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Abstract: This paper proposes generalized models and methods for calculating flow distribution in
hydraulic circuits with lumped parameters. The main models of the isothermal steady-state flow of
medium are classified by an element of the hydraulic circuit. These models include conventional,
implicitly specified by flow rate, and pressure-dependent ones. The conditions for their applica-
bility, which ensure the existence and uniqueness of a solution to the flow distribution problem,
are considered. We propose generalized nodal pressure and loop flow rate methods, which can be
applied regardless of the forms of specific element models. Final algorithms, which require lower
computational costs versus the known approaches designed for non-conventional flow models, are
substantiated. Proposed models, methods, algorithms, and their capabilities, are analytically and
numerically illustrated by an example of a fragment of gas transmission network with compres-
sor stations.

Keywords: pipeline system; hydraulic circuit; flow distribution problem; flow models; mathematical
and computer modeling

1. Introduction

The problems of flow distribution are the fundamental problems of analysis and
justification of decisions on the management of operation modes of pipeline systems (PLSs)
of various types and purposes (heat-, water-, oil-, gas supply, etc.) in their design, operation,
and supervisory control. The requirements for the efficiency of the methods of solving these
problems are constantly increasing. Such requirements include the following: (1) speed;
(2) reliability, which manifests itself in the guaranteed solutions with a predetermined
accuracy; (3) ability to solve high-dimensional problems; (4) universality with respect to
an arbitrary structure of the object of the analysis, the composition of its elements, and
changes in design conditions.

The expediency of development and elaboration of unified methods for modeling
operation modes of PLSs of various types is due to the commonality of the following:
(1) their structural and topological properties; (2) physical laws of liquid (gas) flow in
individual elements; (3) conservation laws of networks; (4) conceptual and mathematical
statements of analysis problems. Therefore, in what follows, when considering models and
methods, we will use the term “hydraulic circuit” (HC), irrespective of the specific purpose
of the PLSs being modeled.

The conventional model of steady-state isothermal flow distribution in the HC with
concentrated parameters includes Kirchhoff laws and closing relations. It represents a
system of linear and nonlinear algebraic equations, and there are two basic forms of writing
such models: the nodal and loop ones. The nodal model is as follows [1,2]:

Ax = Q, AT P = y, y = f (x), (1)
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where A—a complete (m× n)-matrix of incidences of nodes and branches of the directed
graph of the analytical circuit model with elements of aj i = 1(−1), if node j is initial (final)
one for branch i and aj i = 0, if branch i is not incident to node j; x, y—n-dimensional
vectors of flow rates and pressure drops at the branches of the analytical circuit model;
A—a [(m− 1)× n]-matrix of incidences formed from A by crossing out one of the linearly
dependent lines; f (x)—a n-dimensional vector-function with elements fi(xi), i = 1, n,
reflecting the laws of the pressure drop as a function of flow rate (flow model) at the
branches of the HC; Q—a (m− 1)-dimensional vector of nodal flow rates with elements
Qj > 0 (Qj < 0) if node j has an inflow (extraction) and Qj = 0, if node j is a simple branch
connection point; P—a m-dimensional vector of nodal pressures.

The loop model differs only in the way the second Kirchhoff law is written: instead
of the second relation in (1) one uses By = 0. Here (B) is a (c× n)-matrix of loops, with
elements br i = 1(−1), if the orientation of branch i coincides (does not coincide) with
the direction of traversal of loop r and br i = 0, if branch i is not included in loop r; c is
the number of main loops equal to the number of branches of the HC not included in the
spanning tree of the HC, and called chords. Hence c = n−m + 1. The equivalence of both
forms of notation follows from the fact that B(AT P = y) ⇒ 0 = By due to the well-known
property of orthogonality of matrices A and B [3].

Let P =

[
P

Pm

]
, then the classical problem of flow distribution consists in determining

vectors x, y and P given the known form of fi(xi), i = 1, n, predetermined matrix A, vector
Q, and pressure at one of the nodes (Pm), which for simplicity’s sake is assumed to be zero.
In the loop model, vector P is determined after solving the problem with respect to x and y.

Numerous methods and algorithms for solving this problem are known, an overview
of which can be found, for example, in [1,4], etc. However, the main ones are the classical
methods: those of node and loop methods (NM and LM) [1,2,5–8], etc., which have been
widely adopted in modeling the operation modes of PLSs of heat- [1,9,10], etc., water- [1,9],
etc., gas supply [11–13], etc.

Both methods are based on the Newton-Raphson method in conjunction with special
methods of decreasing the order of the system of linearized equations to be solved. Let us

introduce decomposition x =

[
xC
xT

]
, where xC, x T are the flow rate vectors at the chords

and branches of the spanning tree, respectively. Finding the direction of the Newton-
Raphson decrement to the flow rates at the chords (∆xk

C) in the LM and to the nodal
pressures (∆Pk) in the NM at the k-th iteration involves solving the following systems
of equations:

B f ′xBT∆xk
L = −B f (xk), (2)

A( f ′x)
−1 AT∆Pk = Q− Axk, (3)

where f ′x = ∂ f
∂x is the diagonal matrix of partial derivatives at point xk.

In both systems the coefficient matrices are symmetric. For two-dimensional circuits
(which is typical of most real-life PLSs), matrix (2) of coefficients of the system has a strict
diagonal predominance, and in (3) it is not strict. Therefore, the LM usually requires fewer
iterations than the NM (although the situation is corrected if one applies a decrement
length adjustment to the NM). Computational costs are also related to the order of systems
to be solved, which are different in these methods (c in (2) and m− 1 in (3)). Figure 1 shows
limiting examples of analytical circuit models illustrating the absolute dominance of the
LM for the circuit in Figure 1a and that of the NM for the circuit in Figure 1b, since in this
case each of systems (2) and (3) is reduced to a single equation. But these systems can
be arbitrarily large if one applies the LM to the circuit in Figure 1b, and the NM to the
circuit in Figure 1a. Therefore, in general, both methods have their place and the areas of
applications where one of them proves more preferable than the other.
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Figure 1. Examples of analytical circuit models where one of the methods is deemed more preferable
than the other: (a) LM; (b) NM.

Analysis of numerous dependencies and formulas for the description of the steady
isothermal flow of the working fluid (liquid or gas) through pipelines and other elements of
the PLS allows one to introduce the following classification as derived from the standpoint
of their mathematical features [14]: (1) conventional (explicit); (2) implicit flow rate-based;
(3) pressure-dependent flow models; (4) 2-and-3 hybrid cases.

In the conventional case fi(xi) = sixi|xi| − Yi, where si is the hydraulic loss of the
branch, Yi > 0 is the pressure increment at active branches (e.g., with pumping stations) and
Yi = 0 at passive branches (e.g., for pipeline sections). Here we have explicit expressions
for derivative ∂ fi/∂xi = 2si|xi| and function ψi(yi) =

√
|yi + Yi|/si · sign(yi + Yi) inverse

to fi(xi).
Implicit flow rate-based models of the flow are mainly applicable to pipelines. It

follows from the basic Darcy-Weisbach formula [15] h = λ l
d

V2

2g that s = λ 8l
ρπ2d5 , since

V = 4|x|/(πd2ρ) and y = ρgh. Here: h, V—head loss (m) and flow velocity; y, x—pressure
loss and mass flow rate of the working fluid; l, d—pipe length and inside diameter; ρ—
density of the transported fluid; g—gravitational acceleration. The coefficient of friction
drag λ can be treated as a constant only in the region of fully-developed turbulence, while
in the general case it depends on velocity (Reynolds number) Re(V) = Vd/ν, where ν
is the kinematic viscosity coefficient of the fluid. Examples of such dependencies are the
common Colebrook-White [16]

λ =

[
−2lg

(
∆r

3.7d
+

2.51
Re(V)

√
λ

)]−2

and Altshul [17]

λ = 0.11
(

∆r

d
+

68
Re(V)

)0.25

formulas. Therefore, friction loss si for the branch that models the pipeline will generally
be a function of si(xi). Function ψi(yi) becomes implicit, and the derivatives required for
the LM or NM to be applied must already be determined by the rules of differentiation of
such functions, which produces [14]:

f ′x,i =
d fi
dxi

= (2si + s′x,ixi)|xi|,

where s′x,i =
dsi
dxi

= dsi
dλi

dλi
dVi

dVi
dxi

, dsi
dλi

= 8li
ρπ2d5

i
, dVi

dxi
= 4

πd2
i ρ

.
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Pressure-dependent flow models mainly arise from the working fluid (natural gas,
water vapor, etc.) compressibility effect. Here the pressure loss depends not only on the
flow rate but also on the value of the pressure itself. Let us give examples of such models,
denoting by pH, pK the pressures of the working fluid at the beginning and at the end of
the modeled PLS element.

The dependency of the pressure built up by a centrifugal gas compressor unit on its
inlet volumetric flow rate (qH) is represented as a graphical characteristic of the compression
ratio pK

pH
= ε(qH). Functions ε(qH) are approximated with sufficient accuracy by algebraic

polynomials of degree three or lower [18,19] ε(q) = a0 + a1qH + a2q2
H + a3q3

H. Taking into
account that q = x/ρ and the equation of state of the gas can be represented as ρ = p/k
(where k = ZRT is a known coefficient for a given gas temperature T and its physical
properties: gas constant R and compressibility coefficient Z) we arrive at the following
flow model

pK

pH
= α0 +

α1

pH
x +

α2

p2
H

x2 +
α3

p3
H

x3 or pK = pHα0 + α1x +
α2

pH
x2 +

α3

pH
x3. (4)

Numerous variations of this model are known [20,21], etc., they are introduced as a
result of neglecting some of the terms of the polynomial or approximating ε2(qH) instead
of ε(qH).

In [22], the authors present a gas pipeline section model that allows factoring in more
adequately the difference in geodetic heights of its ends

p2
H − p2

K = s x|x|+
g · l · sin(θ) · (pH + pK)

2

2 · k , (5)

where θ—pipe angle; Z—compressibility factor; R—gas constant; T—average gas tempera-
ture. In [23] an alternative model is given

p2
H − eα p2

K = s x|x|, (6)

where α is the coefficient that depends on the difference of geodetic heights of the ends of
the section.

When modeling the pipelines of water-steam circuits of steam-turbine plants, the
following formula is used to calculate the pressure drop [24,25]

y = λ
l

2dρ( p̃)′ω2

(
1 + σ( p̃, x) · χ( p̃, x) ·

(
ρ( p̃)′

ρ( p̃)′′
− 1

))
x2, (7)

where ρ( p̃)′, ρ( p̃)′′—densities of liquid and vapor phases of the flow in the function of
average pressure p̃; ω—cross-sectional area of the pipe; σ—coefficient that accounts for the
effect of the structure of the steam-water flow on the friction loss; χ—mass vapor content
of the flow.

For turbine control valves the following formula applies [26]

1.09 pK pH − 0.09 p2
H − p2

K = sx2. (8)

The above examples (4)–(8) attest to the impossibility of reducing it to conventional
form y = f (x), where y = pH − pK. Conceivably, the technique of double iteration
cycles [1,2] is applicable to the analysis of the HC with such flow models. Here, in the
inner iteration cycle, the classical flow-distribution problem is solved (by means of the LM
or NM) at fixed values s̃∗, Ỹ∗ of pressure-dependent functions s̃(pH, pK, x), Ỹ(pH, pK, x)
of flow models y = s̃∗x|x| − Ỹ∗, and in the outer cycle, the values of these functions are
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defined more precisely depending on the obtained values of flow rates and pressures. For
example, in (5) one can assume

y = p2
H − p2

K, Ỹ∗ = −
g · l · sin(θ) · (p∗H + p∗K)

2

2 · Z · R · T ,

in (6) Ỹ∗ = (1− eα)(p∗K)
2, etc. The technique is sufficiently universal, but its application is

associated with the ambiguity of arriving at functions s̃, Ỹ, the need for special justification
and ensuring convergence, a multiple increase in computational costs if compared to the
conventional case.

The above analysis of the published research shows that many authors: (1) pay at-
tention to the fundamental difference of the models of the flow of compressible fluid
from that of the case of incompressible fluid [12,21,22,25,27–29]; (2) note the impos-
sibility or significant difficulties of applying conventional methods of analysis of the
flow distribution in these cases [12,21–23,25,27–31]; (3) state the lack of general, uni-
versal methods [12,21,22,25,28,30]; (4) propose their own methods and algorithms for
calculating the flow distribution in complex systems of conveying gas through trunk
pipelines [12,21,22,28–31], heat and steam supply systems [25], process pipelines sys-
tems [27] and other PLSs, transporting gases or gas-liquid mixtures. The methods pro-
posed in the published research boil down either to the technique of double iteration
cycles [25,27,28], or presuppose increasing the dimensionality of the systems of equations
to be solved as compared to (2) or (3) [22,23,30]. So, for example, at each step of the solution
of the flow-distribution problem by the Newton-Raphson method in [12,21–23], etc., it is
proposed to solve a system of linearized equations of order n + m− 1 to simultaneously
find the step direction by flow rates (x) and pressures (P), and in [30] it is proposed to solve
that of order n by flow rates (x).

A new method, called the modified node method (MNM), was proposed in the
study [14]. It provides a solution to the problem with arbitrary flow models in the space of
vector P. That is, at each step of the iterative process linear systems of equations of order m
are solved. Below, for the first time, an attempt is made to generalize the problems and
methods of calculating the steady-state isothermal flow distribution in hydraulic circuits
for arbitrary models of the fluid flow. In particular, a new (modified) loop method (MLM)
is proposed, which provides a solution to the problem in the space of loop flow rates (xC)
of the order of c.

2. Generalization of the Flow Distribution Model and the Node Method

All of the above types of liquid or gas flow models along the elements of the HC can
be reduced to a general form of writing down pressure-dependent model ϕ(pH, pK, x) = 0.
With this in mind, instead of (1), the following generalized model of flow distribution is
proposed [14]

Ax = Q, (9)

pH = AT
HP, (10)

pK = −AT
KP, (11)

ϕ(pH, pK, x) = 0, (12)

where pH, pK—n-dimensional vectors of pressures at the beginning and end of branches,
respectively, AH, AK—(m× n)-matrices of incidences that capture separately the initial
and final nodes of branches so that AH + AK = A, ϕ(pH, pK, x)—a vector-function with
elements ϕi(pH,i, pK,i, xi), i = 1, n, reflecting arbitrary flow laws, including conventional
ones, implicitly determined by flow and pressure-dependent.

Here are the main provisions of MNM for solving the problem of flow distribution
based on model (9)–(12). Let at the k-th iteration there be value Pk, to which we can map
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unequivocal values of pk
H, pk

K and xk from (10), (11), and (12), respectively. Linearization of
Equations (9)–(12) yields

A∆xk = −uk
1, (13)

∆pk
H = AT

H∆Pk, ∆pk
K = −AT

K∆Pk, (14)

ϕ′PH∆pk
H + ϕ′PK∆pk

K + ϕ′x∆xk = 0, (15)

where uk
1 = Axk−Q, and ϕ′PH = ∂ϕ

∂pH
, ϕ′PK = ∂ϕ

∂pK
, ϕ′x = ∂ϕ

∂x —diagonal matrices of partial

derivative matrices of order n. Let us express ∆xk from (15)— ∆xk = −(ϕ′x)
−1(ϕ′PH∆pk

H +
ϕ′PK∆pk

K). Given (14) we obtain

∆xk = −(ϕ′x)
−1

(ϕ′PH AT
H − ϕ′PK AT

K)∆Pk. (16)

Substituing (16) in (13) yields

A(ϕ′x)
−1
(

ϕ′PH AT
H − ϕ′PK AT

K

)
∆Pk = uk

1. (17)

By the rules of differentiation of implicit functions

(x′PH)i =
∂xi

∂pH i
= −

(
∂ϕi
∂xi

)−1 ∂ϕi
∂pH i

and (x′PK)i =
∂xi

∂pK i
= −

(
∂ϕi
∂xi

)−1 ∂ϕi
∂pK i

, i = 1, n.

Hence, x′PH = −(ϕ′x)
−1

ϕ′PH, x′PK = −(ϕ′x)
−1

ϕ′PK and are the diagonal matrices of
the corresponding partial derivatives of order n. Then system (17) can be represented as

[A(x′PH)
k AT

H − A(x′PK)
k AT

K]∆Pk = −uk
1. (18)

Thus, the proposed MNM is reduced to an iterative process of finding a solution
in the space of nodal pressures Pk+1 = Pk + λk∆Pk, where ∆Pk is determined based on
the solution of (18), λk—step length as determined by the condition of one-dimensional
minimization of some norm of vector uk

1.
We will also show that the considered NM modification covers the canonical case when

ϕ(pH, pK, x) = pH − pK − f (x) = 0. (19)

In this case ϕ′PH = En, ϕ′PK = −En, where En is a unit matrix of order n, and(
ϕ′PH AT

H − ϕ′PK AT
K

)
=
(

En AT
H + En AT

K

)
= AT

H + AT
K = AT .

Given that ϕ′x = − f ′x, instead of (17) we have (3).
This section may be divided by subheadings. It should provide a concise and precise

description of the experimental results, their interpretation as well as the experimental
conclusions that can be drawn.

3. Conditions of Existence and Uniqueness of the Solution

Proofs of the existence and uniqueness of the solution to the conventional problem of
flow distribution as based on model (1) are given in [1,32,33]. The existence and uniqueness
conditions are reduced to the requirement of monotonicity of functions fi(xi), i = 1, n.
Namely, these functions must be smooth (continuously differentiable) and monotonically
increasing, i.e., fi(x∗∗i ) > fi(x∗i ) given x∗∗i > x∗i (Figure 2a). For the conventional model
represented in the generalized form (19), these conditions are equivalent to simultaneously
meeting requirements of monotone increasing ϕi(pH,i, xi) (for arbitrary fixed p∗K,i) and
monotone decreasing ϕi(pK,i, xi) (for fixed p∗H,i) over the entire set of values pH,i, pK,i, xi
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(Figure 2b,c). Therefore, the requirements for monotonicity of ϕi(pH,i, pK,i, xi), i = 1, n, can
be formulated as

∂pH, i

∂xi
= −

(
∂ϕi

∂pH i

)−1 ∂ϕi
∂xi

> 0,
∂pK i
∂xi

= −
(

∂ϕi
∂pK i

)−1 ∂ϕi
∂xi

< 0, i = 1, n. (20)

Figure 2. Charts of conventional flow models for the passive (1) and active (2) branches of the HC in coordinates: (a) (x, y);
(b) (pH, x); (c) (pK, x).

Let us consider the properties of coefficient matrix (18)

M̃ = A(x′PH)
k AT

H − A(x′PK)
k AT

K,

first denoting η̃i = (x′PH)i, κ̃i = (x′PK)i, i = 1, n. Diagonal elements M̃ are defined as M̃jj =

∑
i∈I−j

η̃i − ∑
i∈I+j

κ̃i, where I−j (I+j ) is the set of branches coming from (going into) node j. Off-

diagonal elements: M̃jt = 0, if nodes j and t are not connected by any branches; M̃jt = κ̃i, if
nodes j and t are connected by single branch i and t is its terminal node; M̃jt = −ηi, when
t is the initial node of branch i; M̃jt = − ∑

i∈Ijt

η̃i + ∑
i∈Ijt

κ̃i, if nodes j and t are connected by

parallel branches that form set Ijt. If conditions (x′PH)i > 0, (x′PK)i < 0, i = 1, n are met,
being equivalent to (20), we have η̃i > 0, κ̃i < 0, i = 1, n. Hence M̃jt > 0 given j = t and

M̃jt ≤ 0 given j 6= t for all j, t = 1, m− 1. In this case, M̃jj ≥
m−1
∑

t=1,t 6=j

∣∣∣M̃jt

∣∣∣, j = 1, m− 1,

where there is a strict inequality when node j (or t) is incidental to a branch that has node m
with a given pressure at the other end. Thus (as in the classical case (3)) M̃ has a non-strict
diagonal predominance, is symmetric in structure, although is not symmetric in the values
of its components. These circumstances, combined with step length adjustments, allow for
confident convergence of the MNM [14].

4. Generalized Loop Flow Rates Method

To justify the method of solving the problem in the space of loop flow rates, let us
introduce the following notations for the equations of model (9)–(12)

u1(x) = Ax−Q = 0, (21)

u2(pH, P) = pH − AT
HP = 0, (22)

u3(pK, P) = pK + AT
KP = 0, (23)

ϕ(pH, pK, x) = 0. (24)
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Let there be a k-th approximation to the solution such that uk
1 = 0, uk

2 = 0, uk
3 = 0,

ϕk = ϕ(pk
H, pk

K, xk), ϕk
T = 0. The linearization of Equations (21)–(24) at the point of this

approximation yields
A∆xk = 0, (25)

∆pk
H − AT

H∆Pk = 0, (26)

∆pk
K + AT

K∆Pk = 0, (27)

ϕ′PK∆pk
H − ϕ′PH∆pk

K + ϕ′x∆xk = −ϕk. (28)

Decreasing the order of the linearized model (25)–(28) to the space of loop flow rates
is reduced to the following steps.

1. The exclusion of vectors ∆pk
H, ∆pk

K on the basis of (26) and (27) yields

A∆xk = 0, (29)

Φk∆Pk + ϕ′x∆xk = −ϕk, (30)

where
Φk = [ϕ′PK AT

H + ϕ′PH AT
K]. (31)

2. Decomposition of vectors and matrices of model (29) and (30) on the basis of belonging
to chord branches (C and branches of the spanning tree (T) yields

AC∆xk
C + AT∆xk

T = 0, (32)

Φk
C∆Pk + (ϕ′x)C∆xk

C = −ϕk
C, (33)

Φk
T∆Pk + (ϕ′x)T∆xk

T = 0. (34)

3. Vector ∆xk
T exclusion. From (32) we have

∆xk
T = −A−1

T AC∆xk
C = BT

T ∆xk
C, (35)

since BT
T = −A−1

T AC [1,2]. Hence, instead of (34), we get

Φk
T∆Pk + (ϕ′x)T BT

T ∆xk
C = 0. (36)

4. Vector ∆Pk exclusion. Let us express ∆Pk from (36)

∆Pk = −(Φk
T)
−1

(ϕ′x)T BT
T ∆xk

C. (37)

Substituting this expression into (33) yields the desired linearized loop model

[(ϕ′x)C −Φk
C(Φ

k
T)
−1

(ϕ′x)T BT
T ]∆xk

C = −ϕk
C. (38)

Let us also show that the proposed method in the case of canonical closure relations (19)
when ϕ′PH = En, ϕ′PK = −En and ϕ′x = ∂ f

∂x = f ′x,—coincides with the conventional LM.
In this case

Φk = [ϕ′PK AT
H + ϕ′PH AT

K] = [AT
H + AT

K] = AT , Φk
C = AT

C, Φk
T = AT

T , −Φk
C(Φ

k
T)
−1

= BT ,

since BT = −AT
C(AT

T)
−1. Hence, the matrix of coefficients in (38)

[(ϕ′x)C −Φk
C(Φ

k
T)
−1

(ϕ′x)T BT
T ] = [( f ′x)C + BT( f ′x)T BT

T ] = B f ′xBT ,
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since B =
[

Ec BT
]

and

B f ′xBT =
[

Ec BT
][ ( f ′x)C 0

0 ( f ′x)T

][
Ec
BT

T

]
= ( f ′x)C + BT( f ′x)T BT

T .

Let us show that in the case in question the right-hand side of (38) is −B f (xk).
Here (24) given (22) and (23) can be represented as ϕ(pH, pK, x) = AT P − f (x) = 0.
In this case ϕk

T = fT(xk
T)− AT

T Pk and ϕk
C = fC(xk

C)− AT
CPk. Since ϕk

T = 0, then Pk =

(AT
T)
−1 fT(xk

T). Hence

ϕk
C = fC(xk

C)− AT
C(AT

T)
−1

fT(xk
T) = fC(xk

C) + BT fT(xk
T) = B f (xk).

Thus, in the case of relations (19), system (38) in the proposed method coincides with
system (2) of the conventional LM.

5. Algorithmization of a Generalized Loop Method

A computational scheme of the proposed generalized method of loop flow rates is
reduced to the following. Let a next approximation xk be given, then: (1) calculate value
Pk such that ϕT(Pk, xk

T) = 0; (2) calculate ϕk
C = ϕC(Pk, xk

C) and, if ||ϕk
C|| < σ, where σ is a

specified accuracy of residuals in loops, end the calculation; (3) build and solve a system
of equations with respect to ∆xk

C; (4) calculate a new approximation xk+1 = xk + BT∆xk
C,

k := k + 1, and go to step 1.
There are two main distinctions from the conventional scheme here.

1. The conventional method of loop flow rates suggests that value P is calculated at the
point of problem solution with respect to x. It is also necessary to determine Pk in
each iteration to find the derivatives at the point of running solution with respect to
both x, and P. This operation does not pose any difficulties as Pk can be calculated
algorithmically by alternate application of relationships ϕi(pk

H,i, pk
K,i, xk

i ) = 0 along
the branches of a spanning tree starting from its root with a given pressure P∗m.

2. The conventional method of loop flow rates contains finite relations for nonzero
elements of the coefficient matrix K = B f ′xBT[1,2]. For example, Krr = ∑

i∈Ir

( fx
′)i

r = 1, c, where Ir is a set of branches that enter the loop r and Krt = ±( fx
′)i, r, t = 1, c,

r 6= t, where i is a branch that belongs simultaneously to loops r and t, and sign ± is a
result of scalar product bribti, i.e., it depends on the direction of i-branch with respect
to the direction of a “bypass” of each loop r and t. Obviously, the construction of the
coefficient matrix

K̃ = (ϕ′x)C −Φk
C(Φ

k
T)
−1

(ϕ′x)T BT
T (39)

of the system (38) by formally performing operations of inversion, multiplication, and
addition of high-dimensional matrices is associated with significant computational
costs. Therefore, this issue requires special consideration.

Denote ηi = ∂ϕi
∂pH i

, κi = ∂ϕi
∂pK i

, χi = ∂ϕi
∂xi

. By virtue of (31), each i-th row of the
n× (m− 1)—matrix Φ contains no more than two nonzero elements that correspond to
the indices of the initial (in(i)) and finite (out(i)) nodes of the i-th branch of the hydraulic
circuit and it has only one node if the branch is incident to node m. This means that Φij = ηi,
if j = ini; Φij = −κi, if j = out(i); Φij = 0, if j 6= in(i) and j 6= out(i). Given this, the
elements of matrix (39) will be determined as

Kr,r = χr −
m−1

∑
i=1

[
ηr(Φ−1

T )in(r),i − κr(Φ−1
T )out(r),i

]
χi+cbr,i+c, r = 1, c,

Kr t = −
m−1

∑
i=1

[
ηr(Φ−1

T )in(r), i − κr(Φ−1
T )out(r), i

]
χi+cbt,i+c, r, t = 1, c, r 6= t.



Mathematics 2021, 9, 796 10 of 16

It remains to clarify how to define the elements of Φ−1
T .

Nodes and branches of the directed spanning tree of the hydraulic circuit can always
be renumbered so that in(i) > out(i) = i. Then, the (m− 1)× (m− 1)—matrix ΦT will be
an upper triangular one, and

(ΦT)ij =


−κi, i f j = out(i) = i

ηi, i f j = in(i) > i
0, i f j 6= i u j 6= in(i)

(40)

Accordingly, matrix Φ−1
T is also an upper triangular one, and its elements will be

determined as

(Φ−1
T )ij =


− 1

κi
, i = j

ηi
κi
(Φ−1

T )H i,j, i < j
0, i > j

(41)

The proof relies on the known relationship ΦTΦ−1
T = E, from which:

1. at i = j, given (40), we have the equation (ΦT)i,i(Φ
−1
T )i,i = −κi(Φ−1

T )i,i = 1, and then

(Φ−1
T )i,i = −1/κi;

2. at i < j, we obtain the equation, which, by virtue of (40), has only two terms

m−1

∑
k=i

(ΦT)i k(Φ
−1
T )k j = −κi(Φ−1

T )i j + ηi(Φ−1
T )H i,j = 0⇒ (Φ−1

T )i j =
ηi
κi
(Φ−1

T )H i,j.

Potentially, relationship (41) makes it possible to organize a recurrent scheme for
calculating elements of Φ−1

T (guaranteeing that for each combination i < j, value (Φ−1
T )H i,j

in the right-hand part of (41) is already known) in two forms:

1. row-by-row (top to bottom) i = m− 1, . . . , 1, j = i, . . . , m− 1;
2. column-by-column (from left to right) j = 1, . . . , m− 1, i = j, . . . , 1.

This guarantee follows from the ascending sequences for j. Nevertheless, here we
suppose that (3) will be applied O = 0.5 ((m− 1)2 + (m− 1)) times, i.e., for all elements of
the upper triangle Φ−1

T , among which there can be many nonzero ones.
Let us show (Φ−1

T ) ij 6= 0, if there is a path from node j to node i and (Φ−1
T ) ij = 0, if

there is no such path. Assume that i0 = out(i) = i. Then the recurrent formula for (Φ−1
T )i j

can be expanded as

(Φ−1
T )i0, j =

ηi0
κi0

(Φ−1
T ) i1,j, (Φ

−1
T )i1, j =

ηi1
κi1

(Φ−1
T ) i2,j, . . . ,

where i1 = out(i1) = in(i0), i2 = out(i2) = in(i1) and so on. Since in(ik) > out(ik) = ik the
sequence of indices of branches is ascending (i0 < i1 < i2 . . .), and the branches themselves
belong to some path that finishes at node i0. At the k-th step of building such a sequence,
there can be three cases:

1. ik < j—the sequence can be continued;
2. ik = j—according to (41), (Φ−1

T )ik,j = −
1
κj
6= 0;

3. ik > j—as it follows from (41), (Φ−1
T )ik,j = 0.

Case 2 means that the path from node j = ik to node i = k0 is found and here
(Φ−1

T ) ij 6= 0, and in case 3, there is no such path, and (Φ−1
T ) ij = 0.

From this, one can obtain a formula for calculating only nonzero elements of Φ−1
T :

(Φ−1
T )ij = −

1
κj

∏
k∈R(j,i)

ηk
κk

, where R(j,i) is a set of indices of branches that belong to the path

from node j to node i. The main flaw of using this formula is a repetition of operations
for included paths, since the sequence i0, i1, i2, . . . means that R(j,i0) ⊂ R(j,i1) ⊂ . . . ⊂
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R(j,i). In this regard, the following recurrent algorithm will be the most optimal: for each

i = m− 1, . . . , 1, assume j = i, (Φ−1
T )ij = −

1
κi

and as long as in(j) < m, perform j← in(j) ,

(Φ−1
T )ij =

ηi
κi
(Φ−1

T )in(i),j.
This algorithm can be called “row-by-row bottom-up”, since there can also be a

column-by-column (left to right) calculation pattern. However, it works well with the
formulas for calculating the matrix of coefficients K, if the order of summation is changed
to a reverse one.

6. Analytical Case Study

Let us show what the main matrices for the scheme in Figure 3 look like.

A =

[
A
am

]
=

[
AC AT

am

]
=


j\i 1 2 3 4 5

1 −1 0 −1 0 0
2 0 −1 1 −1 0
3 1 1 0 0 −1
4 0 0 0 1 1

,

A = AH + AK =

 0 0 0 0 0
0 0 1 0 0
1 1 0 0 0

+

 −1 0 −1 0 0
0 −1 0 −1 0
0 0 0 0 −1

,

M̃ = [A(x′PH)
k AT

H − A(x′PK)
k AT

K] =

 −κ̃1 − κ̃3 −η̃3 −η̃1
κ̃3 η̃3 − κ̃2 − κ̃4 −η̃2
κ̃1 κ̃2 η̃1 + η̃2 − κ̃5

,

B =
[

E BT
]
=

 r\i 1 2 3 4 5
1 1 0 −1 −1 1
2 0 1 0 −1 1

, ΦT =

 −κ3 η3 0
0 −κ4 0
0 0 −κ5

,

ΦCΦ−1
T =

[
−κ1 0 η1

0 −κ2 η2

]
×

 −
1
κ3
− η3

κ3κ4
0

0 − 1
κ4

0
0 0 − 1

κ5

 =

[
κ1
κ3

κ1η3
κ3κ4

− η1
κ5

0 κ2
κ4

− η2
κ5

]
,

K = (ϕ′x)C −ΦCΦ−1
T (ϕ′x)T BT

T =

[
χ1 +

κ1χ3
κ3

+ κ1η3χ4
κ3κ4

+ η1χ5
κ5

κ1η3χ4
κ3κ4

+ η1χ5
κ5

κ2χ4
κ4

+ η2χ5
κ5

χ2 +
κ2χ4

κ4
+ η2χ5

κ5

]
or

K =

[
χ1 − κ1Ψ1,1χ3 − κ1Ψ1,2χ4 − η1Ψ3,3χ5 −κ1Ψ1,2χ4 − η1Ψ3,3χ5

−κ2Ψ2,2χ4 − η2Ψ3,3χ5 χ2 − κ2Ψ2,2χ4 − η2Ψ3,3χ5

]
, where Ψ = Φ−1

T

Figure 3. A scheme. Thick lines are spanning tree branches, and dashed arrows are chords.
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As seen, the matrices AT
T , ΦT , Φ−1

T are upper triangular. (Φ−1
T ) ij 6= 0, if there is a

directed path from node j to node i, and (Φ−1
T ) ij = 0, otherwise. The structure of matrix

ΦCΦ−1
T is identical to BT . Matrices M̃ and K are diagonally dominant (by absolute value),

and symmetrical in structure but not in values of their elements.

7. Numerical Case Study

Let us consider a numerical case study on the application of proposed methods to a
fragment of the high-pressure gas transmission system [21], presented in Figure 4.

Figure 4. Scheme of a gas transmission system. Thick lines correspond to a compressor, thin lines—to pipeline sections.

All pipeline sections are horizontal and modeled by the relationship |pH,i|pH,i −
|pK,i|pK,i = sixi|xi|, i = 2, 6, 10, with s2 = 0.006; s6 = 0.253; s7 = 4.757; s8 = 0.436; s9 = 1.332;
s10 = 0.349. Relationships for compressor have the form

ϕ(pH,i, pK,i, xi) =

(
β0,i +

β2
1,i

4β2,i

)
pH,i|pH,i| − pK,i|pK,i| − β2,i

(
xi −

β1,i

2β2,i
pH,i

)∣∣∣∣xi −
β1,i

2β2,i
pH,i

∣∣∣∣ = 0

and values of their coefficients are indicated in Table 1.

Table 1. Coefficients of compressor characteristics.

i β0,i β1,i β2,i

1 1.040975262 0.4520492230 0.1660378943
3 1.040975262 0.4520492230 0.1660378943
4 1.056105913 0.4352722015 0.2396158372
5 1.049124727 0.3668417249 0.1867004063

Derivatives of this relationship have the form
(

∂ϕ
∂x

)
i
= −2β2,i

∣∣∣x− β1,i pH,i
2β2,i

∣∣∣, ( ∂ϕ
∂pH

)
i
=

2|pH,i|
(

β0,i +
β2

1,i
4β2,i

)
− β1,ixi −

β1,i pH,i
2β2,i

· sign
(

xi −
β1,i pH,i

2β2,i

)
,
(

∂ϕ
∂pK

)
i
= −2|pK,i|.

Withdrawals at nodes (million m3/day) are Q1 = 19.1; Q4 = 14.8; Q5 = 0.632; Q6 = 0.32.
Set pressure is P9 = 33.778 at.

The following technique is used to obtain the initial approximation P0 in the MNM,
which is equivalent to the initial approximation x0 employed in MLM. Let an arbitrary
value x0

C be set, then x0
T = A−1

T (Q− ACx0
C), and P0 is determined from ϕT(P0, x0

T) = 0.
The results of calculating the MLM by iterations are shown in Tables 2–4. In this study,

x0
C =

{
x0

1, x0
2
}

. As seen, the initial approximation (k = 0) is rather far from the solution. It
has the flow values opposite to the orientations of branches, and negative pressure values
that are beyond the solution. Nevertheless, both methods provide monotonic convergence,

which is illustrated in Figure 5. Here, for MNM ‖u1‖ = log
(

max
1≤j≤m−1

∣∣u1,j
∣∣), and for

MLM ‖u2‖ = log
(

max
1≤r≤c

∣∣∣ϕk
C,r

∣∣∣). Thus, the MNM required 6 iterations (with step length

regulation), while MLM needed only 4 iterations.
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Table 2. Flow rates and pressures for iterations.

i\k 0 1 2 3 4 j\k 0 1 2 3 4

1 10.00 14.45 10.70 10.80 10.80 1 −24.03 30.49 31.60 31.55 31.55
2 20.00 4.04 2.44 2.50 2.50 2 −21.22 32.51 33.56 33.51 33.51
3 29.10 8.68 10.84 10.80 10.80 3 39.83 42.07 41.76 41.76 41.76
4 −4.24 11.72 13.32 13.25 13.25 4 50.05 35.33 31.91 32.05 32.05
5 −4.24 11.72 13.32 13.25 13.25 5 50.99 36.65 33.37 33.51 33.51
6 −4.24 11.72 13.32 13.25 13.25 6 50.01 44.29 43.78 43.80 43.80
7 −4.56 11.40 13.00 12.93 12.93 7 49.96 44.68 44.29 44.31 44.31
8 14.80 14.80 14.80 14.80 14.80 8 41.51 38.94 38.77 38.77 38.77
9 39.10 23.14 21.54 21.60 21.60 9 33.78 33.78 33.78 33.78 33.78

10 19.10 19.10 19.10 19.10 19.10

Table 3. Derivative values over iterations.

1 2 3 4

χi ηi κi χi ηi κi χi ηi κi χi ηi κi
1 −11.95 74.84 −79.65 −10.47 76.86 −84.14 −11.72 75.16 −83.52 −11.68 75.21 −83.53
2 −0.24 42.44 −101.98 −0.05 65.02 −73.31 −0.03 67.11 −66.74 −0.03 67.02 −67.02
3 −5.61 83.48 −79.65 −12.39 74.25 −84.14 −11.67 75.22 −83.52 −11.68 75.21 −83.53
4 −16.74 69.50 −83.01 −9.09 76.45 −77.89 −8.32 77.14 −77.53 −8.35 77.12 −77.54
5 −16.81 85.53 −99.93 −9.91 86.01 −89.35 −9.25 86.22 −88.59 −9.27 86.22 −88.62
6 −2.15 99.93 −100.02 −5.93 89.35 −88.57 −6.74 88.59 −87.57 −6.71 88.62 −87.61
7 −43.46 100.02 −101.98 −108.42 88.57 −73.31 −123.64 87.57 −66.74 −123.05 87.61 −67.02
8 −12.94 101.98 −100.09 −12.91 73.31 −70.66 −12.91 66.74 −63.82 −12.91 67.02 −64.11
9 −104.16 79.65 −42.44 −61.63 84.14 −65.02 −57.37 83.52 −67.11 −57.54 83.53 −67.02

10 −13.33 42.44 −48.07 −13.33 65.02 −60.97 −13.33 67.11 −63.21 −13.33 67.02 −63.11

Table 4. The values of the coefficients of the system of equations, the right-hand side and the results
of its solution by iterations.

k Kk ϕk
C ∆xk

C

1
[
−17.55 5.61

5.61 −189.68

] [
−167.65
3052.93

] [
4.45

−15.96

]
2

[
−22.86 12.39

12.39 −208.36

] [
65.92

286.90

] [
−3.75
−1.60

]
3

[
−22.39 11.67

11.67 −217.96

] [
−1.57
−12.39

] [
0.10
0.06

]
4

[
−23.37 11.68

11.68 −217.57

] [
0

0.11

] [
0
0

]
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Figure 5. Process of convergence: (a) modified node method (MNM); (b) modified loop
method (MLM).

Figure 6 shows the results of testing MNM and MLM on 100 vectors of initial approxi-
mations, which were generated by a generator of random uniformly distributed numbers:
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for MNM −100 ≤ P0
j ≤ 100, j = 1, m− 1; for MLM −100 ≤ x0

i ≤ 100, i = 1, c. Iteration

stopping criteria are for MNM max
1≤j≤m−1

∣∣∣∆Pk
j

∣∣∣ < 0.01, max
1≤j≤m−1

∣∣∣(uk
1)j

∣∣∣ < 0.01; for MLM

max
1≤r≤c

∣∣∣ϕk
C,r

∣∣∣ < 0.01.

Figure 6. The number of calculated conditions w (%) under which the problem is solved in k iterations
for: (a) MNM; (b) MLM.

The study indicates that: (1) both methods demonstrate strong convergence; (2) the
number of iterations weakly depends on the proximity of the initial approximation to the
solution; (3) MLM requires on average fewer iterations than MNM. Note also that the
number of iterations weakly depends on the scheme dimension; however, as indicated, the
computational costs for each iteration depend on the topology of a particular scheme.

8. Conclusions

Analysis of the available variety of methods for calculating isothermal steady-state
flow distribution in pipeline systems designed for various purposes shows their significant
dependence on the specifics of models of the medium flow for individual elements. The
analysis has also demonstrated the absence of methods that are equally applicable in the
general case. The main types of such models are highlighted, including traditional, implicit
by flow rate, and pressure-dependent ones. The research shows general conditions for their
application to ensure the existence and uniqueness of a solution to the flow distribution
problem.

Against the background of a brief description of the generalized MNM put forward
in our previous studies, we propose a new loop method. Both methods are universal
with regard to the specificity of flow models, coincide with conventional methods in
the particular case of classical flow models, but each of them has its area of preferred
application depending on the PLS topology.

We propose the methods for algorithmizing the generalized loop method, which
provide the computational costs lower than those of the well-known technique of double
iteration cycles and comparable to those of the classical MLM.
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