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Abstract: This paper investigates a supply chain consisting of a single risk-neutral supplier and
a single risk-averse retailer with the call option contract and a service requirement, where the
retailer’s objective is to maximize the Conditional Value-at-Risk about profit. The optimal ordering
quantity of the retailer and the optimal production quantity of the supplier are derived with the call
option contract in the presence of a service requirement. Furthermore, by investigating the effect
of the service level and the risk aversion on the supply chain, it is found that the retailer’s optimal
Conditional Value-at-Risk is non-increasing in the service requirement and increasing in the risk
aversion, while the supplier’s optimal expected profit is non-decreasing in the service and decreasing
in the risk aversion. In addition, this paper demonstrates the impact of contract parameters on
the service-constrained supply chain, and finds that the retailer’s optimal Conditional Value-at-
Risk may be increasing, constant or decreasing in unit exercise price. Finally, with the call option
contract, a distribution-free coordination condition is derived to achieve the Pareto improvement
under Conditional Value-at-Risk criterion in the presence of a service requirement.

Keywords: supply chain coordination; conditional value-at-risk; service requirement; call option contract

1. Introduction

Today’s global market environment is full of uncertainties, coupled with hastened
technology advancement and speedy changing consumer preferences. In such a market
environment, the accurate prediction of the demand becomes extremely difficult. To
improve effective competitiveness, firms are forced to develop the capability of responding
flexibly to rapidly changing market conditions. This is particularly true for enterprises
dealing with short life cycle products (such as fashion apparel, fresh food, electronics
products, high-tech products, etc.) with comparatively long order or production lead-times,
short selling seasons, low salvage value, and high uncertainty of customer demand [1]. To
hedge against the loss associated with high understock and overstock risks, downstream
firms have to order less but more frequently to accommodate demand volatility (e.g., [2,3]),
and upstream firms need to have flexible capacity to cater for the irregular orders, which
results in a sharp increase in supply cost [4]. These results inevitably lead to conflicts
arise between the two parties, and spoil the supply chain performance tremendously. In
addition, supply chains have been becoming more and more complex and geographically
dispersed, involving a network of upstream and downstream firms around the world, and
new risks have emerged in matching demand and supply [5].

To resolve the issue of supply chain inefficiency, call option contracts are efficient in-
struments to facilitate flexible ordering (e.g., [6–8]), and is becoming increasingly desirable
in short life cycle products management. The call option contracts are operated by making
use of two parameters, namely, the option price and the exercise price. The option price is
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a reservation fee paid by downstream firms to upstream firms for reserving one unit of
the product before demand uncertainty is resolved, and the exercise price is an additional
exercise fee paid by downstream firms to upstream firms for exercising one unit of the
call option after demand is revealed. The call option contracts can help downstream firms
ensure supply to meet uncertain market demand, and also can provide the flexibility on the
number of products to purchase after further demand information is revealed. With call
option contracts, upstream firms can receive a reservation fee paid by downstream firms for
purchasing call option contracts before demand uncertainty is resolved. In addition, call op-
tion contracts can stimulate downstream firms to order more products, which also benefit
upstream firms. Thus, the call option contract is frequently adopted to hedge various risks
in many firms. It is reported that by employing call option contract to tackle the joint risk in
demand, availability and cost for key components, during the period of 2000–2006, HP has
achieved nearly $425 million in cumulative cost savings [9]. Furthermore, approximately
35% of HP’s procurement value has been achieved by adopting option contract [10]. By
using either firm order or exercising call option, China Telecom procures over 100 billion
RMB worth of products from his suppliers annually [11]. These examples veal that the call
option contract is of great applicability.

With more and more fierce business competition, the service level (the probability
of meeting the customer demand) is the key factor that exerts an effect on the purchase
choice of consumers. High service level can help firms maintaining the market share in
the existing market and gaining a competitive edge in the new market. In recent years,
to promote sales, more and more firms are promising a high service level. For example,
Dayton Hudson promises a required 100% service level to consumers. Pharmed Group
(PMG) commits to a minimum 98% order fulfillment rate. Costless Express guarantees a
required 100% fill rate to their customer orders [12]. The service requirement, a constraint
on the probability of meeting the customer demand, is becoming a practical tool in firms,
and also a challenge faced by firms. Specifically, for short life cycle products, firms face a
trade-off between the high service target and the high supply chain risk. Thus, how to set
an appropriate service target is critical for the firms. Clearly, it is essential to explore the
impact of the service requirement on the supply chain.

In most supply chain models, agents are assumed to be risk-neutral, and seek to maxi-
mize expected profit. However, many experimental studies under uncertainty (e.g., [13,14])
have asserted that most decision makers often defy risk neutrality assumption and their
decision making behaviors deviate from maximizing expected profit, which is referred to
as “decision bias” by Fisher and Raman [15]. Thus, some scholars have advocated relaxing
risk neutrality assumption, and adopting risk aversion to characterize the decision-making
behavior. Since then, risk-averse preferences have drawn plenty of attention and the supply
chain models based on risk aversion have been studied in various contexts. However, the
risk management of the risk-averse decision makers receives little attention in the existing
studies. The recent research on portfolio management shows that the risk-averse investors
are willing to balance lower expected profit for downside protection against potential
losses (e.g., [16,17]). Thus, how to hedge against the risk-averse members’ risk in supply
chain develops into an interesting issue. Nevertheless, in the existing research, only a
few researchers introduce Conditional Value-at-Risk (CVaR) measure into the risk-averse
newsvendor models (e.g., [18–20]). When incorporating risk management and supply
chain management, the risk-averse decision makers’decision making strategy and the
performance of supply chains are still unclear.

To fill this research gap, this paper jointly considers risk aversion and risk management,
and investigates the one risk-neutral supplier and one risk-averse retailer supply chain
with the call option contract and a service requirement. Specifically, CVaR is introduced
into our supply chain problem to measure and control various risks for the risk-averse
retailer. The following questions are addressed in this paper.
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(1) How does the risk-averse retailer determine the order quantity to maximize CVaR
about profit in a supply chain with the call option contract in the presence of a
service requirement?

(2) What is the supplier’s optimal production policy with the call option contract and a
service requirement?

(3) How do risk aversion, service requirement and contract parameters affect the re-
tailer’s optimal order policy, the supplier’s optimal production policy and supply
chain performance?

(4) What is the condition for supply chain coordination with the call option contract and
a service requirement?

The remainder of this paper is structured as follows. Section 2 summarizes the relevant
extant literature. The model description is presented in Section 3. In Sections 4 and 5, the
retailer’s optimal ordering policy and the supplier’s optimal production policy are derived,
respectively. In Section 6, conditions for supply chain coordination with the call option
contract are investigated. Section 7 draws conclusions and identify some directions for
further research.

2. Literature Review

The related literature will be reviewed includes three main research streams: call option
contracts, supply chain management under CVaR criterion, and service requirement respectively.

The first stream is the literature on supply chain with call option contracts. Barnes-
Schuster et al. [21] investigated the value of the call option contract in a two-period supply
chain, and show that if the exercise price is piecewise linear, the supply chain can be
coordinated. When the product demand and the spot price are random, Fu et al. [22]
analyzed the effects of call option contract on the supply chain, and derive the optimal
procurement solution by a shortest-monotone path algorithm. Zhao et al. [7] took a
cooperative game approach and discuss that the issues concerning implementation of
the coordinating option contract form, considering decision makers’ risk preferences and
negotiating powers. With yield and market demand uncertainty, Hu et al. [1] studied
the optimal ordering policy of the retailer and the corresponding production decision of
the manufacturer with an option contract, and demonstrate that both the retailer and the
manufacturer can be better off. Chen et al. [8] considered the supply chain with call option
contract and one risk-averse retailer, obtained the optimal ordering policy and the optimal
production policy, and examined the impact of price, risk aversion, and cost parameters
on the optimal ordering policy. Under random yield and spot market, Luo et al. [23]
examined the supply chain members’ optimal decisions and derive the condition for
supply chain coordination with the call option contract. Wang et al. [24] derived that the
firm’s joint optimal decisions for both single- and multi-periods with call option contracts
in the presence of customer returns. Under the mean-variance framework, Zhuo et al. [25]
investigated the conditions that the supply chain is coordinated by the call option contract.
Wan and Chen [26] explored a finite-horizon replenishment problem with call, put and
bidirectional option contracts in the context of a spot market. Huang et al. [27] investigated
a vendor-managed inventory supply chain by introducing a composed option and cost-
sharing contract, and showed that Pareto improvement can be achieved with this composite
contract. Fan et al. [28] established a Stackelberg game model via CVaR minimization.
Furthermore, they examined the influences of adjusting both option price and option
exercise price on the benefits and risks at the supplier and buyer sides. Liu et al. [29]
explored the coordination of both the supplier-led and the retailer-led supply chains with
the call option contract. Furthermore, they studied the option pricing, ordering, and
producing problems under the CVaR criteria.

The second stream is the literature on supply chain under CVaR criterion. Yang et al. [30]
studied the performance of the supply chain when the retailer is risk-averse with several
single contract. Wu et al. [31] obtained closed-form solutions for the optimal ordering
policy of the risk-averse manufacturer with the supply contract. Chen et al. [32] consid-
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ered multiple risk-averse supplier and one risk-averse retailer supply chain, and study
the performance and stability of the contract. Li et al. [33] investigated one risk-averse
manufacturer and one risk-neutral retailer supply chain. Furthermore, they studied the
condition for supply chain coordination with the risk-sharing contract. Wang et al. [34]
consider one risk-neutral supplier and two competing risk-averse retailers supply chain
with the call option contract, and determine the equilibrium option order quantity of the
retailer and the condition that the supply chain is coordinated. Under CVaR criterion,
Xie et al. [35] showed that the supply chain could be coordinated by buy-back contracts,
wholesale price contracts and revenue-sharing contracts, respectively. Zhao et al. [36]
investigated the ability of a combined contract to improve the efficiency of a supply chain,
and find that the combined contract has some advantages over individual contract in terms
of supply chain coordination and profit allocation. Chen et al. [37] showed that when
the risk-averse manufacturer’s confidence level is small enough, the quantity discount
contract can coordinate the supply chain. Under the carbon emissions tax regulation,
Zhao et al. [38] derived that the call option contract can benefit the risk-neutral supplier
and one risk-averse retailer, improve the supply chain performance, and decrease invalid
carbon emissions. Liu et al. [39] showed that the combined contract can coordinate the
supply chain, and find that when the confidence level is below a threshold, the unique
coordinating wholesale price exists.

The third stream is the literature on supply chain with a service requirement. Ernst
and Powell [40] propose a plausible model based on service-sensitive demand under
a distribution system. In addition, they derive a credible solution to the problem of
manufacturer-retailer cooperation. Sethi et al. [41] study a two-stage supply chain with a
demand information update and a service requirement. Furthermore, they derive that the
optimal first-stage order quantity is increasing in the target service level, while the optimal
expected profit is decreasing in the target service level. In addition, they analyze the
channel coordination issue with and without an order cancelation. With and without the
call option contract, Chen and Shen [42] give the optimal production policy of the supplier
and the optimal ordering policy of the retailer in the presence of a service requirement,
and show that with the option contract, the supply chain performance is improved. Jha
and Shanker [43] formulate an integrated production-inventory model, and determine the
optimal production-inventory policy by minimizing the joint total expected cost. Sawik [44]
considers supply chain disruption risks, and obtains the risk-averse solutions that optimize
the worst-case performance of a supply chain with the two different service levels measures.
Sethi et al. [45] extend their model to the case where a service constraint is imposed for each
procurement stage, and determine the optimal ordering policy with a demand information
update and two service constraints. Furthermore, they extend their model to a multi-period
problem. Hu and Feng [12] use the revenue sharing contract to study a service-constrained
supply chain with supply and demand uncertainty, and analyze the condition that the
supply chain is coordinated. Chen et al. [46] characterize the optimal decision strategy
for the supplier and the retailer with and without the bidirectional option contract, and
examine the effect of the bidirectional option contract and service requirement on the supply
chain. He et al. [47] formulate several game-theoretic models with a service requirement. In
addition, under these models, they compare firms’ equilibrium order/production quantity
and profits. Chen et al. [48] investigate the optimal operational decisions for the supplier
and the retailer with and without the put option contract, and find that with the put option
contract, high service level always benefit the supplier.

Table 1 compares the contribution of different authors. According to Table 1, call
option contracts, service requirement and CVaR have been extensively studied. However,
little research has jointly considered call option contracts, service requirement and risk
aversion (by CVaR). Zhao et al. [7] and Chen et al. [8] considered decision makers’ risk
aversion, but do not consider the service requirement and CVaR. Chen and Shen [42] and
Chen et al. [46] considered the call option contract and the service requirement, but do not
consider decision makers’ risk attitude (by CVaR). This paper is an extension of the work
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of Zhao et al. [7], Chen et al. [8], Chen and Shen [42], and Chen et al. [46], which jointly
considered these three factors concurrently. Specifically, (1) this paper provides insights
regarding the impact of service requirement and risk aversion (by CVaR) on supply chain;
(2) this paper provides suggestions for how to effectively coordinate the channel with the
service requirement and the call option contract.

Table 1. Comparison with contributions of different authors.

Author(s) Call Option
Contract

Service
Requirement Risk Aversion CVaR

Barnes-Schuster et al. [21]
√

Fu et al. [22]
√

Zhao et al. [7]
√ √

Hu et al. [1]
√

Chen et al. [8]
√ √

Luo et al. [23]
√

Wang et al. [24]
√

Zhuo et al. [25]
√

Wan and Chen [26]
√

Huang et al. [27]
√

Fan et al. [28]
√ √ √

Liu et al. [29]
√ √ √

Yang et al. [30]
√ √

Wu et al. [31]
√ √

Chen et al. [32]
√ √

Li et al. [33]
√ √

Wang et al. [34]
√ √ √

Xie et al. [35]
√ √

Zhao et al. [36]
√ √

Chen et al. [37]
√ √

Zhao et al. [38]
√ √ √

Liu et al. [39]
√ √

Ernst and Powell [40]
√

Sawik [44]
√ √

Sethi et al. [41]
√

Chen and Shen [42]
√ √

Jha and Shanker [43]
√

Sethi et al. [45]
√ √

Hu and Feng [12]
√

Chen et al. [46]
√ √

He et al. [47]
√

Chen et al. [48]
√

This paper
√ √ √ √

3. Model Description

Consider a two-echelon supply chain where the supplier is risk-neutral and the retailer
is risk-averse. The risk-neutral supplier produces the short life cycle product. The risk-
averse retailer orders the call option contract from the supplier and sells to the customers
with random demand in the selling season. Since the product’s life cycle is shortening and
subject to high demand uncertainty, product second purchasing and return are not allowed.
Furthermore, to promote the sales of products, the retailer guarantees a service target to
the customers. The model notions in this article are summarized in Table 2.



Mathematics 2021, 9, 787 6 of 19

Table 2. The notations.

Notation Description

p Unit retail price,
o Unit option price,
e Unit exercise price,
c Unit production cost,
s Unit salvage value, p > o + e > c > s,
h Supplier’s unit shortage cost for each exercised call option

which cannot be immediately filled, c < h,
q Option order quantity,
Q Production quantity,
D Random demand, E(D) = µ

f (x) Probability density function of D,
F(x) Distribution function of D, F(0) = 0 and F′(x) = f (x),
F(x) Tail distribution of F(x), i.e., F(x) = 1− F(x),

α Service requirement, 0 ≤ α ≤ 1,
η Risk aversion coefficient, 0 < η ≤ 1,

πr(D; q) Retailer’s profit without a service requirement,
CVaRη(πr(D; q)) Retailer’s CVaR without a service requirement,

πs(D; Q) Supplier’s profit without a service requirement,
ED[πs(D; Q)] Supplier’s expected profit without a service requirement,

qβ Optimal option order quantity maximizing CVaR about profit
without a service requirement,

q∗ Optimal option order quantity maximizing CVaR about profit,
Q∗ Optimal production quantity.

The event sequence of the model is as follows. At the beginning of the production
period, the retailer purchases call options for q units at unit option price o resulting in a cost
of oq. To promote sales, the retailer should order enough quantity so that the probability
of satisfying the customers’ demand is not less than α. Each call option gives the retailer
the right to buy one unit at exercise price e after the random demand has been observed.
During the production period, based on the stochastic demand and the retailer’s order
call option quantity, the supplier produces the short life cycle product up to Q at unit
production cost c resulting in a cost of cQ. During the selling period, the retailer decides
how many units to exercise the call option according to the service requirement and market
demand realization. The excess products owned by the supplier will be salvaged after the
selling period.

The information available is assumed to be symmetric. The unit shortage cost h
denotes the cost involved in expediting production. To avoid impractical cases, it is
assumed that s + o < c < h < o + e < p. As in [8], it is reasonable to assume that the
supplier is risk-neutral when it can diversify its risk through cooperation with many smaller
independent retailers, and the retailer is assumed to be risk averse and try to maximize the
CVaR of his profit. The CVaR’s definition is as follows (e.g., [36,37,49]).

CVaRη(πr(D; q)) = max
v∈R

{
v− 1

η
ED[v− πr(D; q)]+

}
, (1)

where πr(D; q) is the retailer’s random profit function, ξ is a real number that represents
the target level of the profit, ED is the expectation operator, and η ∈ (0, 1] is the retailer’s
risk aversion. When 0 < η < 1, the retailer is risk-averse. A lower value for η denotes a
higher level of risk aversion. When η = 1, it is clear that the value of CVaR is equal to the
expected profit. Then the retailer is risk-neutral.

4. Risk-Averse Retailer’s Optimal Ordering Policy

This section considers the risk-averse retailer’s optimal ordering policy under the call
option contract in the presence of a service requirement.
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Given the decision setting in Section 3, the profit function of the retailer is:

πr(D; q) =

{
(p−e)D−oq, 0 ≤ D ≤ q,
(p− o− e)q, D < q.

(2)

Thus, from Equations (1) and (2), the retailer’s optimal ordering decision under the
call option contract with a service requirement is

maxCVaRη(πr(D; q))

s.t.

{
q ≥ 0,
P(q ≥ x) ≥ α.

(3)

P(q ≥ x) ≥ α implies that q ≥ F−1(α) and qα = F−1(α). It is clear that qα is increasing in α.
The following theorem states the retailer’s optimal order quantity with the call option

contract and a service requirement.

Theorem 1. With the call option contract and a service requirement α, the retailer’s optimal order
quantity q∗ is unique and satisfies:

q∗ =
{

qα, ηβ < α,
qβ, ηβ > α,

(4)

where β = (p−o−e)
p−e and qβ = F−1(ηβ).

Proof. See Appendix A.

From the proof of Theorem 1, β = (p−o−e)
p−e , which denotes the maximum service level

with the call option contract and without a service requirement. Theorem 1 shows that
with the call option contract, when ηβ < α, the service requirement is binding and q∗ = qα,
which is consistent with those of Chen and Shen [42]. When ηβ > α, the service requirement
is not binding and q∗ = qβ. Since qβ is related to η, then the risk-neutral model presented
in Chen and Shen [42] is a special case of our model. Thus, q∗ = max(qα, qβ) and q∗ is
non-decreasing in the service requirement α. From Theorem 1, when ηβ < α, q∗ is constant
in η; when ηβ > α, q∗ is increasing in η. Thus, q∗ is also non-decreasing in the risk aversion
η, and the risk-averse retailer will order less than or equal to the risk-neutral retailer, which
is consistent with those of Chen et al. [8]. When e = 0, q∗ = max(F−1(α), F−1( (p−o)η

p )), so
the classic newsboy model is a special case of this model.

From Equations (2)–(4), it is calculated that the retailer’s maximum CVaR, denoted
CVaRη(πr(D; q∗)), is

CVaRη(πr(D; q∗)) = (p− o− e)q∗ − p− e
η

∫ q∗

0
(q∗ − x) f (x)dx. (5)

The following corollary explores how would the maximum CVaR of the retailer
CVaRη(πr(D; q∗)) change when the service requirement increases.

Corollary 1. The maximum CVaR of the retailer CVaRη(πr(D; q∗)) is a non-increasing function
of the service requirement α with the call option contract.

Proof. See Appendix A.

Corollary (1) demonstrates that with the call option contract, the service requirement
makes a significant impact on the maximum CVaR of the retailer. If the risk-averse retailer
has a desire to achieve higher CVaR, the customer has to face a lower service level. If
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the customer requires a higher service level, the risk-averse retailer has to achieve lower
CVaR. Thus, choosing an appropriate service target is important for the retailer. Please
note that when the retailer is risk-neutral, i.e., η = 1, the optimal expected profit of the
retailer ED[πr(D; q∗)] is also a non-increasing function of the service requirement α, which
is consistent with those of Chen and Shen [42] and Chen et al. [46].

Next, this paper investigates the effect of the risk aversion on the retailer’s maximum
CVaR about profit.

Corollary 2. The maximum CVaR of the retailer CVaRη(πr(D; q∗)) is an increasing function of
the risk aversion η with the call option contract.

Proof. See Appendix A.

Please note that a higher value for η corresponds to a lower level of risk aversion.
When the level of risk aversion increases, the retailer becomes more conservative, and will
order less products to hedge against the potential loss or risk. Thus, the maximum CVaR of
the retailer will decrease, which is intuitive.

Now, this paper states how would the retailer’s maximum CVaR about profit change
when unit option price o or unit exercise price e increases.

Corollary 3. The maximum CVaR of the retailer CVaRη(πr(D; q∗)) has the following relation-
ships with contract parameters:

(i) CVaRη(πr(D; q∗)) is decreasing in o,
(ii) When ηβ > α, CVaRη(πr(D; q∗)) is decreasing in e. When ηβ < α, if α < η, then

CVaRη(πr(D; q∗)) is decreasing in e; if α = η, then CVaRη(πr(D; q∗)) is constant in e;
otherwise, CVaRη(πr(D; q∗)) is increasing in e.

Proof. See Appendix A.

Corollary 3(i) means that the risk-averse retailer’s maximum CVaR decreases in unit
option price o, which is consistent with the case in which the retailer is risk-neutral. In
addition, Corollary 3(i) indicates that o can be adopted to split the channel profit between
the supplier and the retailer, which provides a practical tool for managers to adjust the
profit allocation. However, Corollary 3(ii) identifies that the risk-averse retailer’s maximum
CVaR can be increasing or decreasing in unit exercise price e, which is not intuitive. This
result is not concordant with the case where the retailer is risk neutral.

5. Risk-Neutral Supplier’s Optimal Production Policy

This section considers the risk-neutral supplier’s optimal production policy with the
call option contract and a service requirement. Due to the short life cycle product’s intrinsic
attributes, there is no chance for the risk-neutral supplier to enlarge production capacity.
Thus, before the selling period begins, based on the stochastic demand and the retailer’s
optimal order call option quantity q∗, the supplier must decide the production quantity of
the short life cycle product Q. It is clear that 0 ≤ Q ≤ q∗. Since the supplier is risk-neutral,
then its CVaR is equal to its expected profit.

The expected profit of the risk-neutral supplier is

ED[πs(D; Q)]= oq∗+eED[min(D, q∗)]+sED[Q−(min(D, q∗))+]−hED[(min(D, q∗)−Q)+]−cQ. (6)

Equation (6) can be rewritten as

ED[πs(D; Q)] = (o + e− h)q∗ + (h− e)
∫ q∗

0
F(x)dx + (h− c)Q− (h− s)

∫ Q

0
F(x)dx. (7)
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Thus, with the call option contract and a service requirement, the optimization prob-
lem faced the supplier is given as follows:

max
0≤Q≤q∗

ED[πs(D; Q)]. (8)

Let Q∗ be the optimal solution to Equation (8). The following theorem is derived.

Theorem 2. With the call option contract and a service requirement, the optimal production policy
of the risk-neural supplier is

Q∗ =

{
Qs if Qs ≤ q∗,
q∗ if q∗ < Qs,

(9)

where Qs = F−1( h−c
h−s ).

Proof. See Appendix A.

According to Theorem 2, the optimal production quantity of the risk-neural supplier
with the call option contract and a service requirement is an interval. If Qs ≤ q∗, then
Q∗ = Qs. In this case, the supplier will increase its production quantity to increase its
expected profit. If q∗ < Qs and α < ηβ, then Q∗ = qβ. In this case, the service requirement
is not binding and the supplier will decrease its production quantity up to qβ. If q∗ < Qs

and α ≥ ηβ, then Q∗ = qα. In this case, the service requirement is binding and the
supplier will decrease its production quantity up to qα. In contrast to the model presented
in Zhao et al. [7] and Chen et al. [8], the model studied in this paper with the service
requirement extends the scope of their research.

From Equations (7) and (9), it is derived that the optimal expected profit of the risk-
neural supplier, denoted ED[πs(D; Q∗)], is

ED[πs(D; Q∗)] = (o + e− h)q∗ + (h− e)
∫ q∗

0
F(x)dx + (h− c)Q∗ − (h− s)

∫ Q∗

0
F(x)dx. (10)

Now this section investigates the relationship between the service requirement α and
the risk-neural supplier’s optimal expected profit with the call option contract, which
yields the following corollary.

Corollary 4. Under CVaR criterion, the risk-neural supplier’s optimal expected profit ED[πs(D; Q∗)]
is a non-decreasing function of the service requirement α with the call option contract.

Proof. See Appendix A.

This corollary reveals that the service requirement has a substantial impact on the
risk-neural supplier’s optimal expected profit and is beneficial to the supplier. This is
because the high service level increases the market demand, contributes to the expansion
of market share, and further increases the supplier’s expected profit.

Next this section explores the relationship between the risk aversion η and the risk-
neural supplier’s optimal expected profit with the call option contract. The following
corollary is derived.

Corollary 5. Under CVaR criterion, the risk-neural supplier’s optimal expected profit ED[πs(D; Q∗)]
is a non-decreasing function of the risk aversion η with the call option contract and a service requirement.

Proof. See Appendix A.

This corollary shows that the risk-neural supplier’s optimal expected profit decreases
in the level of risk aversion, which implies that the risk aversion never benefits to the
supplier. This is because as the level of risk aversion increases, the optimal ordering
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quantity of the retailer will decrease, which incurs that the expected profit of the supplier
cannot increase.

To gain more management insights, this paper considers the impact of changes in
unit option price o and unit exercise price e on the risk-neural supplier’s optimal expected
profit. The result is demonstrated in the following corollary.

Corollary 6. When ηβ < α, under CVaR criterion, the risk-neural supplier’s optimal expected
profit ED[πs(D; Q∗)] is strictly increasing in o and e.

Proof. See Appendix A.

Corollary 6 indicates that when the service service requirement is binding, i.e, ηβ < α,
as the unit option price o or unit exercise price e increases, ED[πs(D; Q∗)] will increase.
This result is consistent with the case where the retailer is risk neutral. In addition,
Corollaries 3 and 6 imply that o can be used to split the channel profit between the supplier
and the retailer, which provides an important practical tool for managers to adjust the
profit allocation.

6. Supply Chain Coordination

This section address the supply chain coordination with the call option contract in the
presence of a service requirement.

To provide a benchmark, the integrated supply chain is considered. In the integrated
case, the supplier and the retailer are taken as an entity and owned by one risk neutral
firm. This paper assumes that the integrated firm’s production quantity is Q0. Then the
integrated firm’s profit function, denoted πs(D; Q0), is

πs(D; Q0) = p min(Q0, x) + s(Q0 − x)+ − h(x−Q0)
+ − cQ0.

Then the expected profit of the integrated firm, denoted ED[πs(D; Q0)], is

ED[πs(D; Q0)] = (p + h− c)Q0 − hµ− (p + h− s)
∫ Q0

0
F(x)dx. (11)

Thus, with a service requirement, the optimization problem faced the integrated firm
is given as follows:

max ED[πs(D; Q0)]

s.t.

{
Q0 ≥ 0,
P(Q0 ≥ x) ≥ α.

(12)

P(Q0 ≥ x) ≥ α indicates that Q ≥ F−1(α) and Qα = F−1(α). Clearly, Qα is increasing
in α. Let Q∗0 be the optimal solution to Equation (12). The optimal production policy of the
integrated firm with a service requirement is demonstrated in the following theorem.

Theorem 3. With a service requirement α, the optimal production quantity of the integrated firm
Q∗0 is unique and satisfies:

Q∗0 =

{
Qα

0 , γ < α,
Qγ

0 , γ > α,
(13)

where Qγ
0 = F−1(γ) and γ = p+h−c

p+h−s .

Proof. See Appendix A.

According the proof of Theorem 3, γ = p+h−c
p+h−s , which denotes the maximum service

level without a service requirement in the integrated case. According to Theorem 3,
The optimal production quantity of the integrated firm is an interval and related to α,
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when γ < α, the service requirement is binding and Q∗0 = Qα
0 ; when γ ≥ α, the service

requirement is not binding and Q∗0 = Qγ
0 . Clearly, Q∗0 = max(Qα

0 , Qγ
0 ) and Q∗0 is a non-

decreasing function of the service requirement α.
According to Equation (11) and Theorem 3, it is derived that

ED[πs(D; Q0)] = (p + h− c)Q∗0 − hµ− (p + h− s)
∫ Q∗0

0
F(x)dx. (14)

Below this paper explores the coordination condition for the supply chain with the
call option contract and a service requirement when the retailer is risk averse. Comparing
Theorems 1–3 provides the following theorem on supply chain coordination.

Theorem 4. Under the CVaR criterion, the supply chain with the call option contract and a service
requirement can be coordinated when α = γ = p+h−c

p+h−s and h−c
h−s = (p−o−e)η

p−e are satisfied.

Proof. See Appendix A.

Theorem 4 states that the coordination condition of the channel with the call option
contract and a service requirement is determined by the relationship between the risk
aversion (η), service requirement (α), unit option price (o), unit exercise price (e), unit
retail price (p), unit production cost (c) and unit shortage cost (h). When η = 1, our
model reduces to the risk-neutral one. When α = 0, our model reduces to the model
without a service requirement. Clearly, when η 6= 1 and α 6= 0, the coordination condition
becomes complicated. Please note that this coordination condition is not related to demand
uncertainty, which is very important in practice and makes the implementation of the
coordination call option contract easier. In addition, from Theorem 4, when the downstream
retailer is risk-averse and operates under CVaR, the risk aversion has a significant effect
on supply chain coordination. In practical situations, the risk aversion can be determined
through many experiments (e.g., [50]).

It is shown that the total expected profit of the supply chain with coordination is
higher than the baseline case that the supply chain is not coordinated. According to
Corollaries 3 and 6, it is obtained that the unit option price o split the channel profit between
the supplier and the retailer. In contrast to the non-coordinating contract, from Theorem 4,
there always exists a Pareto coordination contract. Thus, the supplier should push for
coordination so that both the supplier and the retailer will see increased expected profit.

7. Conclusions

This paper investigates a supply chain consisting of a single risk-neutral supplier and
a single risk-averse retailer, where the retailer’s objective is to maximize the CVaR about
profit. In contrast to existing research that considers this supply chain setup, this paper
assumes that the retailer commits to a service requirement. To the best of our knowledge,
previous works do not address the supply chain problem when jointly considering call
option contracts, service requirement and risk aversion (by CVaR). Specifically, with the
call option contract, the risk-averse retailer’s optimal ordering policy and the risk-neutral
supplier’s optimal production policy under the CVaR criterion in the presence of a service
requirement are derived. Furthermore, this paper finds that the service requirement and
risk aversion (by CVaR) promotes the firms to rethink operational decisions. In contrast
to Zhao et al. [7] and Chen et al. [8], who studied the supply chain problem composed
of a risk-neutral supplier and a risk-neutral retailer without a service requirement, our
results indicate that the service requirement has a great impact on the supply chain. In
comparison with Chen and Shen [42] and Chen et al. [46], who studied the supply chain
consisting of a risk-neutral supplier and a risk-neutral retailer with the service requirement,
our results indicate that the risk aversion (by CVaR) has a great impact on the supply chain.
In addition, this paper shows that the call option contract can improve the supply chain
performance when the retailer is risk averse.
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Our research provides several interesting managerial implications. First, with the
service requirement, there are unique optimal solutions for both the ordering policy of the
retailer and and the production policy of the supplier when the retailer is risk-averse (by
CVaR). Specifically, the optimal ordering quantity of the retailer is an interval and depends
on the service requirement, while the optimal production quantity of the supplier is also
an interval and related to the service requirement. This observation provides some insights
into the optimal strategies of the retailer and the supplier with the call option contact in the
presence of the service requirement. Second, this paper finds that under CVaR criterion, the
risk-averse retailer’s maximum CVaR decreases in unit option price, while the supplier’s
optimal expected profit increases as unit option price increases, which means that the
option price can be used to adjust the profit allocation between the supplier and retailer.
Finally, our research demonstrates that under CVaR criterion, the call option contract
can coordinate the service-constrained supply chain, and the coordination condition is
independent of random market demand, which is very important in practice and makes
the implementation of the coordination call option contract easier.

This paper provides some fruitful future research directions. First, this paper only
considers a one-period two-party supply chain with a single risk-neutral supplier and a
single risk-averse retailer. This framework could be extended to include multiple risk-
averse suppliers, multiple risk-averse retailers or both. Considering multiple players at
each level of the supply chain introduces competition and cooperation which could lead
to useful results that mimic practice more closely. Second, in the multi-period case, the
risk aversion may change in different periods and affect the optimal ordering quantity and
optimal production quantity. How to determine the optimal ordering policy and production
policy in each period will be a direction for future research. Third, the supply uncertainty
is ignored to facilitate the analysis. When considering the supply uncertainty, both the
demand uncertainty and the supply uncertainty impact the supply chain performance,
so the complexity of analysis is increased largely. Finally, this paper only considers the
effect of the call option contract on the supply chain. It will be interesting to investigate the
impact of different types of option contracts on the supply chain and explore which type of
option contracts is the best choice in the presence of a service requirement.
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Appendix A

Proof of Theorem 1. Define an auxiliary function

H(q, v) = v− 1
η

E[v− πr(D, q)]+.
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From Equations (2), it is obtained that

H(q, v) = v− 1
η

∫ q

0
[v− (p− e)x + oq]+ f (x)dx

− 1
η

∫ ∞

q
[v− (p− o− e)q]+ f (x)dx.

(A1)

It follows from Zhao et al. [38] that if P(q ≥ x) ≥ α, then the optimal solution to

max
q≥0

CVaRη(πr(D; q)) is equal to that to max
q≥0

[
max
v∈R

H(q, v)
]

. Thus, for any given q, to solve

the optimization problem max
v∈R

H(Q, v), this paper considers the following five cases:

(i) v ≤ −oq.
In this case,

H(q, v) = v. (A2)

It is clear that ∂H(q,v)
∂v = 1, and H(q, v) is increasing in v.

(ii) −oq < v ≤ (p− o− e)q.
Here,

H(q, v) = v− 1
η

∫ v+oq
p−e

0
[v− (p− e)x + oq] f (x)dx. (A3)

It is easy to calculate that

∂H(q, v)
∂v

= 1− 1
η

F
[

v + oq
p− e

]
, (A4)

and ∂2 H(q,v)
∂v2 < 0, which implies H(Q, v) is a concave function of v. From Equation (A4),

it is obtained that ∂H(q,v)
∂v

∣∣∣
v=−oq

= 1 > 0 and ∂H(Q,v)
∂v

∣∣∣
v=(p−o−e)q

= 1 − 1
η F(q). If 1 −

1
η F
[

v+oq
p−e

]
= 0, then there is a unique v∗ that satisfies ∂H(Q,v)

∂v

∣∣∣
v=v∗

= 0 and v∗ = (p −

e)F−1(η)− oq. It is derived that dH(q,v∗)
dq < 0, which indicates the optimal solution is not

v∗ = (p− e)F−1(η)− oq, and 1− 1
η F
[

v+oq
p−e

]
> 0.

(iii) (p− o− e)q < v.
In this case,

H(q, v) = v− 1
η

∫ q

0
[v− (p− e)x + oq] f (x)dx

− 1
η

∫ ∞

q
[v− (p− o− e)q] f (x)dx.

(A5)

Then
∂H(q, v)

∂v
= 1− 1

η
≤ 0, (A6)

which indicates H(q, v) is a decreasing function of v and the optimal solution is v∗ =
(p− o− e)q.

Thus, combining above three cases and Equation (A1), it is obtained that

H(q, v∗) = (p− o− e)q− p− e
η

∫ q

0
(q− x) f (x)dx. (A7)

From Equation (1), CVaRη(πr(D; q)) = H(q, v∗).
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The next section explores the optimal solution of the optimization problem max
q≥0

CVaRη(πr(D; q))

without a service requirement. Then

∂CVaRη(πr(D; q))
∂q

= p− o− e− p− e
η

F(q), (A8)

and

∂2CVaRη(πr(D; q))
∂q2 = − p− e

η
f (q) < 0, (A9)

which indicates CVaRη(πr(D; q)) is concave in q. Since ∂CVaRη(πr(D;q))
∂q

∣∣∣
q=0

= (p− o− e) >

0 and ∂CVaRη(πr(D;q))
∂q

∣∣∣
q→+∞

= p − o − e − p−e
η < 0, there is a unique optimal solution

qβ that satisfies ∂CVaRη(πr(D;q))
∂q

∣∣∣
q=qβ

= 0, i.e., qβ = F−1
[
(p−o−e)η

p−e

]
= F−1(ηβ). Since

qα = F−1(α), it is derived that the optimal solution of Equation (3) q∗ is

q∗ =
{

qα, ηβ < α,
qβ, ηβ > α.

Proof of Corollary 1. From Theorem 1, if ηβ ≤ α, then q∗ = qα. It is obtained that
dCVaRη(πr(D; q∗))/dα =

[
p− o− e− p−e

η F(qα)
]
dqα/dα =

[
p−e

η (F(qβ)− F(qα))
]
dqα/dα.

Since dqα/dα > 0 and F(qβ) < F(qα), it is derived that when ηβ ≤ α, dCVaRη(πr(D; q∗))/
dα = dCVaRη(πr(D; qα))/dα < 0. If ηβ > α, then q∗ = qβ. It is clear that q∗ is constant in α.
According to Equation (5), it is calculated that when ηβ > α, CVaRη(πr(D; q∗)) is constant
in α. Thus, CVaRη(πr(D; q∗)) is a non-increasing function of the service requirement α.

Proof of Corollary 2. According to Equation (5), when ηβ ≤ α, dCVaRη(πr(D; q∗))/dη =

dCVaRη(πr(D; qα))/dη = p−e
η2

∫ qα

0 (qα− x) f (x)dx > 0. When ηβ > α, dCVaRη(πr(D; q∗))/

dη = dCVaRη(πr(D; qβ))/dη =
[

p− o− e− p−e
η F(qβ)

]
dqβ/dη + p−e

η2

∫ qβ

0 (qβ − x) f (x)

dx = p−e
η2

∫ qβ

0 (qβ − x) f (x)dx > 0. Thus, it is clear that CVaRη(πr(D; q∗)) is an increasing
function of the risk aversion η.

Proof of Corollary 3. When ηβ ≤ α, ∂CVaRη(πr(D;q∗))
∂o =

∂CVaRη(πr(D;qα))
∂o = −qα < 0. When

ηβ > α, ∂CVaRη(πr(D;q∗))
∂o =

∂CVaRη(πr(D;qβ))
∂o = −qβ +

[
p− o− e− p−e

η F(qβ)
]
dqβ/do =

−qβ < 0. Thus, it is easy to obtain that CVaRη(πr(D; q∗)) is decreasing in o. It is calculated

that ∂CVaRη(πr(D;q∗))
∂e = −q∗ + 1

η

∫ q∗
0 (q∗ − x) f (x)dx +

[
p− o− e− p−e

η

∫ q∗
0 f (x)dx

]
dq∗/de.

When ηβ > α, q∗ = qβ and ∂CVaRη(πr(D;q∗))
∂e = −qβ + 1

η

∫ qβ

0 (qβ − x) f (x)dx + [p− o − e−
p−e

η

∫ qβ

0 f (x)dx]dqβ/de = −qβ + 1
η

∫ qβ

0 F(x)dx. It is obtained that ∂2CVaRη(πr(D;q∗))
∂e∂qβ = −1+

1
η F(qβ) = β − 1 < 0. Since ∂CVaRη(πr(D;qβ))

∂e

∣∣∣∣
qβ=0

= 0, then ∂CVaRη(πr(D;q∗))
∂e < 0. Thus,

it is derived that CVaRη(πr(D; q∗)) is decreasing in e. When ηβ ≤ α, q∗ = qα and
∂CVaRη(πr(D;q∗))

∂e = −qα + 1
η

∫ qα

0 (qα − x) f (x)dx = −qα + 1
η

∫ qα

0 F(x)dx. Let V(qα) = −qα +

1
η

∫ qα

0 F(x)dx. It is clear that V(0) = 0. Then ∂2CVaRη(πr(D;q∗))
∂e∂qα = ∂V(qα)

∂qα = −1 + 1
η F(qα) =

−1 + α
η . It is obtained that if α < η, then ∂V(qα)

∂qα < 0 and V(qα) < 0. It follows that

CVaRη(πr(D; q∗)) is decreasing in e. If α = η, then ∂V(qα)
∂qα = 0, and CVaRη(πr(D; q∗)) is
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constant in e. If α > η, then ∂V(qα)
∂qα > 0 and V(qα) > 0. It is derived that CVaRη(πr(D; q∗))

is increasing in e.

Proof of Theorem 2. It follows from Equation (8) that

∂ED[πs(D; Q)]

∂Q
= h− c− (h− s)F(Q), (A10)

and
∂2ED[πs(D; Q)]

∂Q2 = −(h− s) f (Q) < 0. (A11)

Thus, ED[πs(D; Q)] is a concave function of Q, which implies that the supplier has a
unique optimal production quantity with the call option contract and a service requirement.
Let ∂ED [πs(D;Q)]

∂Q = 0, then the optimal production quantity of the risk-neutral supplier

without constraints is Qs = F−1
(

h−c
h−s

)
. Considering the constraint of 0≤Q≤q∗, with

the call option contract and a service requirement, the optimal production policy of the
risk-neural supplier is

Q∗ =

{
Qs if Qs ≤ q∗,
q∗ if q∗ < Q

′
.

Proof of Corollary 4. According to Theorem 2 and Equation (10), it is calculated that
ED[πs(D; Q∗)] = (o + e− h)q∗ + (h− e)

∫ q∗
0 F(x)dx + (h− c)Q∗ − (h− s)

∫ Q∗
0 F(x)dx.

Then

dED[πs(D; Q∗)]/dα = [o + e− h + (h− e)F(q∗)]dq∗/dα + [h− c− (h− s)F(Q∗)]dQ∗/dα. (A12)

From Theorem 1, the following four cases are considered.
(i) Qs ≤ q∗ and α < ηβ.
In this case, it is obtained that Q∗ = Qs and q∗ = qβ. Since both Qs and qβ are constant

in α. It follows from Equation (A12) that ED[πs(D; Q∗)] is also constant in α.
(ii) Qs ≤ q∗ and α ≥ ηβ.
Here, it is clear that Q∗ = Qs and q∗ = qα. Since Qs is constant in α and qα is increasing

in α, from Equation (A12), then dED[πs(D; Q∗)]/dα = [o + e− h + (h− e)α]dqα/dα. Since
o + e− h + (h− e)α > 0 and dqα/dα > 0, then dED[πs(D; Q∗)]/dα > 0, which indicates
that ED[πs(D; Q∗)] is increasing in α.

(iii) Qs > q∗ and α < ηβ.
In this case, it is derived that Q∗ = q∗ = qβ. Since qβ is constant in α. It follows from

Equation (A12) that ED[πs(D; Q∗)] is also constant in α.
(iv) Qs > q∗ and α ≥ ηβ.
Here, it is obtained that Q∗ = q∗ = qα. Since qα is increasing in α, then dED[πs(D; Q∗)]/

dα = [o + e− h + (h− e)α]dqα/dα + 1
h−s [F(Q

s)− F(qα)]dqα/dα. Since o + e− h + (h−
e)α > 0, F(Qs) > F(qα) and dqα/dα > 0, then dED[πs(D; Q∗)]/dα > 0, which implies
that ED[πs(D; Q∗)] is increasing in α.

Thus, combining the above four cases, the supplier’s optimal expected profit ED[πs(D; Q∗)]
is a non-decreasing function of the service requirement α with the call option contract.

Proof of Corollary 5. According to proof of Corollary 4, ED[πs(D; Q∗)] = (o + e− h)q∗ +
(h− e)

∫ q∗
0 F(x)dx + (h− c)Q∗ − (h− s)

∫ Q∗
0 F(x)dx. It is derived that

dED[πs(D; Q∗)]/dη = [o + e− h + (h− e)F(q∗)]dq∗/dη + [h− c− (h− s)F(Q∗)]dQ∗/dη. (A13)

According to Theorems 1 and 2, the four distinct cases are considered.
(i) Qs ≤ q∗ and α < ηβ.
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In this case, it is calculated that Q∗ = Qs and q∗ = qβ. Clearly, Qs is independent of
η and qβ is increasing in η. From Equation (A13), it is derived that dED[πs(D; Q∗)]/dη =
[o + e− h + (h− e)F(qβ)]dqβ/dη = [o + e− h + (h− e)ηβ]dqβ/dη. Since o + e− h + (h−
e)ηβ > 0 and dqβ/dη > 0, then dED[πs(D; Q∗)]/dη > 0, which means that ED[πs(D; Q∗)]
is increasing in η.

(ii) Qs ≤ q∗ and α ≥ ηβ.
Here, it is easy to obtain that Q∗ = Qs and q∗ = qα. Since Qs and qα are independent

of η, it follows from Equation (A13) that dED[πs(D; Q∗)]/dη = 0, which indicates that
ED[πs(D; Q∗)] is independent of η.

(iii) Qs > q∗ and α < ηβ.
In this case, it is calculated that Q∗ = q∗ = qβ. Since qη is increasing in η, then

dED[πs(D; Q∗)]/dη = [o + e− h + (h− e)ηβ]dqβ/dη + 1
h−s [F(Q

s)− F(qβ)]dqβ/dη. Since
o + e− h + (h− e)ηβ > 0, F(Qs) > F(qβ) and dqβ/dη > 0, then dED[πs(D; Q∗)]/dη > 0,
which implies that ED[πs(D; Q∗)] is increasing in η.

(iv) Qs > q∗ and α ≥ ηβ.
Here, it is derived that Q∗ = q∗ = qα. Since qα is independent of α, it follows from

Equation (A13) that ED[πs(D; Q∗)] is also independent of α.
Combining the four cases, the supplier’s optimal expected profit ED[πs(D; Q∗)]

is a non-decreasing function of the risk aversion η with the call option contract and a
service requirement.

Proof of Corollary 6. Since ED[πs(D; Q∗)] = (o + e − h)q∗ + (h − e)
∫ q∗

0 F(x)dx + (h −
c)Q∗ − (h− s)

∫ Q∗
0 F(x)dx, then it is calculated that

dED[πs(D; Q∗)]/do = q∗ + [o + e− h + (h− e)F(q∗)]dq∗/do + [h− c− (h− s)F(Q∗)]dQ∗/do, (A14)

and

dED[πs(D; Q∗)]/de =q∗ −
∫ q∗

0
F(x)dx + [o + e− h + (h− e)F(q∗)]dq∗/de

+ [h− c− (h− s)F(Q∗)]dQ∗/de.
(A15)

From Theorems 1 and 2, this paper consider the two distinct cases:
(i) Qs ≤ q∗ and α ≥ ηβ.
Here, it is obtained that Q∗ = Qs and q∗ = qα. Clearly, Qs and qα are independent of o

and e. It follows from Equation (A14) that dED[πs(D; Q∗)]/do = qα > 0, which indicates
that ED[πs(D; Q∗)] is strictly increasing in o. From Equation (A15), it is derived that
dED[πs(D; Q∗)]/de = qα −

∫ qα

0 F(x)dx > 0, which implies that ED[πs(D; Q∗)] is strictly
increasing in e.

(ii) Qs > q∗ and α ≥ ηβ.
In this case, it is derived that Q∗ = q∗ = qα. Since qα is independent of α, then

from Equations (A14) and (A15), it is calculated that dED[πs(D; Q∗)]/do = qα > 0 and
dED[πs(D; Q∗)]/de = qα −

∫ qα

0 F(x)dx > 0, which indicate that ED[πs(D; Q∗)] is strictly
increasing in o and e. From the above two cases, when α ≥ ηβ, the supplier’s optimal
expected profit ED[πs(D; Q∗)] is increasing in o and e.

Proof of Theorem 3. From Equation (11), it is obtained that dED[πs(D; Q0)]/dQ0 = (p +
h − c) − (p + h − s)F(Q0) and d2ED[πs(D; Q0)]/dQ2

0 = −(p + h − s) f (Q0) < 0. Thus,
ED[πs(D; Q0)] is concave in Q0. Let dED[πs(D; Q0)]/dQ0 = 0, it is derived that the optimal
solution of Equation (12) without the constraint is Qγ

0 = F−1
(

p+h−c
p+h−s

)
= F−1(γ). Since

Qα
0 = F−1(α), according to Equation (12), it is obtained that with the service requirement,

the integrated firm’s optimal production strategy is
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Q∗0 =

{
Qα

0 , γ < α,
Qγ

0 , γ > α,

Proof of Theorem 4. From Equation (14), it is derived that

dED[πs(D; Q∗0)]/dα = [(p + h− c)− (p + h− s)F(Q∗0)]dQ∗0/dα. (A16)

According to Theorem 3, if γ > α, then Q∗0 = Qγ
0 . Since Qγ

0 is constant in α, from
Equation (A16), then dED[πs(D; Q∗0)]/dα = 0. If λ < α , then Q∗0 = Qα

0 . It is derived that
dED[πs(D; Q∗0)]/dα = (p + h − s)[F(Qγ

0 ) − F(Qα
0)]dQα

0/dα. Since F(Qγ
0 ) < F(Qα

0) and
dQα

0/dα > 0, it is calculated that dED[πs(D; Q∗0)]/dα < 0. Thus, the optimal expected
profit of the integrated firm is non-increasing in α. Clearly, the integrated firm’s optimal
service level is α = γ = p+h−c

p+h−s . This result shows that when α = p+h−c
p+h−s , the supply chain’s

service requirement can be coordinated. In addition, the supplier’s optimal production
quantity and the retailer’s optimal ordering quantity should be coordinated. According
to Theorems 1 and 2, the supply chain can be coordinated when ηβ = h−c

h−s is satisfied.

Since p+h−c
p+h−s > h−c

h−s , it follows that γ > h−c
h−s = ηβ. Since supply chain coordination needs

the service requirement to satisfy α = γ, then the retailer’s optimal order quantity and
the supplier’s optimal production quantity are concordant with the optimal production
quantity of the integrated firm.
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