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Abstract: A method for studying the effect of impulse perturbation on the longitudinal oscillations
of a homogeneous constant cross-section of the body and the elastic properties of a material which
satisfies the essentially nonlinear law of elasticity has been developed. A mathematical model of the
process is presented, which is an equation of hyperbolic type with a small parameter at the discrete
right-hand side. The latter expresses the effect of impulse perturbation on the oscillatory process. As
for the boundary conditions considered in the work, they are classic of the first, second and third
genera. The methodology is based on: the principle of oscillation frequency in nonlinear systems
with many degrees of freedom and distributed parameters; basic provisions of asymptotic methods
of nonlinear mechanics; the idea of using special periodic Ateb-functions to construct solutions of
some classes of nonlinear differential equations; properties of completeness and orthonormality of
functions that describe the forms of oscillations of undisturbed motion. In general, the above allowed
to obtain relations that describe for the first approximation the defining parameters of the oscillations
of an elastic body. Their peculiarity is that even for undisturbed motion, the natural frequency of
oscillations depends on the amplitude, and therefore, under the action of a periodic (over time) pulse
force on the elastic body, both resonant and nonresonant processes are possible in the latter. It, in
contrast to an elastic body with linear or quasilinear elastic properties of the body is determined
not only by its basic physical and mechanical properties, but also by the amplitude of oscillations.
As a special case, the oscillations of the body under the action of a constant periodic momentum
perturbation are considered. It is shown that for the nonresonant case for the first approximation it
does not affect the laws of change of amplitude and frequency of the process. As for the resonant is
the amplitude of origin through the main resonance significantly depends not only on the speed but
also on the points of action of the pulsed perturbation. Moreover, the closer the point of application
of the pulsed force to the middle of the elastic body under boundary conditions of the first kind is
greater (for boundary conditions of the second kind closer to the end).

Keywords: nonlinear oscillations; pulse perturbation; single-frequency oscillatory process

1. Introduction

Oscillatory processes of one-dimensional models of elastic bodies (longitudinal, tor-
sional, bending) elastic properties of which are described by linear or close to them relations
were considered, as a rule, for the case of continuous action of external factors on them.
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The most important of them are cases of their periodic action. Periodic action (even at
a small value) under certain conditions can lead to so-called resonant phenomena in elastic
bodies. These phenomena are characterized by a significant increase in the amplitudes
of oscillations, and thus—an increase in dynamic loads, which leads to a decrease in the
service life of the elastic body and the node or mechanism of which they are part. Therefore,
to predict them and describe the features of the passage is an important issue. However,
linear or quasilinear relations do not always accurately describe the real process of their
deformations (especially for their significant quantities), in addition, there are a number of
body materials whose elastic properties are described by nonlinear relations [1]. They can
be described by a ratio with a sufficient degree of accuracy σ = Eεν+1 + µ f

(
ε,

.
ε
)
, where

respectively σ, E, ε stress, “modulus of elasticity”, the relative deformation of the material
of the protective element, µ f

(
ε,

.
ε
)

is analytical function that describes the small deviation
of the elastic properties of the material from the power law why indicates a small parameter
µ, ν + 1 = 2m+1

2n+1 , m, n = 0, 1, 2, . . ..
Dynamic processes in such elastic bodies [2–6] require the consideration of quali-

tatively new mathematical models [7,8], and, consequently, the development of new or
generalization of existing analytical methods for their research [9–12].

In part, they have been developed for one-dimensional models of elastic bodies or
media under continuous perturbation [13–15]. As for the study of processes in such bodies
for the case of instantaneous (pulse) or random force action, they have not found proper
development due to purely mathematical problems [16]. It is the development of methods
for studying the longitudinal oscillations of the body whose elastic properties are described
as close to the power law of elasticity under the action of impulse perturbation on it is the
subject of consideration.

The main aim of this investigation is to study the influence of impulse disturbances
on oscillations of nonlinearly elastic bodies.

A technique for studying the effect of impulse perturbation on the longitudinal oscil-
lations of substantially nonlinearly elastic bodies will be developed in this study.

Using this technique, we will analyze the relationship of the studied process in linear
(quasilinear) models of elastic bodies and essentially nonlinear models.

2. Mathematical Model of Longitudinal Oscillations of an Elastic Body under the
Impulse Action of External Perturbation

Mathematical model of longitudinal oscillations of a homogeneous body, the material
of which satisfies close to the power law of elasticity under the action on it at certain points
of small-magnitude impulse perturbation, serves at certain marginal differential equations.

utt − α2(ux)
νuxx =

µ

ρ

(
f (u, ut, ux, uxx) + ∑

s=1
gs(u, ut, ux, uxx)δ(t− ts)δ(x− xs)

)
, (1)

in which u(x, t) is the movement of the cross section of the body with the coordinate
x at any time t, f (u, ut, ux, uxx) is a function that describes the deviation of the elastic
characteristics of the body from the power law and the force of viscoelastic friction, the
maximum value of which is a small value compared to the maximum value of the elastic
force (internal) EA(ux)

νuxx(A is a cross-sectional area of the body, α2 = EA
m , m is a running

mass of elastic body material), µ is a small parameter, gs(u, ut, ux, uxx)δ(t− ts)δ(x− xs) is
a function that describes the magnitude of the momentum perturbation acting on an elastic
body at a point with a coordinate xs at time ts. Here and below, the parameter ν satisfies the
condition ν + 1 = 2m+1

2n+1 , m, n = 0, 1, 2, . . ., that ensures the existence of a periodic solution
in the undisturbed (µ = 0) equation which corresponds to Equation (1).

It should be noted that the question of the existence of a periodic solution in nonlinear
differential equations corresponding to the undisturbed Equation (1) was considered, for
example [17], where it is shown that its period on the time variable depends on the initial
conditions, and in [18] its asymptotic is constructed without taking into account the impulse
action, i.e., in the case gs(u, ut, ux, uxx) ≡ 0.
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The most interesting and at the same time the most important from the practical point
of view is the case when the time between the next two actions of impulse perturbation is
constant: ts+1 − ts = τ, that is, the impulse perturbation is periodic.

This is the case we will consider below. For this case, the effect of impulse perturbation
on the body is somewhat converted.

The transformation is based on the basic properties δ functions [19–21] and the fre-
quency of impulse perturbation:

(a) from τ the periodicity of the perturbation follows

∑
s=1

gs(u, ut, ux, uxx)δ(t− ts)δ(x− xs) = ∑
s=1

gs(u, ut, ux, uxx)δ(x− xs)δ(t− (s− 1)τ), (2)

(b) from the main properties of the δ function [22] it follows that with a sufficient degree
of accuracy the pulse component of the external perturbation can be represented as

∑s=1 gs(u, ut, ux, uxx)δ(x− xs)δ(t− 2(s− 1)τ) = ∑s=1 gs(u, ut, ux, uxx)δ(x− xs)

cos θδ
(

θ
Ω −

2(s−1)π
Ω

)
,

= ∑s=1 gs(u, ut, ux, uxx)δ(x− xs) cos θδ
(

θ
Ω −

2(s−1)π
Ω

)
,

(3)
where θ = Ωt, Ω = 2π

τ and the lower parameter θ will be called the phase of external
periodic perturbation.

As for the boundary conditions for Equation (1), they are classically homogeneous

u(x, t)|x=0 = 0,u(x, t)|x=l = 0, (4)

u(x, t)|x=0 = 0,u(x, t)|x=l = 0, (5)

u(x, t)|x=0 = 0,ux(x, t)|x=l = 0, (6)

and correspond to the fixed Equation (4), free Equation (5) and fixed left and free right end
Equation (6) of the elastic rectilinear body.

Thus, the problem of the influence of periodic impulse perturbation on a dynamic
process is reduced to the construction and study of the solution of a differential equation

utt − α2(ux)
νuxx =

= µ
ρ

(
f (u, ut, ux, uxx) + ∑s=1 gs(u, ut, ux, uxx)δ(x− xs) cos θδ

(
θ
Ω −

2(s−1)π
Ω

))
,

(7)

under boundary Conditions Equation (4), Equation (5) or Equation (6).

3. Method of Constructing an Asymptotic Approximation of the Solution of a
Mathematical Model of Nonlinear Oscillations of Elastic Body under Pulsed Action
of Forces

For him, the first approximation of the asymptotic solution in the form close to one of
the forms of dynamic equilibrium [14,23] is presented in the form

uk(x, t) = ak(t)Xk(x)ca(ν + 1, 1, ψk(t)) + εU1k(ak, x, ψk, θ)
ψk(t) = ωk(ak)t + ϑk,

(8)

where ak(t) and ψ(t)k are parameters that together with the function U1k(ak, x, ψk, θ) take
into account the influence of the right-hand side of Equation (7) on the oscillatory process

of an elastic body; ωk(ak) = α
(

λkΠx
l

)1+ ν
2 ak

ν
2 and Xk(x) is an accordingly, the frequency

of natural oscillations (therefore, the frequency of natural oscillations µ = 0) and own
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functions. The latter describe the forms of oscillations and are expressed for the considered
boundary conditions through periodic Ateb- functions [23–25] by dependences (Figure 1).

{Xk(x)} =


sa
(

1, 1
ν+1 , λk

l Πxx
)

,

ca
(

1, 1
ν+1

λk
l Πxx

)
,

sa
(

1, 1
ν+1 , λk

l Πxx
)
, (9)

in which λk for boundary conditions Equations (4) and (5) takes values k and λk =
2k+1

2 is a for boundary condition Equation (6); Πx is the half-life of the functions used,

Πx =
√

πΓ
(

ν+1
ν+2

)(
Γ
(

1
2 + ν+1

ν+2

))−1
).

Figure 1. Dependence of the frequency of natural oscillations of undisturbed motion on the amplitude
at different values (a) and (b) of the parameter ν = 2

9 redν = 4
9 blueν = 0orangeν = −2

9 green, a = 104.

Thus, the peculiarity of the dynamic process of undisturbed motion is its non-isochrony,
moreover, for the case ν > 0 a larger value of the amplitude of natural oscillations cor-
responds to a larger value of natural frequency; for the case −1 < ν < 0 there is an
inverse relationship.

Regarding the function U1k(ak, x, ψk, θ) in representation Equation (8), it must be 2Π
periodic by argument ψk and 2π is periodic by argument θ and does not contain the first
argument modes ψk(2Π = 2

√
πΓ
(

1
ν+2

)(
Γ
(

1
2 + 1

ν+2

))
). These conditions are equivalent

to the choice of the amplitude of the amplitude k is its mode. Thus, it is necessary to
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determine such relations that describe the laws of change of parameters ak(t) and ψk(t)
so that the asymptotic representation of Solution in the Equation (8) satisfies the original
Equation (1) or its analogue Equation (7) with the considered accuracy. It should be noted
that the system functions {Xk(x)}, which describes the forms of natural oscillations has
the property of completeness and normalization on the interval [0, l], that is:

l∫
0

Xp(x)Xq(x)dx =

{
0when p 6= q
Pwhenp = q

, (10)

And P = ν+2
3ν+4 l for boundary conditions in the Equations (4) and (5) and P = ν+2

3ν+4
l
2 is

for boundary condition in the Equation (6);
Without going into mathematical calculations, to obtain a connection between un-

known functions we obtain a differential equation:

∂2U
∂ψ2 ω2(a) + ∂2U

∂θ2 µ2 + 2 ∂2U
∂θ∂ψ µω(a)− α2(X′(x))ν ∂2U

∂x2 =

= 2
(ν+2)

[
da
dt

(
ω(a) + a dω

da

)
sa(1, ν + 1, ψ) + aω(a) dψ

dt caν+1(ν + 1, 1, ψ)
]

X(x)+

+ρ−1F(a, x, ψ) + (ρP)−1 ∑
s=1

Gs(a, x, ψ) cos θδ( θ
Ω −

2(s−1)π
Ω ) ∑

j=1
Xj(xi)Xj(x),

(11)

where F(a, x, ψ) and Gs(a, x, ψ) correspond to the values of the functions f (u, ut, ux, uxx)
and gs(u, ut, ux, uxx) provided they have u(x, t) and its derivatives are determined accord-
ing to the main value of the specified function, i.e., u(x, t) = aX(x)ca(ν + 1, 1, ψ).

Notes:

1. In the differential Equation (9) and below the indices k which indicates the form of
“dynamic equilibrium” of the elastic body for ease of recording omitted;

2. Quantity ω(a) + a dω
da according to the frequency of natural oscillations takes values

ν+2
2 ω(a);

3. Depending on the Equation (10) function δ(x− xs) based on the properties of the
system of functions that describe the forms of oscillations of undisturbed motion are
presented in the form δ(x− xs) = P−1 ∑

j=1
Xj(xs)Xj(x).

3.1. Amplitude-Frequency Characteristics of Non-Resonant Oscillations of an Elastic Body

The differential Equation (11) obtained above is the basis for the analytical finding of
the laws of change of the amplitude and frequency of oscillations of an elastic body.

If function U(a, x, ψ, θ) is 2Π periodic by argument ψ and does not contain in the
schedule of the first harmonic ψ, then its derivatives have the same property, and hence, as
follows from differential Equation (11), the coefficients for the first harmonics ψ its right
part must be equal to zero. This property allows you to find the relationship to determine
the laws of change in time of the rate of change of amplitude da

dt and phase change rate dψ
dt

dynamic process in the form:

da
dt = − µsa(1,ν+1,ψ)

2ω(a)ρP

l∫
0

{
F(a, x, ψ) + P−1 ∑

s=1
Gs(a, x, ψ) cos θδ( θ

µ −
2(s−1)π

µ ) ∑
j=1

Xj(xs)Xj(x)

}
X(x)dx

dψ
dt = ω(a)− µ(ν+2)caν+1(ν+1,1,ψ)

2aω(a)ρP

l∫
0

{
F(a, x, ψ) + P−1 ∑

s=1
Gs(a, x, ψ) cos θδ( θ

µ −
2(s−1)π

µ ) ∑
j=1

Xj(xs)Xj(x)

}
X(x)dx

(12)

From the physical content of the obtained relations and their periodicity according to
the arguments, it follows that in the initial system there are two possible cases: nonresonant
and resonant. First, consider a simpler nonresonant. It occurs when the period of natural
oscillations 2Π

ω(a) ) not related to the rational relationship with the period of impulse pertur-

bation τ, that is p 2Π
ω(a) 6= qτ, p, q are mutually prime numbers. For this case, the dynamic
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process is described by somewhat simpler relations, which are formed from Equation
(12) by averaging their right-hand parts by the phases of natural and forced oscillations.
The basis for performing this procedure is the proportionality of the rate of change of
the amplitude to a small parameter, and therefore during the period of oscillations the
amplitude changes by a value proportional to the small parameter µ. We get:

da
dt = µA1(a)− µ

4ω(a)ρP2Π

2Π∫
0

l∫
0

{
∑

s=1
cos(2(s− 1)π)Gs(a, x, ψ) ∑

j=1
Xj(xs)Xj(x)

}
X(x)sa(1, ν + 1, ψ)dxdψ,

dψ
dt = ω(a)− µB1(a)− µ(ν+2)

8πaω(a)P2Π

2Π∫
0

l∫
0

{
∑

s=1
cos(2(s− 1)π)Gs(a, x, ψ) ∑

j=1
Xj(xs)Xj(x)

}
X(x)ca(ν + 1, ψ)dxdψ

(13)

where

A1(a) = −1
4ω(a)ρPΠ

2Π∫
0

l∫
0
{F(a, x, ψ)}X(x)sa(1, ν + 1, ψ)dxdψ,

B1(a) = − (ν+2)
4aω(a)PΠ

2Π∫
0

l∫
0
{F(a, x, ψ)}X(x)ca(ν + 1, ψ)dxdψ.

3.2. Resonant Oscillations of a Substantially Nonlinear Elastic Body under the Action of Periodic
Impulse Forces

As for the resonant case, which from the theoretical and practical point of view is
much more important (Figure 2), for him:

• First, the defining parameters that describe the dynamics of the process significantly
depend on the “phase difference” γ = π

Π ψ− θ → ψ = Π
π (γ + θ) natural oscillations

and periodic perturbations;
• Secondly, it takes place under the condition that the amplitude of the process ap-

proaches the value a∗ =
(

2Π
ατ

) 2
ν
(

l
λΠx

)1+ 2
ν ;

• Third, if the initial amplitude is less than a∗, and function f (u, ut, ux, uxx) describes
only dissipative and nonlinearly elastic forces, then a small periodic momentum
perturbation can cause a resonant process in an elastic body cannot;

• Fourth, the main part of the speed of the “phase difference” dγ
dt for the case of transition

through resonance, as follows from the above, can be presented as π
Π ω(a)|a=a∗ − 2π

τ

or dω(a)
da |a=a∗(a− a∗).

Figure 2. Cont.
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Figure 2. Dependence of resonance amplitude a∗ from parameter ν and α: (a) l = 1, α = 104,
(b) l = 2, α = 5× 104, (c) l = 2, α = 2× 103, (d) l = 3, α = 2× 103.

Therefore, if at the initial or at some other point in time the amplitude of oscilla-
tions takes a value greater than a∗, and the elastic body is affected only by dissipative
forces and impulse periodic perturbation, the period of which satisfies the condition
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τ ≈ 2Π
α(a∗)

ν
2

(
l

Πx

)1+ ν
2 , then the elastic body will have resonant oscillations. They, as follows

from the above and differential Equation (12) are described by the dependence:

da
dt = µA1(a)− µ

4ω(a)ρP2π

2π∫
0

l∫
0

{
∑

s=1
cos θδ( θ

µ −
2(s−1)π

µ )Gs(a, x, γ + θ) ∑
j=1

Xj(xs)Xj(x)

}
X(x)sa(1, ν + 1, γ + θ)dxdθ

dγ
dt = dω(a)

da |a=a∗(a− a∗) + µB1(a)− µ(ν+2)
8aω(a)ρP2π

2π∫
0

l∫
0

{
∑

s=1
cos θδ( θ

µ −
2(s−1)π

µ )Gs(a, x, γ + θ) ∑
j=1

Xj(xs)Xj(x)

}
X(x)ca(ν + 1, 1, γ + θ)dxdθ.

(14)

The properties of the δ function allow relation in the Equation (14) to be somewhat
simplified and presented as

da
dt = µA1(a)− µ

4ω(a)ρP2π

l∫
0

{
∑

s=1
sa
(
1, ν + 1, Π

π (γ + 2(s− 1)π)
)
Gs
(
a, x, Π

π (γ + 2(s− 1)π)
)

∑
j=1

Xj(xs)Xj(x)

}
X(x)dx

dγ
dt = dω(a)

da |a=a∗(a− a∗) + µB1(a)− µ(ν+2)
8aω(a)ρP2π

l∫
0

{
∑

s=1
ca
(
1, ν + 1, Π

π (γ + 2(s− 1)π)
)
Gs
(
a, x, Π

π (γ + 2(s− 1)π)
)

∑
j=1

Xj(xs)Xj(x)

}
X(x)dx

(15)

In particular, if the momentum perturbations are constant, then the nonresonant
relations in the Equation (13) are transformed into the form:

da
dt

= µA1(a),
dψ

dt
= ω(a) + µB1(a), (16)

Because sa(1, ν + 1, ψ)
2Π∫
0

{
sa(1, ν + 1, ψ)
ca(ν + 1, 1, ψ)

}
dψ = 0. This confirms the known re-

sult [22]: for the first approximation of the asymptotic solution, the small periodic forces in
the nonresonant case do not affect the course of the dynamic process. Much more important
results follow for the resonant case of the action of the specified pulse perturbation. We
present only the final results (Figure 3), which describe the transition of the system through
the main resonance:

da
dt = µA1(a)− µX0

4ω(a)ρPπ
sa
(

1, ν + 1, Π
π γ
)

∑
s=1

X1(xs),

dγ
dt = dω(a)

da |a=a∗(a− a∗)− µB1(a)− µ(ν+2)X0
8aω(a)ρPπ

ca
(

ν + 1, 1, Π
π γ
)

∑
s=1

X1(xs).,
(17)

Below, in Figure 3 for this case, it shows the change in the amplitude of oscillations
of the elastic body during the transition through resonance, provided f (u, ut, ux, uxx) =

β1(ut) + β2(ux)
2uxx and boundary condition in the Equation (4) -A1(a) = β1a, B1(a) =

β2a,2−
ν
2 , β1, β2,β1, β2 it is a known steel.
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Figure 3. Cont.
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Figure 3. Change in the amplitude of longitudinal oscillations of a nonlinear elastic body at different periods of external
periodic perturbation and different values of the parameter ν:

(a)
l = 2, α = 104, τ = 0.0004, ν = −0.1, a∗ = 2.1524× 10−4red,

ν = −0.15, a∗ = 2.512× 10−4blue, ν = −0.18, a∗ = 8.439× 10−3 ;

(b)
l = 2, α = 104, τ = 0.0003, ν = −0.1, a∗ = 4.834× 10−7red,

ν = −0.15, a∗ = 6.8252× 10−7blue, ν = −0.18, a∗ = 3.452× 10−4 ;

(c)
l = 2, α = 104, τ = 0.001, ν = 0.1, a∗ = 1.1648× 10−4red,

ν = 0.15, a∗ = 1.649× 10−4blue, ν = 0.18, a∗ = 7.248× 10−3 ;

(d)
l = 2, α = 104, τ = 0.001, ν = 0.18, a∗ = 7.248× 10−3red,

τ = 0.002, ν = 0.18, a∗ = 3.276× 10−6blue, τ = 0.003, ν = 0.18, a∗ = 3.621× 10−8 ;

(e)
l = 2, α = 104, τ = 0.0002, ν = −0.18, a∗ = 3.815× 10−6red,

τ = 0.0003, ν = −0.18, a∗ = 3.452× 10−4blue, τ = 0.0004ν = −0.18, a∗ = 8.439× 10−3green
;

(f)
l = 2, α = 8× 104, τ = 0.001, ν = 0.7, a∗ = 8.62× 10−4red,

τ = 0.001, ν = 0.8, a∗ = 2.128× 10−3blue, τ = 0.001ν = 0.9 a∗ = 4.292× 10−3green
.
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The presented graphical dependencies show:

• for the case ν < 0 a smaller value of the specified parameter corresponds to a larger
value of the resonant amplitude and at the same time the amplitude of the passage
through the resonance is smaller;

• for the case ν > 0 its larger value corresponds to a larger value of the resonant
amplitude and at the same time the amplitude of the resonance is larger;

• for the case ν = const > 0 a smaller value of the pulse perturbation frequency
corresponds to a smaller value of the resonant amplitude and a larger value of the
amplitude of the passage through the resonance.

4. Conclusions

The method of research of influence of pulse perturbation on longitudinal oscillations
of essentially nonlinear elastic bodies is developed in this work. It shows the fundamental
difference between the studied process in linear (quasilinear) models of elastic bodies
and those that are significantly nonlinear. If, for the former, the natural frequency does
not depend on the amplitude, then for the substantially nonlinear it depends. In that
case, there is a fundamental difference with the reaction of the body with nonlinear-
elastic characteristics to periodic perturbations: resonant phenomena in the latter can
exist provided that the amplitude of oscillations approaches the value at which the natural
frequency becomes equal to the amplitude of the external periodic perturbation. In addition,
if the amplitude of oscillations of the body due to the perturbation of motion takes slightly
smaller values than the amplitude at which resonance is possible, then the dissipative
forces actually existing in the body cause a decrease in the amplitude and resonance, in
which case, it will not be observed. In the case when the perturbation of motion causes
greater than the amplitude of the resonance, the amplitude of oscillations of the body, the
above dissipative forces lead to a decrease in the amplitude to a value close to resonance
and resonance occurs in the elastic body.

The main results are shown:

• for a constant value of periodic pulsed perturbation, the amplitude of the passage
through the main resonance for the rigid elastic properties of bodies (−1 < ν < 0)
for larger values of the pulse perturbation frequency takes larger values and vice
versa for the soft elastic properties of bodies (ν > 0) a smaller value of the pulse
perturbation frequency corresponds to a larger value of the amplitude of the passage
through the resonance;

• the amplitude of the passage through the resonance depends on the point of applica-
tion of the pulse perturbation and boundary conditions. In the case of an elastic body
with fixed ends, the maximum value of the amplitude of passage through resonance
will be for the case of impulse perturbation on the middle of the elastic body, and for
an elastic body with free ends—for the case of impulse perturbation on the end of the
elastic body.

Simultaneously, the results obtained in the work follow practical recommendations
for avoiding resonant phenomena in nonlinearly elastic bodies that perform longitudinal
oscillations and are subject to pulsed action is the frequency of pulsed action Ω should not
be equal πω(a)

Π .
The reliability of the obtained results is confirmed by obtaining in the extreme case

(ν = 0,gs(u, ut, ux, uxx) ≡ 0) is known from literary sources.
Practical application of the obtained results: the results obtained in this work can be

the basis for selecting the parameters of the elements of protective and other structures
that are subject to instantaneous action, as well as, bulk media during the process of their
vibro-transportation, and separation.
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