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Abstract: In colorings of some block designs, the vertices of blocks can be thought of as hyperedges
of a hypergraphH that can be placed on a circle and colored according to some rules that are related
to colorings of circular mixed hypergraphs. A mixed hypergraphH is called circular if there exists a
host cycle on the vertex set X such that every edge (C- or D-) induces a connected subgraph of this
cycle. We propose an algorithm to color the (r, r)-uniform, complete, circular, mixed hypergraphs
for all feasible values with no gaps. In doing so, we show χ(H) = 2 and χ̄(H) = n− s or n− s− 1
where s is the sieve number.
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1. Introduction

Initially, this paper was inspired by coloring star systems investigated in [1]. Darijani
and Pike colored e-stars systems of the complete graph. As with the colorings of our
family of graphs, each e-star could be considered a block and one would want to avoid a
monochromatic coloring of any block.

In this paper, we work on a coloring problem that avoids monochromatic and rainbow
colorings of the blocks with the additional structure that there must be a sequential ordering
of vertices and each block consists of sequential vertices. We also investigate how many
colors can be used. That is, we determine the range of color classes. It follows that these
colorings can be modeled by circular mixed hypergraphs. The concept of circular mixed
hypergraphs was introduced and studied in [2,3], and continued in [4].

In the traditional theory of coloring graphs and hypergraphs [5–7], we seek colorings
of the vertices so that each edge has at least two vertices of different colors. Usually, the
minimum number of colors required is sought. One can also seek the dual question to
color the vertices so that each edge requires at least two vertices of the same color and ask
for the maximum number of colors needed. In the case of mixed hypergraphs, we ask the
combination of the above two questions [7–9].

In the present paper we deal with such a combination of constraints on colorings
and use the terminology of Voloshin in [7]. We begin with the Preliminaries, including
definitions, background, and motivation. We then introduce a coloring algorithm that will
properly color the class of mixed hypergraphs. We then show that the algorithm properly
colors all values from the lower chromatic number to the upper chromatic number with no
gaps. In doing so, we provide the feasible set as Bujtás and Tuza did in [10] for interval
hypergraphs and hypertrees.

2. Preliminaries

A mixed hypergraph is a tripleH = (X, C,D), where X is the vertex set and each of
C and D is a family of subsets of X, the C-edges and D-edges, respectively. Each element
of C ∪ D is of a size of at least 2. In a mixed hypergraph, if a subset of vertices is a C-edge
and a D-edge at the same time, then it is a bi-edge. In the results where we strictly look
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at bi-edges, we will simply use the term edge. A mixed hypergraph H = (X, C,D) is a
bihypergraph if C = D. A proper k-coloring of a mixed hypergraph is a mapping from the
vertex set to a set of k colors so that each C-edge has two vertices with a Common color and
each D-edge has two vertices with Different colors. A mixed hypergraph is k-colorable
(uncolorable) if it has a proper coloring with at most k colors (admits no proper colorings).
A strict k-coloring is a proper coloring using all k colors. The minimum number of colors
in a proper coloring ofH is the lower chromatic number χ(H); the maximum number of
colors in a strict coloring is the upper chromatic number χ̄(H). We use c(x) for the color of
vertex x. The set of values k such thatH has a strict k-coloring is called the feasible set of
H, denoted by F(H). A mixed hypergraphH = (X, C,D) has a gap at k if F(H) contains
elements larger and smaller than k, but omits k. F(H) is called gap-free if it has no gaps. A
mixed hypergraphH is called circular if there exists a host cycle on the vertex set X such
that every C-edge and every D-edge induces a connected subgraph of the host cycle.

In other words, for a circular mixed hypergraph there exists a circular ordering of
the vertex set X, say, X = {x0, x1, . . . , xn−1, x0} such that every edge (C- or D-) induces
an interval in this ordering. In [2], the lower chromatic number was investigated for the
colorability and unique colorability of classical circular mixed hypergraphs, while the
upper chromatic number was investigated in [3]. The generalizations of circular mixed
hypergraphs have been investigated in [11]. In particular, it was shown that the feasible
set of any mixed strong hypercactus is gap-free, and there are infinitely many mixed weak
hypercacti such that the feasible set of any of them contains a gap. In this paper, we focus
on a particular family of hypergraphs, the (r, r)-uniform complete circular hypergraphs.

LetH = (X, C,D) be a circular mixed hypergraph. If every k consecutive vertices of
X form a C-edge, then we denote C = Ck. Similarly, if every l consecutive vertices of X
form a D-edge, then we denote D = Dl . The circular mixed hypergraph H = (X, Ck, Dl)
is called (k, l)-uniform and is denoted by KC(n; k, l), where n := |X|. A (3, 2)-uniform
circular mixed hypergraph H = (X, C3,D2) = KC(n; 3, 2) is a complete circular mixed
hypergraph where each consecutive triple must have two colors in common and every
consecutive pair must be colored differently.

In a mixed hypergraphH, the subfamily of C-edges Σ ⊆ C is a sieve [12], if for every
pair of vertices x, y ∈ X and every pair of different C−edges C, C′ ∈ Σ the following
implication holds:

{x, y} ∈ C ∩ C′ ⇒ {x, y} ∈ D.

The maximum cardinality of a sieve of a hypergraphH is the sieve-number s(H).
The authors proved forH = KC(n; 3, 3), χ(H) = 2, and χ̄(H) = n/2 when n is even

and χ̄(H) = n−1
2 when n is odd and produces colorings for all feasible values with no

gaps [4,10].
It should be noted that χ̄(H) = n− s or n− s− 1 satisfies the constraints of Theorem 1

below found in [3] since the sieve-number for s(KC(n; r, r)) is b n
r−1c.

Theorem 1. If H = (X, C,D) is a circular mixed hypergraph, then n− s(H)− 2 ≤ χ̄(H) ≤
n− s(H) + 2.

Moreover, the following [3] implies the graphs in question have χ̄(H) ≤ n− s− 1 or
χ̄(H) ≤ n− s.

Theorem 2. LetH = (X, C,D) be a reduced colorable circular mixed hypergraph with n vertices
and sieve number s. Then χ̄(H) ≤ n − s, if 0 ≤ n − s; χ̄(H) ≤ n − s + 1, if s = 3; and
χ̄(H) ≤ n− s + 2, if s ≥ 4. The upper bound is sharp for 0 ≤ s ≤ 3.

Corollary 1. LetH = (X, C,D) be a circular mixed hypergraph with n vertices and sieve number
s, s ≥ 3. Let Σ = {C1, C2, ..., Cs} be a sieve ofH. It follows: If Cs ∩ C1 = ∅ then χ̄(H) ≤ n− s,
and if Cs−1 ∩ C1 = ∅ then χ̄(H)) ≤ n− s + 1, otherwise χ̄(H)) ≤ n− s.
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Theorem 3. LetH = (X, C,D) be a reduced circular mixed hypergraph with n vertices, |C| ≥ 5
for all C ∈ C. Then χ̄(H) ≤ n− s + 1 if and only if C = Σ ∪ C ′ = ∅, where:

(i) Σ = C1, C2, . . . , Cs is a maximum sieve such that 1 ≤ |Ci ∩ Ci+1| ≤ 2 (and Ci ∩ Ci+2 = ∅)
for all 1 ≤ i ≤ s, s ≥ 3 (indices mod s), and

(ii) Each C-edge C ∈ C ′ has the property: There exist two C-edges Ci, Ci+1 ∈ Σ with two
common vertices, say u and u+, such that either u+ /∈ C and Ci \ u+ ⊂ C or u /∈ C and
Ci+1 \ u ⊂ C, and there is no other C-edge of C ′ containing precisely one of the vertices u
and u+.

For our hypergraphs (ii) fails with r ≥ 5.

3. Coloring Algorithm

The algorithm below will properly color the vertices of H = (X, Cr,Dr). Within the
algorithm, a sieve Σ is constructed of a circular mixed hypergraph. In our family of circular
mixed hypergraphs, the intersection of two different C-edges of a sieve can only be empty,
a common vertex, or two common vertices forming a D-edge. Hence, the intersection of
two arbitrary C-edges is called good if and only if this intersection is empty, or a single
vertex, or two vertices forming a D-edge. Otherwise, the intersection of two arbitrary
C-edges is called bad. Due to our particular family of graphs, we will always have a good
intersection with a single vertex.

Algorithm (Simplified and modified from Procedure M from [3])
INPUT:H = (X, Cr,Dr) = KC(n; r, r), n = |X|, n > r, X = {x0, x1, . . . , xn−1}
OUTPUT: A proper coloring c = (c(x0), c(x1), . . . , c(xn−1)) of KC(n; r, r)
LetH = (X, C,D) be a circular mixed hypergraph and C0 one of its C-edges.

1. Construction of a maximum sieve Σ through C0. Let Σ = {C0}where C0 = {x0, x1, . . . , xr−1}.
Choose the C-edge C1 nearest to C0, having a “good intersection.” So, C1 = {xr−1, . . . ,
x2r−2}. Let C2 have smallest distance from C1 (measured in the cyclic order of the host
cycle). Choose C3 nearest to C2, etc. Thus a maximum sieve Σ = {C0, C1, . . . , Cs−1} is
obtained so that no new Cs can be found.

2. Assigning colors to some vertices of Σ. The vertices of the C-edge Ci with r vertices are
denoted by xi

0, xi
1, . . . , xi

r−1 according to the cyclic order of the host cycle. Next we
assign colors to some vertices of the C-edges of Σ in the following way, where the
coloring is denoted by c. Assign color 1 to the last two vertices x0

r−1 and x0
r−2. We

then color some vertices of C1, . . . , Cs−1 in the following way: Color xi
r−2 and xi

r−1 a
new color c(xi−1

r−1) + 1.
3. Fixing the vertices to satisfy the C condition. In step 2, we start coloring with the

vertex x0
r−1 ∈ C0, proceed along the host cycle and end with coloring of the vertices

of Cs−1.

(a) If Σ = X and xs−1
r−1 = x0

0, all C-conditions are satisfied.
(b) If Σ = X and xs−1

r−1 6= x0
0, assign c(x0

0 = x0) = 1 and then all C-conditions
are satisfied.

(c) If Σ 6= X and s − 1 = 0, assign 1 to x0; otherwise, assign c(xs−1
r−1) + 1 to x0

and xn−1.

4. Assign pairwise different colors to the remaining vertices of X. The graph is now
colored with χ̄(H) = n− s or n− s− 1 as we will see in the following proofs.

5. Downshifting colors: For any number of colors 2 ≤ k < χ̄(H) do the following:

(a) If more than s + 1 colors are used, recolor all vertices with the largest color, a
color 1 less.

(b) Repeat the above until the desired number of colors is used until the number
of colors used is s + 1.
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(c) If fewer than s + 1 colors is desired, begin with C1 and color x1
r−1 and x1

r−2
both 1. Then for all vertices assigned s + 1, recolor these vertices 2. s colors are
now used.

(d) If fewer than s colors is desired, begin with C2 and color x2
r−1 and x2

r−2 both
1. Then for all vertices not assigned 1 or 2, recolor these vertices 1 less than
the color already assigned. Repeat this process with C3, C4, and so on until the
desired number of colors is met.

6. End.

Lemma 1. The coloring algorithm produces a proper coloring forH = (X, Cr,Dr)= KC(n; r, r),
n > r > 3.

Proof. For any edge containing vertices between x0
r−1 and xs−1

r−2 (step 2) it is easily seen
these edges are properly colored with a common color. Any sequential vertices colored
this way (e.g., xi

r−2 and xi
r−1) will properly color all edges extending a distance of r− 2 in

either direction with a common color. Steps 3b and 3c ensure any remaining edges satisfy
the C-condition since otherwise the sieve would not be maximum. As r ≥ 4, there is at least
one vertex between xi

r−1 and xi+1
r−2 colored a different color satisfying the D-condition.

Lemma 2. ForH=(X, Cr,Dr), r > 3, the sieve number s(H) = b n
r−1c.

Proof. As there are no D-edges of size 2, the intersection of consecutive C-edges can be
chosen to be 0 or 1 vertex. To maximize the number of edges in Σ we choose the intersection
with 1 vertex each time. Thus, there are r− 1 vertices in Ci−1 that are not in Ci. This creates
a partition of the vertices in Σ each of size r − 1. Any sieve that contains intermediate
C-edges with an empty intersection must contain the same or fewer C-edges. With this
construction, there must be fewer than r− 2 vertices not in Σ so s(H) = b n

r−1c.

Lemma 3. If H = (X, Cr,Dr) = KC(n; r, r), n > r > 3 then χ̄(H) = n − s if Σ = X and
Cs−1 ∩ C0 = {x0} and χ̄(H) = n− s− 1 if Cs−1 ∩ C0 = ∅.

Proof. LetH = (X, Cr,Dr) = KC(n; r, r) with vertices x0, x1, . . . , xn−1. Using the coloring
algorithm, if Cs−1 ∩ C0 = ∅ each element of the sieve has a pair of vertices that share a
color. Additionally, a color needs to be repeated to get the edges that are not properly
colored (in Step 3). Thus χ̄(H) = n− s− 1. If Cs ∩ C1 = {x0}, then each element of the
sieve has a pair of vertices that share a color.

Theorem 4. IfH = (X, Cr,Dr) = KC(n; r, r), n > r > 3, the feasible set is F(H) = {2, . . . , χ̄(H)}
where χ̄(H) = n− s or χ̄(H) = n− s− 1.

Proof. Together the lemmas and algorithm prove our theorem as we are able to color the
graph any amount of colors from 2 to χ̄(H).

Additionally, it should be noted that the algorithm has a linear runtime O(n) as the
worst-case scenario will have a run-time of kn where k is an integer dependent on the
number of colors required.

4. Conclusions

Originally, the problems in [4] and this paper were to be tools to work toward coloring
star systems. For the most part, Darijani and Pike [1] have answered this question. We now
hope these results can be used for further research. Of particular interest would be coloring
KC(n; r, 2), the class of complete, circular, mixed hypergraphs with C-edges of size r, and
D-edges of size 2. This class of graphs would disallow the sequential coloring that was so
beneficial in the coloring algorithm presented in this paper.
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