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Abstract: The prediction of stock price movement is a popular area of research in academic and
industrial fields due to the dynamic, highly sensitive, nonlinear and chaotic nature of stock prices.
In this paper, we constructed a convolutional neural network model based on a deep factorization
machine and attention mechanism (FA-CNN) to improve the prediction accuracy of stock price
movement via enhanced feature learning. Unlike most previous studies, which focus only on the
temporal features of financial time series data, our model also extracts intraday interactions among
input features. Further, in data representation, we used the sub-industry index as supplementary
information for the current state of the stock, since there exists stock price co-movement between
individual stocks and their industry index. The experiments were carried on the individual stocks
in three industries. The results showed that the additional inputs of (a) the intraday interactions
among input features and (b) the sub-industry index information effectively improved the prediction
accuracy. The highest prediction accuracy of the proposed FA-CNN model is 64.81%. It is 7.38%
higher than that of traditional LSTM, and 3.71% higher than that of the model without sub-industry
index as additional input features.

Keywords: stock price movement prediction; feature interaction; temporal feature; deep factorization
machine; attention mechanism; stock price co-movement

1. Introduction

The accurate prediction of stock price movement allows investors to make appropri-
ate decisions and obtain excess returns. This remains a popular issue in academic and
industrial fields due to the dynamic, highly sensitive, nonlinear and chaotic nature of stock
prices [1]. As a binary classification task, the prediction of stock price movement is often
explored using deep learning (DL) models, which have the advantages of automatic feature
extraction and complex non-linear mapping ability [2]. The inputs of a DL model include
the opening price, closing price, highest price, lowest price, trading volume and technical
indicators (e.g., MA, RSI, MACD etc.) of a stock during a trading day [3,4]. We refer to these
inputs as the ‘stock state’ in this paper. The DL model extracts the relevant features from
this financial time series data and learns the sophisticated mapping relationship between
these features and stock price movement. The output of the model is the probability that
the stock price will rise at the predicted time point.

Among DL models, the long- and short-term memory (LSTM) neural network domi-
nates in the field of time series forecasting because of its unique algorithm mechanism [5,6].
Although LSTM networks overcome the vanishing gradient problem found in traditional
recurrent neural networks (RNNs), it is still a sequential-dependent computational method.
The computational complexity of the LSTM model increases dramatically with the increase
of the time series length. Further, the LSTM model treats all stock states equally at each
moment. It therefore cannot effectively distinguish the important points of the time se-
ries. This is not conducive to learning the pattern of stock price movement, particularly
when the input data contain noise. Existing studies of the LSTM model primarily focus
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on learning the changing pattern of stock states over a period of time, that is, the model
is used to extract multiday temporal features from the input data. Most approaches to
improve the model’s performance involve selecting important features from the stock
state [7–9], yet very few pay attention to the intraday feature interactions (also known as
‘feature combinations’). It is reasonable to assume that a combination of different input
features may have a stronger indicative effect on the prediction of stock price movement.
For example, it is a common practice to use RSI combined with MACD to find an entry
or exit point in the stock market. When they both indicate the stocks are oversold, it is
more likely to be genuinely the entry point. Similarly, when they both generate overbought
signals, it is probably the true exit point.

Data representation of the stock state is also of importance. Most previous studies
in this field are based on the individual stock and its own historical attributes. However,
the price movement of a single stock is often not isolated but rather affected by multiple
related stocks [10].

In this paper, we seek solutions to these two above-mentioned problems. We pro-
pose a hybrid convolutional neural network based on a deep factorization machine and
attention mechanism (FA-CNN) and a new stock state representation method to improve
the prediction accuracy of stock price movement. The FA-CNN model consists of two
independent modules: (1) a deep neural network based on the factorization machine
DeepFM [11], which is used to (a) extract the intraday feature interactions of individual
stock states and (b) find their optimal weights without traditional feature engineering; and
(2) a convolutional neural network based on an attention mechanism (ATT-CNN), which is
used to (a) extract the multiday temporal features of input data, and (b) focus on important
input data by allocating an attention weight for each stock state. Furthermore, because
price co-movement between an individual stock and the stock index enhances after a stock
is selected to be added into the stock index [12], we use the stock index as supplementary
information for the individual stock.

2. Literature Review

Techniques from previous research on improving the prediction accuracy of stock
price movement can be categorized into two groups: (1) improving data representation,
which involves selecting and converting important stock information into input data; and
(2) building deep learning models with stronger feature learning ability, which involves
effectively extracting features from the input data. We now present these two research
streams in turn.

2.1. Data Representation

Information related to the rise and fall of stock prices is selected to represent the stock
state at each time point. This information is then converted into numerical data that can
be directly fed into the model. Most existing studies represent the current stock state as a
vector containing the stock price and technical indicators. As such, the model’s input is a
matrix formed by a chronologically ordered series of stock states [13–15]. Kim and Kim [16]
and Vidal and Kristjanpoller [17] expanded the input data representation by transforming
the historical stock prices over a period of time into an image. However, they focused only
on a single stock, and not on related stocks or information pertaining to the overall market.

Behavioral finance believes that investors’ sentiments, irrational behaviors and other
non-fundamental factors lead to the co-movement of stock prices, that is, the phenomenon
where price changes occur in the same direction among individual stocks or between
individual stocks and the market. When Claessens and Yafeh [12] carried out research on
10 years of data on 40 developed and emerging markets, they found that in most markets,
when added to a major index, firms experienced an increase in the extent to which market
returns explained firms’ stock returns. This demonstrated the value of referring to stock
index information when predicting individual stock trends. Many studies have confirmed
the existence of stock price co-movement in the stock market [18–20], but few have used
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this to predict the direction of stock price movement. Hoseinzade and Haratizadeh [21]
proposed a CNN-based framework that takes information from different markets and
uses it to predict the future of those markets. They focused on the superiority of the
proposed framework but did not verify whether adding information from other stock
markets was more effective than using only a single stock market as the input in stock price
trend forecasting. Thus, in this paper we use the stock index as a form of supplementary
information to expand the data representation of the stock state. We then verify whether
this strategy can improve the prediction accuracy of our model.

2.2. Deep Learning Models

Deep learning models are usually regarded as feature extractors and classifiers for
stock price prediction. Some literatures [22–24] reviewed the recent deep learning appli-
cations in financial field and found that the LSTM neural networks, convolutional neural
networks (CNNs) and their hybrid models are commonly used deep learning models for
stock market predictions.

The LSTM neural network is an improved version of the traditional RNN [25]. It
alleviates the vanishing gradient problem of the RNN by setting three gate variables to
control how much information of the previous time step is transmitted to the current
time step. Thus, the LSTM neural network is effective at capturing temporal features on
sequential data, and its hybrid models are widely used for the prediction of time series
data [26–28]. Fischer and Krauss [29] used an LSTM network to predict the rise and fall
of the S&P 500 index. Their results showed that the prediction accuracy of the LSTM
model was significantly higher than that of random forest, deep neural network (DNN)
and logistic regression models. Nabipour et al. [30] used ten kinds of technical indicators
as inputs to predict the future trend of the German stock market group. They compared the
performance of a variety of traditional machine learning models and deep learning models
such as DNN, RNN and LSTM. Their results showed that the LSTM algorithm had the
highest accuracy; however, because the computation of each step for the LSTM algorithm
is suspended until the complete execution of the previous step, it is significantly slower
than other parallel computing structures [31].

The CNN was proposed by Lecun et al. [32] for the image classification task. Taken its
advantage of translation invariance, the CNN can recognize the object no matter where
it is in the image. This characteristic makes the CNN particularly suitable for detecting
the key time point in sequential data, and it overcomes the sequential-dependent problem
of traditional RNNs. Kim [33] later applied the CNN to the sentence classification task,
and Zhang and Wallace [34] experimented to further explain the influence of various
CNN parameters on sequential data classification. Since then, the CNN has been widely
used to tackle time series data because of its advantages of (a) parallel computation
and (b) having less parameters than the LSTM network. Selvin et al. [35] compared the
performance of LSTM, CNN and RNN models on predicting the short-term rise and fall
of stock prices with financial time series data as model inputs. Their results showed that
the prediction accuracy of the CNN model was higher than that of the other two models.
Long et al. [36] created a multi-filters neural network (MFNN) model to extract temporal
features from time series data at the same time. Their results showed that the MFNN
model performed better than either the LSTM or CNN models alone and other traditional
machine learning models. Alonso-Monsalve et al. [37] compared the performance of
four different network architectures—the CNN, hybrid CNN-LSTM network, multilayer
perceptron and radial basis function neural network—in the domain of trend classification
of cryptocurrency exchange rates. Their results suggested that hybrid CNN-LSTM neural
networks significantly outperformed all the rest, while CNNs were also able to provide
good results. All the above studies showed the feasibility of the CNN in the prediction
of time series data. However, the traditional CNN model is unable to distinguish the
importance of extracted features, that is, in order to fully extract features from the input
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data, the number of CNN filters is usually set to be redundant, which leads to the derived
feature maps having different levels of importance.

The attention mechanism was first proposed in the field of computer vision [38], then
flourished in the field of machine translation [39,40]. It imitates the signal processing
mechanism of the human brain, allocating computing resources to more important tasks.
Liu et al. [41] used an attention-based capsule network to quantify the impact of different
events on the prediction of stock price movement, and Chen and Ge [42] built an attention-
based LSTM model to predict the movements of Hong Kong stock prices. Qiu et al. [43]
integrated wavelet transform, LSTM and an attention mechanism to predict the value of
Standard & Poor’s 500 Composite Stock Price Index, Dow Jones Industrial Average and
Hang Seng Index. Results showed that the attention-based LSTM model performed better
than Gate Recurrent Unit (GRU) model. Such research demonstrates that the attention
mechanism can enhance the prediction accuracy of the baseline model. However, when
the attention mechanism is integrated with complex models such as the LSTM and cap-
sule network, it also significantly increases the parameters, which may cause overfitting
problems. In the field of image classification, Woo et al. [44] proposed a lightweight and
general module—a convolutional block attention module (CBAM)—to make the CNN
model focus only on important features and suppress unnecessary ones. Their results
showed that a CBAM can be integrated into a variety of classic CNN structures, and it
achieved better classification results than the original structure with negligible overheads.
Applying an attention-based CNN model to the financial field is of great importance due
to the advantages of its lightweight computation and its ability to distinguish important
information.

The above studies lay out how to extract the temporal features of input data more
effectively, but they all ignore mining the input features themselves. A combination of
different input features could be used as a new feature for prediction, which may have
a stronger indicative effect on predicting the trend of stock price movement. In the field
of advertising recommendation, it was found that users usually download apps for food
delivery at mealtimes, which indicated that the (order-2) interaction between app category
and timestamp could be used as a new feature for the click-through rate (CTR) prediction.
The DeepFM model—an end-to-end model that learns sophisticated feature interactions
behind user click behaviors—was proposed to improve the accuracy of CTR prediction for
the recommender system [11]. This model was then later used by Huang et al. [45] to learn
the high- and low-order feature interactions between stock price data and text embedding.
Their results showed that the DeepFM model performed better than a traditional DNN
model. However, they only focused on the stock state before the prediction rate and did not
consider the temporal features. Zhou et al. [46] proposed an empirical mode decomposition
and factorization machine based neural network (EMD2FNN) model to predict the value
of several stock indices. They combined factorization machine with neural networks
to capture the factorized interactions between features. However, the work focused on
comparing the performance of EMD2FNN model with that without EMD layer. It did not
elaborate on the importance of factorization machine in improving the model’s prediction
accuracy.

In summary, in this paper we aim to improve the prediction of stock price movement
by (a) expanding the data representation by adding the stock index as supplementary
information, and (b) building a novel FA-CNN model which extracts the intraday feature
interactions and the multiday temporal features more effectively.

The rest of this paper is organized as follows. In Section 3, we formulized the task of
stock price movement prediction and introduced the structure and computation processing
of our proposed FA-CNN model. In Section 4, we described the data processing method
and metrices. Further, the experimental results of comparative models were analyzed in
detail. Finally, we concluded this work and present some future avenues of research in
Section 5.
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3. Methodology
3.1. Problem Formulization

The prediction of stock price movement can be regarded as a supervised binary
classification task. The label of a sample represents the uptrend or downtrend of a stock on
trading day t, as shown in Equation (1). The goal of our model is to make the predicted
label as close as possible to the real label of the sample:

yi(t) =

{
0, Closet < Closet−1
1, Closet ≥ Closet−1

(1)

Since we take the co-movement of stock price and stock index into account, the input
data xi(t) is concatenated by the vectors Ti

t and It. These are arranged in ascending order
of time, representing the state of individual stock i and the stock index at day t, respectively.
Each element f j of Ti

t or It represents the price or technical indicators of the stock or stock
index at day t:

xi(t) =
[

Ti
t−m , Ti

t−m+1, . . . . . . Ti
t−1 | It−m , It−m+1, . . . . . . It−1] (2)

The output ỹi(t) of the model refers to the probability that the closing price of stock i
will rise on trading day t compared with that on trading day t− 1. The definition is shown
in Equation (3), where Function (·) is the specific calculation process of the model, which is
described in detail in Section 3.2:

ỹi(t) = Function(xi(t)) (3)

The y is the true label probability distribution of samples, and the ỹ is the proposed
model’s predicted label probability distribution of samples. The objective of the model is to
find the optimal parameters to make the y most approximate to the ỹ, that is, to minimize
the cross-entropy loss function. Cross-entropy [47] is commonly used to define a loss
function in machine learning. The objective function is defined in Equation (4):

min loss = min
N

∑
i=1

T

∑
t=0

[yi(t) ∗ logỹi(t) + (1− yi(t)) ∗ log(1− ỹi(t))] (4)

In Equation (4), N denotes the number of individual stocks and T denotes the number
of trading days.

3.2. Model Design
3.2.1. Overall Structure of FA-CNN Model

In this section, we introduce our proposed FA-CNN hybrid model in detail. The
overall structure of the model is shown in Figure 1. The feature extraction part of the model
can be divided into two independent modules: (1) the DeepFM module, for automatically
extracting intraday feature interactions, as detailed in Section 3.2.2; and (2) the ATT-
CNN module, for extracting multiday temporal features, as detailed in Section 3.2.3. The
outputs of these two modules are concatenated and fed to the last full connection layer
for classification. In order to explain the model prediction process more clearly, Figure 2
was drawn to show how the model get the prediction results step by step. Combined with
Figure 1, the proposed FA-CNN hybrid model can be easily understood.
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Figure 1. The structure of the FA-CNN model.

Figure 2. The prediction process of the FA-CNN model.

3.2.2. DeepFM Module

DeepFM [11] consists of two layers—the FM layer and the deep layer—that share the
same input. The FM layer extracts the low-order (order-1 and order-2) feature interactions
of the input data to get FFM. The deep layer extracts the high-order feature interactions to
get FDNN . These two outputs are then added and activated to obtain F̃ as the output of the
DeepFM module, as shown in Equation (5):

F̃ = sigmoid(FFM + FDNN) (5)

The advantage of DeepFM is that it can learn the feature interactions of different
orders without feature engineering. Its detailed calculation process is shown in Figure 3.
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Figure 3. The structure of the DeepFM module.

Output FFM is defined as:

FFM =
d

∑
i=0

wi· fi +
d

∑
j1=1

d

∑
j2=j1+1

ui,j· f j1 · f j2 (6)

where: fi is the ith dimensional element of Ti
t or It, fi, wi ∈ R; the first part,

d
∑

i=0
wi fi, is a

linear (order-1) interaction among features, and wi is the weight to be learned; the second

part,
d
∑

j1=1

d
∑

j2=j1+1
ui,j· f j1 · f j2 , is the pairwise (order-2) feature interactions, and the pairwise

weight, ui,j, which measures the importance of the interactions of features fi and f j, is the
inner product of their latent vectors Vi and Vj, Vi ∈ Rk. Thus, Equation (6) can be converted
to Equation (7):

FFM =
d

∑
i=0

wi· fi +
d

∑
j1=1

d

∑
j2=j1+1

< Vj1 , Vj2 > f j1 f j2 (7)

If fi is repeated and formed into a new vector, Fi, that has the same dimensions with
vector Vi, Equation (6) can be further converted to Equation (8):

FFM =
d

∑
i=0

wi· fi +
d

∑
j1=1

d

∑
j2=j1+1

< Vj1 � Fj1 , Vj2 � Fj2 > (8)

where Vj1 � Fj1 denotes the element-wise multiplication of Vj1 and Fj1 . Note, the blue arrow
in Figure 3 shows the Vj1 � Fj1 calculation steps, and the matrix formed by ei = Vi � Fi is
called Embedding.

The DNN part learns the high-order feature interactions and takes the Embedding
generated by the FM part as the input. The Embedding is also denoted as a0 in Equation (9).
The output of the lth hidden layer in the DNN is denoted as al+1 in Equation (10), where
W l and bl are the parameters. The final output, FDNN , is defined as Equation (11), where H
is the number of hidden layers:

a0 = [e0, e1, . . . . . . , em] (9)

al+1 = σ
(

W lal + bl
)

(10)

FDNN = σ
(

WH+1aH + bH+1
)

(11)
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3.2.3. ATT-CNN Module

In this paper, we modify the original CBAM module [46] to enhance the ability of the
CNN to recognize the important points in the time series data. The overall structure of the
ATT-CNN module is shown in Figure 4.

Figure 4. The structure of the ATT-CNN module.

The ith row vector of input matrix xi(t) (denoted as X in Figure 4) represents the stock
state at time i. Intuitively, the state near the current time or the state with obvious trend
change may have a greater impact on stock price movement at the current time. Therefore,
the spatial attention module is used to calculate the weight for each time point. The
adjusted X′ is then fed into a CNN for temporal feature pattern extraction. The row vector
is an indivisible unit due to its representation of the stock state. Thus, the size of filters
is set to be l × w, where l is the length of the time window and w is the dimension of the
row vector in the input matrix. Many feature maps are obtained using different filters after
convolutional operation, but not every feature map is of the same importance. Therefore,
the channel attention module is used to calculate the weight for each feature map. The
matrix P′, adjusted by the channel attention map and spatial attention map, is finally fed to
another CNN to get the output. The concise expression of the above calculation process is
shown in Equations (12)–(15):

X′ = Ms � X (12)

P = Convl×w(X′) (13)

P′ = Ms � (Mc � P) (14)

CNN_output = Convw×1(P′) (15)

Spatial Attention in ATT-CNN Module

As shown in Figure 5, the spatial attention map focuses on telling the network which
row of input matrix X carries more important information. It performs average pooling and
max pooling for each position in input matrix X channel-dimensionally. After the pooling
operation, the results are stacked and fed into the CNN with a 1× w filter size, where w is
the dimension of the row vector in the input matrix. As such, the model treats the stock
state vector as a whole instead of as the original filter size of 7 × 7. Finally, the result is
activated by sigmoid function to make the elements in Ms range from 0 to 1, representing
the importance of the corresponding time point. The calculation process of Ms is shown in
Equation (16):

Ms = σ
(
Conv1×w([AvgPool(X); MaxPool(X)])

)
= σ

(
Conv1×w

([
Fs

avg; Fs
max

])) (16)
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Figure 5. The computation operation of the spatial attention module.

Channel Attention in ATT-CNN Module

As shown in Figure 6, the channel attention map focuses on telling the network which
feature map carries more important information. In contrast to the spatial attention module,
this module uses global average pooling and global max pooling to compress each feature
map into vectors Fc

avg and Fc
max, respectively, with the same size of C × 1 × 1, where C is

the number of channels. Vectors Fc
avg and Fc

max can be regarded as the intuitive interpreter
of each feature map. Both vectors are fed to a shared two-layer fully connected neural
network to obtain the nonlinear maps. Finally, these two maps are added and activated by
sigmoid function to make sure each element in Mc is between 0 and 1, which represents
the importance of the corresponding channel. The calculation process of Mc is shown in
Equation (17):

Mc = σ(MLP(GAvgPool(F)) + MLP(GMaxPool(F)))
= σ

(
W1

(
W0Fc

avg

)
+ W1(W0Fc

max)
) (17)

Figure 6. The computation operation of the channel attention module.

4. Experiments
4.1. Data Selection

As mentioned in Section 2.1, we assumed that adding the stock index as supple-
mentary feature can help improve the prediction accuracy of models. This is actually
based on the premise that the stock price of the individual stock is mainly affected by
the environment within the studied industry, but not by the other industries. Because
if an industry has strong co-movement with many other industries, it seems inadequate
to add only one industry index as supplementary input to improve prediction accuracy.
In addition, literature [48] has shown that co-movement exists among stock indices in
Chinese stock market. Therefore, it needs to find out whether the chosen industry has
strong co-movement with other industries before the experiment.

Obviously, if one time series co-moves with another, some similarity must exist in
their morphologic. Therefore, the co-movement strength between industries was measured
by the morphological similarity between industry indices. Dynamic time warping (DTW)
algorithm proposed by Berndt and Clifford [49] is an appropriate method to calculate
the similarity between two time series. It overcomes the matching defect caused by the
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one-to-one correspondence of the points in Euclidean distance, so that the points in two
time series can be ‘one to many’ matched, and it also has a strong recognition effect on
the amplitude change of time series. Using DTW to calculate the similarity of two time
series can be summarized in Algorithm 1. It is actually the process of using dynamic
programming algorithm to find the shortest path. The dtw-python package was used to
implement this DTW algorithm.

Algorithm 1. Dynamic time warping algorithm.

Input: X = {x1, x2, . . . . . . xm} and Y = {y1, y2, . . . . . . yn}.
Output: W = {w1, w2, . . . . . . wK}, the best wrapping path with the minimum cumulative
distance DTW(X, Y).

Step1: As shown in Figure 7a, construct a cost matrix Dm×n, where the element D(i, j) denotes the

Euclidean distance d
(

xi, yj

)
=

√(
xi − yj

)2
. The element wk of the wrapping, path W denotes

the location of a pair of points from X and Y in Dm×n. And the constraints of wk are as follows:

1. Boundary constraints: w1 = (0, 0) and wK = (m, n). It means the start and endpoints of
two time series must be aligned.

2. Continuity constraint. Given wk−1 = (a′, b′), the next point wk = (a, b) needs to satisfy: 1©
(a− a′ ) ≤ 1; 2© (b− b′ ) ≤ 1. This ensures it will not cross or miss any point when
matching points for X and Y.

3. Monotone Constraint. Given wk−1 = (a′, b′), the next point wk = (a, b) needs to satisfy: 1©
(a− a′ ) ≥ 0; (b− b′ ) ≥ 0. This ensures that the points on the path are monotonically
increasing on the time axis.

Step2: Initialize the cumulative distance: γ(0, 0) = d(x1, y1)
Step3: Calculate the minimum cumulative distance γ(m, n) according to the recursive formula:

γ(i, j) = d
(

xi, yj

)
+ min{γ(i− 1, j− 1), γ(i− 1, j), γ(i, j− 1)}.

Step4: Trace back to find all the matching point pairs in the wrapping path W as shown in
Figure 7b.

Figure 7. (a) An example process of finding wrapping path; (b) An example of final wrapping path.

The Shenwan first-class industry indices were chosen to analyze the co-movement
between industries. The indices are released by Shenwan Hongyuan Securities and are
highly recognized by investors and researchers [50,51]. The co-movement levels between
industries are shown in Figure 8. The darker the color, the weaker co-movement the two
industries are.
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Figure 8. The co-movement level between industries.

It showed that some industries have strong co-movement with other industries
whereas some industries have weak co-movement. Therefore, the stocks in three rep-
resentative industries—Food and Beverage, Health Care and Real Estate industries—which
respectively had the weak, medium and strong co-movement with other industries were
taken to test our proposed method. Since there are many individual stocks in each industry,
it is necessary to select the respective ones. The stocks in a series of sub-industry indices
released by China Securities Index Co., Ltd. (Shanghai, China) meet our needs. The sub-
industry index selects stocks with large market capitalization and good liquidity from the
first-class industry, reflecting the overall trend of each sub-industry in the Chinese A-shares
market. Thus, the data from Food & Beverage Sub-industry (FBSI 000815), Health Care
Sub-industry (HCSI 000814) and Real Estate Sub-industry (RESI 000816) were gathered,
covering the period from 1 July 2017 to 31 November 2020. The input data include the
historical prices and technical indicators of both individual stock and sub-industry index.
The number of samples and label distributions of the three datasets are showed in Table 1.
The label distribution of three datasets is relatively balanced, which can make the trained
model not be biased to any label.

Table 1. Label distributions of three datasets.

Dataset Numbers of Samples Positive Proportion Negative Proportion

HCSI 40114 50.90% 49.10%

FBSI 31244 51.57% 48.43%

RESI 33563 53.03% 46.97%

4.2. Data Pre-Processing

The features in stock state vectors Ti
t and It are explained in detail in Appendix B.

They primarily include stock price data, trading volume, money and various technical
indicators as calculated by the Python tool TA-lib.

Different stocks have different opening, closing, highest and lowest prices, and there is
a large gap among the mean and variance of these prices. This is harmful to the convergence
of training models. It was therefore necessary to normalize these input features before they
were fed into our model. It is unreasonable to directly normalize time series data in a period
of time because the earlier data will use the future information. We therefore adopted a
normalized rolling method that was similar to the training method, that is, for each stock,
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at the last time point in the sliding window, we calculated the mean and variance of each
feature of input data within the sliding window and used this to normalize the original
feature. This operation, as shown in Equation (18), ensured that no normalized data used
future information. Finally, the standardized ˆxi(t) was fed into the model. In this way, each
feature in the input data obeys the standard normal distribution, which is good for model
convergence:

f̂ i
j =

f i
j − µi

j

σi
j

(18)

In Equation (18), f i
j is the jth feature of stock i on trading day t, and µi

j, σi
j are the

respective mean and standard deviation of the jth feature of stock i within a sliding window
containing n consecutive days.

As the input data is sequential, we used the training technique of incremental learning.
As shown in Figure 9, the initial training set covered a period of three years, the validation
set covered a period of three months and the test set covered a period of one month.
Thereafter, the sliding window moved three months ahead, step by step, until the model
test in the final month. This kind of technique allows the model to account for the most
recent trends of stock price movements and patterns. We used the average measurement of
multiple test sets as the final result of our model.

Figure 9. Time series dataset splitting method.

4.3. Metrics

Two metrics were used to measure the performance of different models: accuracy,
as shown in Equation (19); and the Matthews correlation coefficient (MCC), as shown in
Equation (20). Accuracy measures the model’s ability to correctly predict all classes of
labeled data, and MCC ∈ [–1, 1] is a correlation coefficient between the real and predicted
labels of samples for binary classifications in machine learning. It takes into account true
and false positives and negatives and it is generally regarded as a balanced measure even if
the two classes are of different sizes. It means that when the MCC value is 1, the predicted
label distribution is completely consistent with the real label distribution, and when the
MCC value is −1, the opposite is true:

accuracy =
TP + TN

TP + FN + FP + TN
(19)

MCC =
TP× TN − FN × FP√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(20)

In Equations (19) and (20), TP is the number of the samples whose real and predicted
labels are both positive, TN is the number of the samples whose real and predicted labels
are both negative, FN is the number of the samples whose real label is positive but the
predicted label is negative, and FP is the number of the samples whose real label is negative
but the predicted label is positive.
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4.4. Comparative Models and Parameter Settings

The LSTM model is the commonly used deep learning model that uses financial time
series data as the input for the prediction of stock price movement. As such, we used this
model as our baseline. Additionally, to verify the effectiveness of the DeepFM and ATT-
CNN modules we proposed in Section 3.2, we conducted experiments on the following
models: (1) the LSTM + DeepFM control model, where we sought to verify whether adding
the DeepFM module to extract intraday feature interactions can improve the prediction
accuracy; (2) the ATT-CNN control model, where we sought to verify whether a CNN
module based on an attention mechanism can replace the LSTM model to extract multiday
temporal features of financial series data; (3) the multi-filters neural network (MFNN)
model, a hybrid model proposed by Long et al. [37], used here as the state-of-the-art work;
and (4) our proposed hybrid model, the FA-CNN model. As stated in Section 1, we took
the co-movement between individual stock and the stock index into consideration when
predicting stock price movement. To verify whether this strategy can effectively improve
the prediction accuracy, we performed the five models listed above under two different
strategies: Strategy 1, where the input data contain only the financial information of the
individual stock; and Strategy 2, where the input data contain the financial information of
both the individual stock and its stock index. These models were trained separately for
each industry.

All the comparative models were implemented by TensorFlow. The optimizer used
for training the models is Adam with learning rate 0.001. Regarding to the FA-CNN model
hyperparameters, the latent dimension of FM layer is 10. Three different filter windows
[3, 66], [5, 66], [10, 66] were used in the first convolutional layer and [5, 1] in the second
convolutional layer, and each convolutional layer has 32 units. The last full-connected
layer has 64 units. As for the baseline LSTM model, it has 128 LSTM units. The MFNN was
constructed as the literature [37] showed.

4.5. Results and Analysis

The results of the five different models for test data under each of the two strategies
are shown in Table 2.

Table 2. The performance of different models with different strategies.

Model
HCSI

Average
Accuracy

HCSI
Average

MCC

FBSI
Average
Accuracy

FBSI
Average

MCC

RESI
Average
Accuracy

RESI
Average

MCC

Strategy 1: where input
data contain only the

individual information

LSTM 0.5495 0.1544 0.5633 0.1813 0.5443 0.1428

LSTM +
DeepFM 0.5541 0.1544 0.5766 0.1933 0.5438 0.1525

ATT-CNN 0.5634 0.1799 0.5833 0.2167 0.5720 0.1686

MFNN [28] 0.5643 0.1803 0.5959 0.2233 0. 5729 0.1691

FA-CNN 0.5931 0.1847 0.6110 0.2368 0.5803 0.1899

Strategy 2: where input
data contain both the

individual information
and the industry index

information

LSTM 0.5670 0.1627 0. 5743 0.2376 0.5643 0.1567

LSTM +
DeepFM 0.5895 0.1690 0. 5929 0.2616 0.5773 0.1563

ATT-CNN 0.5955 0.1857 0.6174 0.3716 0.5824 0.1737

MFNN [28] 0.5988 0.2019 0.6295 0.3783 0.5883 0.1900

FA-CNN 0.6190 0.2976 0.6481 0.4218 0.5938 0.2139

As shown in Table 2, the performance of the different models under Strategy 2 was
consistently higher than that under Strategy 1. This suggests that enriching the individual
stock state representation with the stock index information helps improve the accuracy of
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stock price movement prediction. This is perhaps because the stock index is influenced by
the performance of other competing companies, which indirectly and comprehensively
reflects the development of the whole industry. Therefore, investors perhaps refer to the
stock index to make investment decisions, which results in a certain price co-movement
between individual stock and the stock index. This is in line with the explanation of stock
price co-movement in behavioral finance theory. In addition, it also showed that the degree
of improved prediction accuracy is different among these three different industries. The
accuracy of the food and beverage sub-industry is improved much better than that of the
real estate sub-industry after taking the sub-industry index as additional input. This is
possibly caused by the different levels of co-movement with other industries. The price of
the stock in the real estate industry is not only influenced by the other counterparts but also
greatly influenced by its own upstream and downstream affiliates in other industries such
as banking, architectural materials and so on. Therefore, as for the stocks in the industry
strongly co-moving with many other industries, it is probably not adequate to only add
one industry index as an additional input to improve the prediction accuracy. The more
comprehensive information is considered, the higher the accuracy of prediction can be
achieved.

The LSTM + DeepFM model performed better than the LSTM model under both
strategies. This indicates that adding the extraction of intraday feature interactions of
input data can indeed provide valuable information in improving the prediction accu-
racy. To clearly reveal the impact of feature interactions, the latent Embedding matrix VE
in the DeepFM module after training for health care sub-industry was taken out as an
example to compute the feature interaction weight matrix M = VEVT

E , where VT
E is the

transposition of VE. The weight matrix M with size 66 × 66 is shown in Figure 10. This is
a symmetrical matrix, where the absolute value of the weight represents the importance
of feature interactions. In the heat map in Figure 9, the darker the color, the greater the
weight. The feature index is shown in Appendix A, with a total of 33 features containing
stock prices and technical indicators. In Figure 10, the first 33 features are of the individual
stock, and the following 33 features are of the stock index. To show the results more clearly,
the weight values in the range of [−0.1, 0.1] (i.e., those which are of less importance) were
covered up. The diagonal elements of the matrix represent the weight of features itself.
This shows that almost all the features of individual stocks had an important indicative
effect on the result, while fewer features of the stock index had an important impact on
the result. In addition, (a) most feature interactions of greater importance were distributed
in the interaction area of the individual stock itself, (b) fewer of these interactions were
distributed in the interaction area of the individual stock and the stock index, and (c) the
fewest interactions were distributed in the interaction area of the stock index itself. This
is consistent with our intuitive understanding about the impact of price co-movement
between individual stocks and the stock index, and it also explains why adding relevant
information of the stock index can increase the prediction accuracy of the model. Besides,
it was found interestingly that some technical indicators combination shown in Figure 10
was consistent with that adopted by traders in the real world. For example, the Bollinger
Bands in conjunction with MACD signals can be used in trending markets to find an entry
or exit point. The MACD is an effective trend-following and momentum indicator and
can be used to assess if a trend is picking up or slowing down. While Bollinger Bands
measure the volatility of stock prices and can be used as an entry trigger and subsequent
confirmation of a trade. Usually, the traders identify the trend using MACD signal and use
the lower (upper) band as a stop loss in an uptrend (downtrend). As the Figure 10 showed,
the MACD signal (feature 13) had greater weights with Upper band (feature 6) and Lower
band (feature 8) than that with other features. This explains why extracting the intraday
feature interactions of input features can effectively improve the prediction accuracy.
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Figure 10. Weight matrix of 2-order feature combination.

The ATT-CNN model performed better than the LSTM model under both strategies,
which shows that a CNN with an attention mechanism is more effective at extracting
temporal features. In Section 3.2, we explained that the spatial attention can compute the
relevance between the stock state at each time point and stock price movement. As shown
in Figure 11, we randomly selected a sample to visualize this relevance, where the price
performance of the selected sample with stock code 000432 is shown as candlestick charts,
and the input time span is from 31 August 2018 to 11 August 2018. Note the background
color of Figure 11 represents the relevance between the stock state at each time point and
stock price movement. As the input data had long time steps (66 time steps), the LSTM
model was unable to effectively transfer the influence of the faraway points to the current
predicted time point. In contrast, our proposed ATT-CNN model has the ability to compute
the weight of each time point no matter how long the time step is. As such, this model
performed better than the LSTM model in extracting the temporal features. Note that most
of the important time points were near or far away from the predicted time point. This is
likely a coincidence, as the attention weight is only related to the stock state rather than the
position of the time point.

Figure 11. Spatial attention weight of a sample.

Our proposed FA-CNN model performed best among these models, which suggests
that the two modules in our proposed model were not in conflict and worked together to
improve the accuracy of the model. The prediction accuracy of each constituent stock in
FBSI is listed in Appendix B, which shows that the stocks with longer listing time and larger
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market capitalization tend to have higher prediction accuracy. Perhaps, this is because the
listing company with a longer listing time and higher market capitalization owns a higher
market acceptance and less irrational investment. It needs further study to find out the
true cause.

5. Conclusions and Future Works

In this paper, we proposed a convolutional neural network model based on a deep
factorization machine and attention mechanism (FA-CNN) for the prediction of stock price
movement using financial time series data. The main contributions of our paper can be
summarized as follows:

1) Price co-movement between the individual stock and the stock index should be taken
into consideration when predicting the trend of individual stock prices. Using the
stock index information as additional input features can enrich the data representation
of the stock state and thereby improve the prediction accuracy of the model. In addi-
tion, the degree of improved accuracy is related to the strength of the co-movement
between the studying industry and other industries. The more independent the indus-
try is, the stronger the effect of taking industry index as additional input on improving
prediction accuracy. These suggestions were validated by our experimental results,
and they extend the data representation of the stock state.

2) In contrast to previous studies, we extracted the intraday feature interactions of the
stock state using the DeepFM module. We then verified that mining these intraday
feature interactions can effectively improve the prediction accuracy of the model. This
broadens the methods of feature mining with financial time series data.

3) We used an attention-based convolutional neural network (ATT-CNN) module to
extract multiday temporal features. This module can process time series data with any
length, and it can distinguish the importance of the stock state at different time points,
which is very important for accurately predicting stock price movement. Comparative
experiments showed that the ATT-CNN module performed better than the LSTM and
CNN models.

In this paper, the super parameter window size of input data has not been studied in
detail. For short-term stock forecasting, the optimal time window size can help the model
achieve a better result. Further, we had noticed that it was inadequate to only add one
industry index as an input feature to improve the prediction accuracy of those stocks that
had strong price co-movement with multiple industries. However, adding all the relevant
industry indices as input features will sharply increase the dimension of input data, which
may lead to redundant features. How to balance the input features and prediction accuracy
will be the next studying point.
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Abbreviations

FA-CNN convolutional neural network based on deep factorization machine and
attention mechanism

ATT-CNN convolutional neural network based on attention mechanism
CBAM convolutional block attention module
CNN convolutional neural networks
CTR click-through rate
DeepFM deep factorization machines
DL deep learning
DNN deep neural network
DTW dynamic time warping
EMD empirical mode decomposition
EMD2FNN empirical mode decomposition and factorization machine based neural network
FBSI food and beverage sub-industry
FC layer full-connected layer
HCSI health care sub-industry index
LSTM long- and short-term memory
MA moving average
MACD moving average convergence divergence
MCC matthews correlation coefficient
MFNN multi-filters neural network
RESI real estate sub-industry
RNN recurrent neural networks
RSI relative strength index

Appendix A

Table A1. Stock prices and technical indicators included as input features.

Index Features Description

0 Open price -

1 Close price -

2 High price -

3 Low price -

4 Volume -

5 Money -

6
Bollinger Bands

Upper band
An indicator of overbought or oversold conditions.7 Middle band

8 Lower band

9 Exponential Moving Average An indicator more responsive to changes in the data.

10 Double Exponential Moving Average A smoothing indicator with less lag than a straight
exponential moving average.

11 Triple Exponential Moving Average The T3 is a type of moving average, or smoothing
function.

12 Moving Average Convergence
Divergence

MACD The Moving Average Convergence Divergence (MACD) is
the difference between two Exponential Moving Averages.
The MACD signals trend changes and indicates the start
of new trend direction. High values indicate overbought
conditions, and low values indicate oversold conditions.

13 MACD signal

14 MACD hist

15 Money Flow Index An indicator ranging from 0 to 100. Values above 80
/below 20 indicate tops/bottoms.

16 Momentum An indicator that shows if prices are increasing at an
increasing rate or decreasing at a decreasing rate.
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Table A1. Cont.

Index Features Description

17 Average Directional Movement Index A Welles Wilder-style moving average of the Directional
Movement Index.

18 Rate of change
A momentum-based technical indicator that measures

the percentage change in price between the current price
and the price a certain number of periods ago.

19 Relative Strength Index
The RSI ranges from 0 to 100. The RSI is interpreted as
an overbought/oversold indicator when the value is

over 70/below 30.

20 Commodity Channel Index An indicator designed to detect beginning and ending
market trends.

21 1-day ROC of a triple smooth EMA An oscillator used to identify oversold and overbought
market.

22 Williams’ %R
Values range from 0 to 100, and are charted on an

inverted scale, that is, with 0 at the top and 100 at the
bottom.

23 Balance of Power An oscillator that represents the battle between the bulls
and the bears in the market.

24 Absolute Price Oscillator A MACD, but it can use any time periods.

25 Average Directional Movement Index Rating (ADXR) An average of the two ADX values filtering out
excessive tops and bottoms.

26 Average Directional Movement Index (ADX) A Welles Wilder-style moving average of the Directional
Movement Index.

27 Ultimate Oscillator

The weighted sum of three oscillators of different time
periods. The values of the Ultimate Oscillator range

from 0 to 100. Values over 70 indicate overbought
conditions, and values under 30 indicate oversold

conditions.

28 Chaikin A/D Line

The Accumulation/Distribution Line is similar to the
On Balance Volume (OBV), which sums the volume

times +1/-1 based on whether the close is higher than
the previous close.

29 Chaikin A/D Oscillator
The oscillator measures the accumulation-distribution

line of moving average convergence-divergence
(MACD).

30 On Balance Volume

The OBV is a cumulative total of the up and down
volume. When the close is higher than the previous
close, the volume is added to the running total, and
when the close is lower than the previous close, the

volume is subtracted from the running total.

31 Average True Range A measure of volatility.

32 True Range A base calculation that is used to determine the normal
trading range of a stock or commodity.
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Appendix B

Table A2. Prediction accuracy of constituent stocks in Food and Beaverage sub-industry Index (FBSI).

Stock Code Market Capitalization
(A Hundred Million) Listing Time Accuracy

000568 1.28 09/05/1994 0.6667
000596 1.7 02/09/1996 0.7019
000729 5.87 16/07/1997 0.6438
000799 4.4 18/07/1997 0.7143
000848 1.93 13/11/1997 0.7714
000858 11.8 27/04/1998 0.6743
000860 4.13 04/11/1998 0.619
000869 6.4 26/10/2000 0.6762
002216 5.07 30/01/2008 0.781
002304 27 27/10/2009 0.7095
002461 4.06 18/08/2010 0.6814
002481 5.97 21/09/2010 0.5762
002507 5.6 23/11/2010 0.7286
002568 5.2 25/03/2011 0.6286
002570 18.1 12/04/2011 0.6286
002626 8.05 28/10/2011 0.5238
002847 2.83 08/02/2017 0.5218
300146 15 15/12/2010 0.619
300401 1.59 09/10/2014 0.5776
600059 3.09 16/05/1997 0.671
600073 4 04/07/1997 0.6281
600132 2.22 30/10/1997 0.6667
600197 4.7 16/09/1999 0.7333
600298 4.16 18/08/2008 0.619
600305 2.84 06/02/2001 0.6762
600519 22.4 27/08/2001 0.7619
600559 1.74 29/10/2002 0.6386
600597 9.75 28/08/2002 0.6857
600600 6.38 27/08/1993 0.7621
600779 1.27 06/12/1996 0.6238
600809 2.73 06/01/1994 0.619
600872 2.24 24/01/1995 0.7238
600873 1.05 17/02/1995 0.681
600882 0.495 06/12/1995 0.6062
600887 1.02 12/03/1996 0.7208
603027 3.68 24/03/2016 0.5714
603043 6.59 27/06/2017 0.5286
603198 9.44 28/05/2015 0.619
603288 38.4 11/02/2014 0.5997
603369 8.77 03/07/2014 0.6143
603589 9.6 29/06/2015 0.581
603866 6.19 22/12/2015 0.5714
603919 7.66 10/03/2016 0.5238
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