ . W denote then
tc,n
θ = tc,n

θ (P0) any vector such that

tc,n
θ := arg sup

t∈Λ
c,n
θ

∫
mc

n(x, θ, t) dP0(x). (18)

Furthermore, according to Proposition 4.2 from [12], for each θ ∈ Θ, the condition

P0

(
{x ∈ Rm s.t. t> gc

n(x, θ) 6= 0}
)
> 0, for all t ∈ R1+`\{0}, (19)

ensures that tc,n
θ , defined as solution of optimization problem (18), is unique. Notice that

the linear independence of the functions 1Rm , gc
n,1(·, θ), . . . , gc

n,`(·, θ) implies condition (19)
whenever P0 is not degenerate.

Moreover, using again Proposition 4.2 and Remark 4.4 from [12], for each θ ∈ Θ, one
can show that the first component of the optimal solution tc,n

θ in (18) equals to zero. One
can then omit the first component of the vector t in displays ((15)–(18)). Therefore, they
will be replaced by

Λc,n
θ (P0) :=

{
t := (t1, . . . , t`)> ∈ R` s.t.

∫
|ψ
(

t> gc
n(x, θ)

)
| dP0(x) < ∞

}
, (20)

KLm(Mc,n
θ , P0) = sup

t∈Λc,n
θ

∫
mc

n(x, θ, t) dP0(x), (21)

where
mc

n(x, θ, t) := −ψ(t>gc
n(x, θ)) = log(1− t>gc

n(x, θ)) (22)

and
tc,n
θ := arg sup

t∈Λc,n
θ

∫
mc

n(x, θ, t) dP0(x). (23)

Denote

Λc,n,n
θ := Λc,n

θ (Pn) =

t := (t1, . . . , t`)
> ∈ R` s.t.

1
n

n

∑
i=1

∣∣∣∣∣∣log(1−
`

∑
j=1

tj gc
n,j(Xi, θ))

∣∣∣∣∣∣ < ∞

.

In view of relation (23), a natural estimator of tc,n
θ , is defined by

t̂c
θ := arg sup

t∈Λc,n,n
θ

∫
mc

n(x, θ, t) dPn(x). (24)
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Then, a “dual” plug-in estimator of the modified Kullback–Leibler divergence, be-
tweenMc,n

θ and P0, can be defined by

K̂Lm(Mc,n
θ , P0) := sup

t∈Λc,n,n
θ

∫
mc

n(x, θ, t) dPn(x) (25)

= sup
(t1,...,t`)∈Λc,n,n

θ

{∫
log

(
1−

`

∑
j=1

tj gc
n,j(x, θ)

)
dPn(x)

}

= sup
(t1,...,t`)∈R`

{
1
n

n

∑
i=1

log

(
1−

`

∑
j=1

tj gc
n,j(Xi, θ)

)}
,

where log(·) is the extended logarithm function, i.e., the function defined by log(u) =
log(u) if u > 0, and log(u) = −∞ if u ≤ 0, for any u ∈ R. Finally, we define the following
estimator of θ0

θ̂c := arg inf
θ∈Θ

sup
t∈Λc,n,n

θ

∫
mc

n(x, θ, t) dPn(x) (26)

= arg inf
θ∈Θ

sup
(t1,...,t`)∈R`

{
1
n

n

∑
i=1

log

(
1−

`

∑
j=1

tj gc
n,j(Xi, θ)

)}
,

which can be seen as a “robust” version of the well-known EL estimator.
Recall that the EL estimator can be written as (see, e.g., [5])

θ̂ = arg inf
θ∈Θ

sup
(t1,...,t`)∈R`

{
1
n

n

∑
i=1

log

(
1−

`

∑
j=1

tj gj(Xi, θ)

)}
. (27)

For establishing asymptotic properties of the proposed estimators, we need the fol-
lowing additional notations. Consider the moment condition model associated with the
truncated function

gc(x, θ) = Hc(Aθ [g(x, θ)− τθ ]),

where Aθ and τθ are the solution to the system (7). Note that gc(x, θ) depends only on the
reference model Pθ and not on the data. This model is defined by

Mc :=
⋃

θ∈Θ

Mc
θ , (28)

where

Mc
θ :=

{
Q ∈ M(1) s.t.

∫
gc(x, θ) dQ(x) = 0

}
, ∀θ ∈ Θ. (29)

Let

Λc
θ(P0) :=

{
t := (t1, . . . , t`)> ∈ R` s.t.

∫
|ψ
(

t> gc(x, θ)
)
| dP0(x) < ∞

}
. (30)

Therefore, as above, we have the following dual representation for KLm(Mc
θ , P0)

KLm(Mc
θ , P0) = sup

t∈Λc
θ

∫
mc(x, θ, t) dP0(x), (31)

where
mc(x, θ, t) := −ψ(t>gc(x, θ)) = log(1− t>gc(x, θ)), (32)
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and the supremum in (31) is reached, provided that KLm(Mc
θ , P0) is finite. Moreover, the

supremum in (31) is unique under the following assumption

P0

(
{x ∈ Rm s.t. t> gc(x, θ) 6= 0}

)
> 0, for all t ∈ R1+`\{0}, (33)

which is satisfied if the functions 1Rm , gc
1(·, θ), . . . , gc

`(·, θ) are linearly independent and P0
is not degenerate. We denote then

tc
θ := arg sup

t∈Λc
θ

∫
mc(x, θ, t) dP0(x). (34)

Finally, we have

θ0 = arg inf
θ∈Θ

KLm(Mc
θ , P0)

= arg inf
θ∈Θ

sup
t∈Λc

θ

∫
mc(x, θ, t) dP0(x) = arg inf

θ∈Θ

∫
mc(x, θ, tc

θ) dP0(x). (35)

We also use the function

nc(x, θ, t, A, τ) := log(1− t>hc(x, θ, A, τ)), (36)

when needed to work with the dependence on matrix A and on vector τ. We have, then,
with the above notation, mc(x, θ, t) = nc(x, θ, t, Aθ , τθ), where Aθ and τθ are the solution of
the system of Equation (7).

2.3. Robustness Property

In order to prove the robustness of the estimator θ̂c, we use the following well-known
tools from the theory of robust statistics; see, e.g., [21]. A functional T, defined on a
set of probability measures and parameter space valued, is called a statistical functional
associated with an estimator θ̂ of the parameter θ from the model Pθ , if θ̂ = T(Pn). The
influence function of T at Pθ is defined by

IF(x; T, Pθ) :=
∂T(P̃εx)

∂ε

∣∣∣∣∣
ε=0

,

where P̃εx := (1− ε) Pθ + ε δx. A natural robustness requirement on the statistical functional
corresponding to the estimator is the boundedness of its influence function.

The statistical functional corresponding to the estimator θ̂c given by (26), is defined by

Tc(P) := arg inf
θ∈Θ

sup
t∈Λc

θ(P)

∫
mc(y, θ, t, P) dP(y), (37)

where

Λc
θ(P) :=

{
t ∈ R` s.t.

∫
|ψ
(

t> gc(x, θ, P)
)
| dP(x) < ∞

}
, (38)

gc(x, θ, P) := hc(x, θ, Aθ(P), τθ(P)), with Aθ(P) and τθ(P) solutions of the system{ ∫
hc(x, θ, Aθ(P), τθ(P)) dPθ(x) = 0∫
hc(x, θ, Aθ(P), τθ(P)) hc(x, θ, Aθ(P), τθ(P))> dP(x) = I`

(39)

and
mc(x, θ, t, P) := −ψ

(
t> gc(x, θ, P)

)
= log

(
1− t> gc(x, θ, P)

)
. (40)
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Note that, for a given θ, the function gc(x, θ, P), as well as mc(x, θ, t, P), both depend
on the p.m. Pθ . In addition, note that gc(x, θ, Pθ) coincides with gc(x, θ) defined in the
preceding section. We denote

tc
θ(P) := arg sup

t∈Λc
θ(P)

∫
mc(y, θ, t, P) dP(y). (41)

Then
Tc(P) = arg inf

θ∈Θ

∫
mc(y, θ, tc

θ(P), P) dP(y). (42)

Proposition 1. The influence function of the estimator θ̂c is given by

IF(x; Tc, P0) =

{[∫
∂

∂θ
gc(y, θ0) dP0(y)

]> ∫ ∂

∂θ
gc(y, θ0) dP0(y)

}−1

·

·
[∫

∂

∂θ
gc(y, θ0) dP0(y)

]>
gc(x, θ0). (43)

Proof. Using the definitions of Tc(P) and tc
θ(P), we have∫

∂

∂t
mc(y, θ, tc

θ(P), P) dP(y) = 0 (44)∫
∂

∂t
mc(y, Tc(P), tc

Tc(P)(P), P) dP(y) = 0 (45)∫
∂

∂θ
[mc(y, θ, tc

θ(P), P)]θ=Tc(P) dP(y) = 0. (46)

Using (46), since

mc(y, θ, tc
θ(P), P) = log

(
1− tc

θ(P)> hc(y, θ, Aθ(P), τθ(P))
)

, (47)

Tc(P) is solution of the equation

[
∂

∂θ
tc
θ(P)]>

∫
∂

∂t
mc(y, θ, tc

θ(P), P)dP(y)−
∫ [ ∂

∂θ hc(y, θ, Aθ(P), τθ(P))]>tc
θ(P)

1− tc
θ(P)>hc(y, θ, Aθ(P), τθ(P))

dP(y) = 0. (48)

Since the first integral in the above display is 0, according to (44), the above equation
simplifies to ∫ [ ∂

∂θ hc(y, θ, Aθ(P), τθ(P))]>tc
θ(P)

1− tc
θ(P)>hc(y, θ, Aθ(P), τθ(P))

dP(y) = 0. (49)

By replacing P with the contaminated model P̃εx := (1− ε)P0 + εδx in Equation (49)
and then derivating with respect to ε, the resulting equation, we obtain

∫ [
∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0))

]>
dP0(y) ·

∂

∂ε

[
tc
Tc(P̃εx)

(P̃εx)
]

ε=0
= 0. (50)

On the other hand,

∂

∂ε

[
tc
Tc(P̃εx)

(P̃εx)
]

ε=0
=

∂

∂θ
tc
θ0
(P0) · IF(x; Tc, P0) + IF(x; tc

θ0
, P0). (51)

Combining (50) and (51), we get

∫ [
∂

∂θ
hc(y, θ0, Aθ0 (P0), τθ0 (P0))

]>
dP0(y) ·

{
∂

∂θ
tc
θ0
(P0) · IF(x; Tc, P0) + IF(x; tc

θ0
, P0)

}
= 0. (52)
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Differentiating with respect to θ of (44) leads to

∂

∂θ
tc
θ0
(P0) = −

[∫
∂2

∂2t
mc(y, θ0, tc

θ0
(P0), P0) dP0(y)

]−1 ∫
∂

∂θ∂t
mc(y, θ0, tc

θ0
(P0), P0) dP0(y). (53)

Some simple calculations yield

∂

∂t
mc(y, θ, t, P) = − hc(y, θ, Aθ(P), τθ(P))

1− t>hc(y, θ, Aθ(P), τθ(P))
(54)

∂2

∂2t
mc(y, θ, t, P) = −hc(y, θ, Aθ(P), τθ(P)) hc(y, θ, Aθ(P), τθ(P))>

(1− t>hc(y, θ, Aθ(P), τθ(P)))2

and

∂

∂θ∂t
mc(y, θ, t, P) =

− ∂
∂θ hc(y, θ, Aθ(P), τθ(P))(1− t> hc(y, θ, Aθ(P), τθ(P)))

(1− t> hc(y, θ, Aθ(P), τθ(P)))2

+
hc(y, θ, Aθ(P), τθ(P))(1− t> ∂

∂θ hc(y, θ, Aθ(P), τθ(P))
(1− t> hc(y, θ, Aθ(P), τθ(P)))2 .

Then, we obtain ∫
∂2

∂2t
mc(y, θ0, tc

θ0
(P0), P0) dP0(y) = −I` (55)

and ∫
∂

∂θ∂t
mc(y, θ0, tc

θ0
(P0), P0) dP0(y) = −

∫
∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0)) dP0(y). (56)

By replacing in (53), we obtain

∂

∂θ
tc
θ0
(P0) = −

∫
∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0)) dP0(y). (57)

Using (52) and (57), we obtain

−
∫ [

∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0))

]>
dP0(y)

·
∫

∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0)) dP0(y) · IF(x; Tc, P0)

+
∫

∂

∂θ
hc(y, θ0, Aθ0(P0), τθ0(P0))

> dP0(y) · IF(x; tc
θ0

, P0) = 0. (58)

In order to calculate IF(x; tc
θ , P0), we first write Equation (44) for P = P̃εx and also

use (54). Thus, we obtain

(1− ε)
∫ hc(y, θ, Aθ(P̃εx), τθ(P̃εx))

1− tc
θ(P̃εx)> hc(y, θ, Aθ(P̃εx), τθ(P̃εx))

dP0(y)

+ ε
hc(x, θ, Aθ(P̃εx), τθ(P̃εx))

1− tc
θ(P̃εx)> hc(x, θ, Aθ(P̃εx), τθ(P̃εx))

= 0. (59)
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By differentiation with respect to ε, and taking θ = θ0, we get

∫
∂

∂ε
[hc(y, θ0, Aθ0(P̃εx), τθ0(P̃εx))]ε=0 dP0(y)

−
∫

hc(y, θ0, Aθ0(P0), τθ0(P0))hc(y, θ0, Aθ0(P0), τθ0(P0))
> dP0(y) IF(x; tc

θ0
, P0)

+ hc(x, θ0, Aθ0(P0), τθ0(P0)) = 0.

Consequently,

IF(x; tc
θ0

, P0) =

{∫
hc(y, θ0, Aθ0 (P0), τθ0 (P0))hc(y, θ0, Aθ0 (P0), τθ0 (P0))

> dP0(y)
}−1

· hc(x, θ0, Aθ0 (P0), τθ0 (P0)) = hc(x, θ0, Aθ0 (P0), τθ0 (P0)). (60)

By combining (58) with (60), we obtain (43).

Remark 1. The classical empirical likelihood estimator of the parameter θ0 of the moment condition
model can be obtained as a particular case of the class of minimum empirical divergence estimators
introduced by Broniatowski and Keziou [12]. Toma [18] proved that, in the case when P0 belongs
to the modelM(1), the influence functions for the estimators from this class, so particularly the
influence function of the EL estimator, are all of the form

IF(x; T, P0) = −
{[∫

∂

∂θ
g(y, θ0) dP0(y)

]>[∫
g(y, θ0)g(y, θ0)

> dP0(y)
]−1

·
[∫

∂

∂θ
g(y, θ0) dP0(y)

]}−1
·
[∫

∂

∂θ
g(y, θ0) dP0(y)

]>
·
[∫

g(y, θ0)g(y, θ0)
> dP0(y)

]−1
g(x, θ0), (61)

irrespective of the used divergence. This influence function also coincides with the influence function
of the GMM estimator obtained by Ronchetti and Trojani [9] and is linearly related to the function
g(x, θ) of the model. When the orthogonality function g(x, θ) is not bounded in x, the minimum
empirical divergence estimators, and particularly the EL estimator of θ0, are not robust. For many
moment condition models, the orthogonality functions are linear and hence unbounded; therefore,
these estimation methods are generally not robust. This is also the case of other known estimators,
such as the least squares estimators, the GMM estimators, and the exponential tilting estimator for
moment condition models. Instead, for the new estimator defined in the present paper, the influence
function is linearly related to the function gc(x, θ), which is bounded; therefore, this estimator can
be seen as a robust version of the classical EL estimator.

An important feature of the robust version of the EL estimator is that its robustness
can be controlled by a positive constant c. This constant appears in the Huber function
used. In addition, an advantage of this approach based on using the Huber function is that
we can require the bound of influence function of the estimator to be satisfied in a norm
that is self-standardized with respect to the covariance matrix of the estimator; this norm
measures the influence of the estimator relative to its variability expressed by its covariance
matrix. Such an approach is also suitable to induce stable testing procedures (see [9]),
which could be useful in future studies regarding robust testing. The robust estimator
proposed in the present paper has the self-standardized influence function bounded by the
constant c appearing in the Huber function. In a similar manner as in [9], the constant c
controls the degree of robustness of the estimator, and in practice, we could take a value
close to the lower bound

√
` in order to enforce a maximum amount of robustness. On the

other hand, the density power divergences [25] combined with the minimum divergence
approach have proved useful for construction of robust estimators in different contexts,
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in particular for parameter density estimation. Other approaches for robust estimation
in regression models is proposed by [26]. Such approaches could be considered in future
research studies in order to be adapted to the context of the moment condition models.

2.4. Consistency of the Estimators

In this subsection, we establish consistency of the estimator t̂c
θ of tc

θ , for any fixed
θ ∈ Θ, and the consistency of the estimator θ̂c of θ0. First, for any fixed θ ∈ Θ, we state the
consistency of the estimators Âθ and τ̂θ defined by the system (11).

2.4.1. Consistency of the Estimators Âθ and τ̂θ , for Fixed θ ∈ Θ

The estimators Âθ and τ̂θ , of Aθ and τθ defined by the theoretical system of Equation (7),
are Z-estimators. We consider the following notations

Ψ1(θ, A, τ) :=
∫

hc(y, θ, A, τ) dPθ(y) (62)

Ψ2(x, θ, A, τ) := hc(x, θ, A, τ) hc(x, θ, A, τ)> − I` (63)

and Ψ(x, θ, A, τ) := (Ψ1(θ, A, τ)>, vec(Ψ2(x, θ, A, τ))>)>, where “vec(·)” is the operator
that transforms the matrix into vector, by putting all the columns of the matrix one under
the other. Notice that, Ψ1(θ, A, τ) is a constant function with respect to x. With these
notations, for a given θ ∈ Θ, the Z-estimators Âθ and τ̂θ are solutions of the system
(see (11)), ∫

Ψ(x, θ, Âθ , τ̂θ) dPn(x) = 0, (64)

and their theoretical counterparts are Aθ and τθ solution of the system (see (7)),∫
Ψ(x, θ, Aθ , τθ) dP0(x) = 0. (65)

In the rest of the paper, we consider matrix A in its “vec” form, as defined above. This
is necessary in order to apply some classical results, for example the uniform weak law of
large numbers (UWLLN) or results regarding Z-estimators. Therefore, the argument A of
the functions hc, nc and Ψ will be in fact vecA. For simplicity, we write A instead of vecA.
The same is valid for Âθ and Aθ .

Assumption 1. (a) There exists compact neighborhood Nθ of (Aθ , τθ) such that∫
sup

(A,τ)∈Nθ

‖Ψ(x, θ, A, τ)‖ dP0(x) < ∞; (66)

(b) for any positive ε, the following condition holds

inf
(A,τ)∈Mθ

∥∥∥∥∫ Ψ(x, θ, A, τ) dP0(x)
∥∥∥∥ > 0 =

∥∥∥∥∫ Ψ(x, θ, Aθ , τθ) dP0(x)
∥∥∥∥,

where Mθ := {(A, τ) s.t. ‖(A, τ)− (Aθ , τθ)‖ > ε}.

Proposition 2. For each θ ∈ Θ, under Assumption 1, (Âθ , τ̂θ) converges in probability to
(Aθ , τθ).

Proof. Since (A, τ) 7→ Ψ(x, θ, A, τ) is continuous, by the UWLLN, Assumption 1(a) implies

sup
(A,τ)∈Nθ

‖
∫

Ψ(x, θ, A, τ) dPn(x)−
∫

Ψ(x, θ, A, τ) dP0(x)‖ → 0, (67)
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in probability. This result, together with Assumption 1(b) ensure the convergence in
probability of the estimators Âθ and τ̂θ toward Aθ and τθ , respectively. The arguments are
the same as those from [27], Theorem 5.9, p. 46.

2.4.2. Consistency of the Estimator t̂c
θ of tc

θ , for Fixed θ ∈ Θ

We state the consistency of the estimators t̂c
θ under the following assumptions.

Assumption 2. (a) tc
θ := arg sup

t∈Λc
θ(P0)

∫
mc(y, θ, t) dP0(y) exists, unique and interior point of

Λc
θ(P0);

(b) there exists a compact neighborhood Ntc
θ
⊂ Λc

θ(P0) of tc
θ such that tc

θ ∈ int(Ntc
θ
), and there

exists compact neighborhood Nθ of (Aθ , τθ) such that∫
sup

t∈Ntc
θ

, (A,τ)∈Nθ

|nc(x, θ, t, A, τ)| dP0(x) < ∞;

(c) there exists compact neighborhood Ntc
θ

of tc
θ , and there exists a sequence Bn = OP(1), such that,

for all t, t′ ∈ Ntc
θ
, it holds∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−

∫
nc(x, θ, t′, Âθ , τ̂θ) dP0(x)

∣∣∣∣ ≤ Bn ‖t− t′‖. (68)

Proposition 3. Under Assumptions 1 and 2, we have
(1) t̂c

θ converges in probability to tc
θ ;

(2) K̂Lm(Mc,n
θ , P0) converges in probability to KLm(Mc

θ , P0).

Proof. (1) Using Assumption 2(b) and the continuity of the function nc(x, θ, t, A, τ) with
respect to t, A, and τ, by the uniform weak law of large numbers (UWLLN), we get

sup
t∈Ntc

θ
,(A,τ)∈Nθ

∣∣∣∣∫ nc(x, θ, t, A, τ) dPn(x)−
∫

nc(x, θ, t, A, τ) dP0(x)
∣∣∣∣→ 0, (69)

in probability. The following inequality holds

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣ ≤

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Âθ , τ̂θ) dP0(x)
∣∣∣∣+

+ sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣. (70)

The first term in the right hand side of the Inequality (70), tends to 0 in probability,
on the basis of the result (69). The second term in the right hand side of (70) also tends
to 0 in probability. Indeed, using the convergence in probability (Âθ , τ̂θ) → (Aθ , τθ),
by Assumption 2(b), we get the pointwise convergence for each t. Then, according to
Corollary 2.1 from [28], using the point-wise convergence together with Assumption 2(c),
we obtain the uniform convergence

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣ = oP(1). (71)
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Consequently

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣→ 0, (72)

in probability. Using (72) and the fact that tc
θ is unique and belongs to int(Ntc

θ
) and the

strict concavity of the function t 7→
∫

nc(y, θ, t, Aθ , τθ) dP0(y), on the basis of Theorem 5.7
in [27], we conclude that any value

t := arg sup
t∈Ntc

θ

∫
nc(x, θ, t, Âθ , τ̂θ) dPn(x) (73)

converges in probability to tc
θ . We show that t̂c

θ belongs to int(Ntc
θ
) with probability one as

n→ ∞, and consequently it converges to tc
θ . Since for n sufficiently large any t ∈ int(Ntc

θ
),

the concavity of the criterion function t 7→
∫

nc(x, θ, t, Âθ , τ̂θ) dPn(x) ensures that no other
point t in the complement of int(Ntc

θ
) can maximize

∫
nc(x, θ, t, Âθ , τ̂θ) dPn(x) over t ∈ R`;

hence t̂c
θ belongs to int(Ntc

θ
).

(2) We have

K̂Lm(Mc,n
θ , P0)− KLm(Mc

θ , P0) =
∫

nc(x, θ, t̂c
θ , Âθ , τ̂θ) dPn(x)−∫

nc(x, θ, tc
θ , Aθ , τθ) dP0(x).

Note that∫
nc(x, θ, tc

θ , Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, tc
θ , Aθ , τθ) dP0(x) ≤

K̂Lm(Mc,n
θ , P0)− KLm(Mc,n

θ , P0) ≤∫
nc(x, θ, t̂c

θ , Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t̂c
θ , Aθ , τθ) dP0(x).

Both the right hand side and the left hand side in the above display tend to 0 in proba-
bility using (72). Hence, K̂Lm(Mc,n

θ , P0) converges to KLm(Mc
θ , P0), in probability.

2.4.3. Consistency of the Estimator θ̂c

Assumption 3. (a) the function (θ, t, A, τ)) 7→ hc(X, θ, t, A, τ) is continuous, with
probability 1;
(b) for each θ ∈ Θ, there exist compact neighborhood Ntc

θ
of tc

θ and compact neighborhood Nθ of
(Aθ , τθ) such that ∫

sup
θ∈Θ

sup
t∈Ntc

θ
, (A,τ)∈Nθ

|nc(x, θ, t, A, τ)| dP0(x) < ∞; (74)

(c) Let t∗n(θ) := arg sup
t∈Ntc

θ

∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣. There exists

a sequence Bn = OP(1) such that, for all θ, θ′ ∈ Θ, it holds∣∣∣∣∫ nc(x, θ, t∗n(θ), Âθ , τ̂θ) dP0(x)−

−
∫

nc(x, θ′, t∗n(θ
′), Âθ′ , τ̂θ′) dP0(x)

∣∣∣∣ ≤ Bn ‖θ − θ′‖; (75)
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(d) the function θ 7→
∫

nc(x, θ, tc
θ , Aθ , τθ) dP0(x) is continuous on Θ;

(e) θ0 := arg inf
θ∈Θ

∫
nc(x, θ, tc

θ , Aθ , τθ) dP0(x) exists, unique and interior point of Θ.

Proposition 4. Under Assumptions 1–3, we have
(1) ‖t̂c

θ − tc
θ‖ → 0 in probability, uniformly with respect to θ ∈ Θ;

(2) ‖θ̂c − θ0‖ → 0 in probability.

Proof. (1) By Assumption 3(a), nc(x, θ, t, A, τ) is continuous in θ, t, A, τ. Using also
Assumption 3(b), by applying UWLLN, we obtain the uniform convergence in proba-
bility

sup
(θ,t,A,τ)∈C

∣∣∣∣∫ nc(x, θ, t, A, τ) dPn(x)−
∫

nc(x, θ, t, A, τ) dP0(x)
∣∣∣∣→ 0 (76)

over the compact set C :=
{
(θ, t, A, τ) s.t. θ ∈ Θ, t ∈ Ntc

θ
, (A, τ) ∈ Nθ

}
. We will prove the

uniform convergence in probability

sup
θ∈Θ
‖t̂c

θ − tc
θ‖ → 0. (77)

Let η > 0. We show that P0(supθ∈Θ ‖t̃c
θ − tc

θ‖ ≥ η)→ 0 for any

t̃c
θ := arg sup

t∈Ntc
θ

∫
nc(x, θ, t, Âθ , τ̂θ) dPn(x). (78)

We show that t̂c
θ belongs to int(Ntc

θ
) with probability one, as n→ ∞.

Let η > 0 be such that supθ∈Θ ‖t̃c
θ − tc

θ‖ ≥ η. Since Θ is compact, by continuity, there
exists θ ∈ Θ, such that supθ∈Θ ‖t̃c

θ − tc
θ‖ = ‖t̃c

θ
− tc

θ
‖ ≥ η. Hence, there exists ε > 0 such

that ∫
nc(x, θ, tc

θ
, Aθ , τθ) dP0(x)−

∫
nc(x, θ, t̃c

θ
, Aθ , τθ) dP0(x) > ε.

Therefore,

P0

(
sup
θ∈Θ
‖t̃c

θ − tc
θ‖ ≥ η

)
≤ P0

(∫
nc(x, θ, tc

θ
, Aθ , τθ) dP0(x)−

∫
nc(x, θ, t̃c

θ
, Aθ , τθ) dP0(x) > ε

)
. (79)

On the other hand, using (71) and (72), we can write

∫
nc(x, θ, tc

θ
, Aθ , τθ) dP0(x)−

∫
nc(x, θ, t̃c

θ
, Aθ , τθ) dP0(x) =∫

nc(x, θ, tc
θ
, Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, t̃c

θ
, Aθ , τθ) dP0(x) + oP(1) ≤

≤
∫

nc(x, θ, t̃c
θ
, Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, t̃c

θ
, Âθ , τ̂θ) dP0(x) + oP(1) ≤

≤ sup
C

∣∣∣∣∫ nc(x, θ, t, A, τ) dPn(x)−
∫

nc(x, θ, t, A, τ) dP0(x)
∣∣∣∣+ oP(1). (80)

Using (76), (79), and (80), we deduce that supθ∈Θ ‖t̃c
θ − tc

θ‖ → 0 in probability. In
particular, for large n, t̃c

θ ∈ int(Ntc
θ
) uniformly in θ. Since t 7→

∫
nc(x, θ, t, Âθ , τ̂θ) dPn(x) is
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concave, the maximizer t̂c
θ belongs to int(Ntc

θ
) for sufficiently large n. Then, supθ∈Θ ‖t̂c

θ −
tc
θ‖ → 0 in probability. (2) For large n, we can write

sup
θ∈Θ

∣∣∣∣∫ nc(x, θ, t̂c
θ , Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, tc

θ , Aθ , τθ) dP0(x)
∣∣∣∣

= sup
θ∈Θ

∣∣∣∣∫ nc(x, θ, t̃c
θ , Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, tc

θ , Aθ , τθ) dP0(x)
∣∣∣∣ =: sup

θ∈Θ
|B|. (81)

Note that∫
nc(x, θ, tc

θ , Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, tc
θ , Aθ , τθ) dP0(x) ≤

≤ B ≤
∫

nc(x, θ, t̃c
θ , Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, t̃c

θ , Aθ , τθ) dP0(x). (82)

In order to prove that supθ∈Θ |B| → 0 in probability, we first prove that

sup
θ∈Θ

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣→ 0, (83)

in probability. Notice that

sup
θ∈Θ

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣ ≤

sup
θ∈Θ

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dPn(x)−
∫

nc(x, θ, t, Âθ , τ̂θ) dP0(x)
∣∣∣∣+

sup
θ∈Θ

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣.

The first term in the right-hand side of the above inequality tends to 0 in probability,
using (76). Regarding the second term, we have the convergence (71), and combining this
with Assumption 3(c), we obtain

sup
θ∈Θ

sup
t∈Ntc

θ

∣∣∣∣∫ nc(x, θ, t, Âθ , τ̂θ) dP0(x)−
∫

nc(x, θ, t, Aθ , τθ) dP0(x)
∣∣∣∣→ 0, (84)

in probability. Consequently, (83) holds. Then, (81) and (82) lead to

sup
θ∈Θ

∣∣∣∣∫ nc(x, θ, t̂c
θ , Âθ , τ̂θ) dPn(x)−

∫
nc(x, θ, tc

θ , Aθ , τθ) dP0(x)
∣∣∣∣→ 0. (85)

Assumptions 3(d) and (e) ensure that θ0 is well-separated in the sense that, ∀ ε > 0,

inf
{θ; ‖θ−θ0‖≥ε}

∫
nc(x, θ, tc

θ , Aθ , τθ) dP0(x) > 0 =
∫

nc(x, θ0, tc
θ , Aθ0 , τθ0) dP0(x). (86)

Finally, (85) and (86) imply that θ̂c → θ0 in probability, on the basis of Theorem 5.7
p. 45 from [27].

3. Simulation Results

In order to compare the performance of the proposed robust EL estimate (26) with
that of the EL estimator (27) in the case of contaminated data, we consider the moment
condition model presented in Example 1 in Section 1.
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Let X be a random variable with probability distribution P0 = χ2
1, a chi-square distri-

bution with one degree of freedom. Then, it holds that the equation
∫
R g(x, θ) dP0(x) = 0,

with g(x, θ) = (x− θ, x2 − θ2 − 2θ)>, has a unique solution θ = θ0 = 1. This is a particular
case of the model from Example 1, namely when h(θ) = θ2 + θ. Observe that, for this
model, g(x, θ) is unbounded (in x).

We use i.i.d. data generated from a slight deviation of the model P0, namely from the
model

(1− ε) χ2
1 + ε χ2

10,

with ε = 0.05, respectively ε = 0.10. The considered sample sizes are n = 100 and n = 500.
All the simulations are repeated 1000 times. The obtained estimates are compared through
bias, variance, and mean square error, computed on the basis of the 1000 replications. We
give the corresponding box-plots in Figures 1–4, where the true value of the parameter
θ0 = 1 is presented with horizontal dashed line. For computing the proposed Robust EL
estimate (26), we use the truncated functions gc(x, θ) and gc

n(x, θ) with c = 2. The algorithm
for computing the estimate was obtained by adapting the one from [10] (Appendix A.1.,
p. 3196). Namely, for each iteration, the estimation of the parameter θ0, corresponding
to the new orthogonality function in step iii, is computed using Uzawa algorithm for
the saddle-point optimum in (26). The obtained results are presented in Tables 1–4 and
Figures 1–4. All these results illustrate the fact that, in the case of contaminated data, the
robust EL estimator outperforms the classical EL estimator.

Table 1. Robust Empirical Likelihood (EL) versus EL, for n = 100 and ε = 0.05.

Estimate Squared Bias Variance Mean Square Error

Robust EL 1.0477 0.0023 0.0034 0.0056

EL 1.0861 0.0074 0.0208 0.0282

Robust EL EL

0.8

1

1.2

1.4

1.6

1.8

Figure 1. Robust EL versus EL, for n = 100 and ε = 0.05.

Table 2. Robust EL versus EL, for n = 100 and ε = 0.10.

Estimate Squared Bias Variance Mean Square Error

Robust EL 1.1281 0.0164 0.0116 0.0281

EL 1.2052 0.0421 0.0342 0.0763
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Robust EL EL

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 2. Robust EL versus EL, for n = 100 and ε = 0.10.

Table 3. Robust EL versus EL, for n = 500 and ε = 0.05.

Estimate Squared Bias Variance Mean Square Error

Robust EL 1.0336 0.0011 0.0005 0.0016

EL 1.0750 0.0056 0.0039 0.0095

Robust EL EL

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 3. Robust EL versus EL, for n = 500 and ε = 0.05.

Table 4. Robust EL versus EL, for n = 500 and ε = 0.10.

Estimate Squared Bias Variance Mean Square Error

Robust EL 1.1033 0.0107 0.0019 0.0126

EL 1.1835 0.0337 0.0065 0.0402
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Robust EL EL

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Figure 4. Robust EL versus EL, for n = 500 and ε = 0.10.

4. Conclusions

We proposed a robust version of the EL estimator for moment condition models. This
estimator is defined through the minimization of an empirical version of the modified
Kullback–Leibler divergence in dual form, using truncated orthogonality functions based
on multivariate Huber function. We proved the robustness by means of the influence
function, as well the consistency of the new estimator. The results of the Monte Carlo
simulation study show that, in the case of contaminated data, the robust EL estimator
outperforms the classical EL estimator.
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