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Abstract: A method of the Riemann–Hilbert problem is applied for Zhang’s conjecture 1 proposed
in Philo. Mag. 87 (2007) 5309 for a ferromagnetic three-dimensional (3D) Ising model in the zero
external field and the solution to the Zhang’s conjecture 1 is constructed by use of the monoidal
transform. At first, the knot structure of the ferromagnetic 3D Ising model in the zero external field
is determined and the non-local behavior of the ferromagnetic 3D Ising model can be described
by the non-trivial knot structure. A representation from the knot space to the Clifford algebra of
exponential type is constructed, and the partition function of the ferromagnetic 3D Ising model in
the zero external field can be obtained by this representation (Theorem I). After a realization of the
knots on a Riemann surface of hyperelliptic type, the monodromy representation is realized from the
representation. The Riemann–Hilbert problem is formulated and the solution is obtained (Theorem
II). Finally, the monoidal transformation is introduced for the solution and the trivialization of the
representation is constructed (Theorem III). By this, we can obtain the desired solution to the Zhang’s
conjecture 1 (Main Theorem). The present work not only proves the Zhang’s conjecture 1, but also
shows that the 3D Ising model is a good platform for studying in deep the mathematical structure of
a physical many-body interacting spin system and the connections between algebra, topology, and
geometry.

Keywords: ferromagnetic 3D Ising model; Clifford algebra; Riemann–Hilbert problem; trivialization
of topological structure; monoidal transformation

1. Introduction

The study on the Ising model has attracted intensive interest since the 1920s [1], which
not only applies to interpret phase transitions and critical phenomena in different fields,
but also provides fundamental understanding on interactions and dimensionality in nature.
Onsager derived the exact solution of a two-dimensional (2D) Ising model in the zero
external field, in which no non-trivial topological structures exist [2]. There had been no
rigorous results on the solution of a three-dimensional (3D) Ising model in the zero external
field, even for a simplest case with all interactions ferromagnetic. On the observation
of the formula of the partition functions, the second author (ZDZ) made an observation
that non-trivial topological structures exist in the ferromagnetic 3D Ising lattices in the
zero external field for any positive inverse temperature [3,4]. This observation consists
with the point view of Newell and Montroll [5], who pointed out that for the 3D Ising
model in the zero external field, one encounters polygons with knots. Moreover, the
second author conjectured that the non-trivial knot/link structures of the ferromagnetic
3D Ising model in the zero external field can be trivialized in higher dimensional space
and the ferromagnetic 3D Ising model can be realized as the free statistic model on the
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(3+1)-dimensional space-time with topological/geometrical phases on eigenvectors [3,4].
The algebraic part of the quaternion approach used in [3] was reformulated in terms of
the quaternionic sequence of Jordan algebras to look at the geometrical aspects of simple
orthorhombic Ising lattices [6], and fractals and chaos related to these 3D Ising lattices
were investigated [7]. Zhang, Suzuki, and March developed a Clifford algebra approach
for the ferromagnetic 3D Ising model in the zero external field, and proved four Theorems
(Trace Invariance Theorem, Linearization Theorem, Local Transformation Theorem, and
Commutation Theorem) [8]. It proves rigorously the Zhang’s two conjectures and verifies
that the exact solution based on the Zhang’s conjectures [3] is correct. The explicit expres-
sions for the partition function, the specific heat, the spontaneous magnetization, the spin
correlation, and the susceptibility of the ferromagnetic 3D Ising model in the zero external
field can be found in [3]. The critical exponents of the ferromagnetic 3D Ising model are
determined to be α = 0, β = 3/8, γ = 5/4, δ = 13/3, η = 1/8, and ν = 2/3, satisfying the
scaling laws [3]. In a recent work [9], the lower bound of the computational complexity
of a spin-glass 3D Ising model was determined, which was based on deep understanding
on the mathematical structure of the Ising models on 3D lattices. More recently, the exact
solution of ferromagnetic/antiferromagnetic 2D Ising model with a transverse field is
derived by equivalence between the ferromagnetic/antiferromagnetic 2D Ising model with
a transverse field and the ferromagnetic/antiferromagnetic 3D Ising model in the zero
external field [10].

Before processing the present work, we would like to compare the exact solution of
the ferromagnetic 3D Ising model with other results in the literature. Since publication
of Zhang’s conjectured exact solution [3], there has been a series of criticisms from Wu,
McCoy, Fisher and Chayes [11,12], Perk [13–15], and Fisher and Perk [16]. The main
contents of their comments [11–16] are summarized briefly as follows: (1) The exact high-
temperature series is not reproduced, which has been proved rigorously to be convergence
at temperature greater than any positive number. (2) The exact low-temperature series is
not reproduced, even in the first term. (3) The Jordan–Wigner transform used in the very
beginning of Zhang’s original paper [3] is invalid. (4) The critical exponents α = 0 and
γ = 5/4 for the solution to the 3D Ising model differ from perturbative, nonperturbative,
and even experimental results, all of which are consistent with each other [16], with a special
emphasis of new results of El-Showk et al. [17] using convex optimization of the c-parameter
within the conformal bootstrap approach to the four-point correlation functions. We do
not want to repeat Zhang’s detail responses published already [3,4,8,18,19]. Just mention
also briefly: The error for the Jordan–Wigner transform in Zhang’s original paper [3] is
not a problem, which has been corrected in [4,8], and Zhang’s two conjectures can start
from the corrected formula with the non-trivial topological structure. The topological
effects indeed exist as clearly seen from the corrected Jordan–Wigner transform [4,8,13,20],
which were indicated clearly in [5] and proven rigorously in [21]. The so-called exact
and rigorous approaches of 1960s and later [22–27] for the 3D Ising model are rigorous
only for β = 1/(kBT) > 0, not for β = 0. The so-called exact low-temperature expansion is
evidently divergent, which indicates that this expansion approach is not exact, not only for
its high-order terms, but also for the first term, as the approach itself is questionable. The
Lee–Yang Theorem for phase transitions offers a possibility of a phase transition at infinite
temperature in the Ising models [28,29], which provides a possibility of multi-valued
functions for high-temperature expansions. Note that the convergences of βf and f are
different at/near infinite temperature. The approximation methods (including perturbative,
nonperturbative) and computer simulations (including Monte Carlo) do not take into
account the contribution of the non-trivial topological structure of the 3D Ising model to the
physical properties. Missing the global effect is the main reason that all these approximation
methods consist with each other, but are incorrect due to the existence of systematical errors,
no matter how high precision they achieve. The systematical errors of these approximation
techniques are related directly to the physical conceptions/pictures at the first beginning
and the neglects of important non-locality factors during procedures. As pointed out
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in [30] that these estimates in [17] were obtained based on certain hypotheses (e.g., the
existence of a sharp kink) and that if these hypotheses are not used, then the conformal
bootstrap analysis appears to be consistent with the values η = 1/8 and ν = 2/3, obtained by
Grouping of Feynman Diagrams, which are consistent with the Zhang’s solutions obtained
in [3]. Furthermore, Zhang’s results agree with some experimental results, which are
carefully performed with high accuracy (see in [31], for instance). After its publication [3],
Zhang’s conjectured solution has received supports from several groups, for instance,
March and his co-workers [32–36], Ławrynowicz and some mathematicians [6,7,37,38],
Kaupuzs and his colleagues [30,39,40], and others [41–53]. In [8], Zhang-Suzuki-March
rigorously proved four Theorems, which verifies the correctness of the Zhang’s conjectured
solution [3]. The correct way to judge the correctness of an exact solution is to check whether
there is anything wrong in the deriving process of proofs of Theorems, not to judge it by
the approximant results. After the publication of Zhang-Suzuki-March’s work [8], up to
date, no further criticisms have been published. It was suggested that the approximation
techniques can be utilized to obtain the non-locality part of the partition function (as well
as the thermodynamic physical properties) by extracting the approximation values from
the exact solution [54,55].

Although the Clifford algebra approach developed in [8] has already verifies the
correctness of the exact solution based on the Zhang’s two conjectures [3], it is still of
great interest to prove the two conjectures from other mathematical aspects. In this way,
the 3D Ising model and its exact solution would serve as a platform for investigating
the connections between algebra, geometry, and topology, which are associated with the
mathematical structure of the 3D Ising model. In this work, we will develop a method
of Riemann-Hilbert problem for Zhang’s conjecture 1, regarding the trivialization of the
topological structure. The method of Riemann–Hilbert problem for Zhang’s conjecture
2, regarding to the generation of topological phases, is in progress. In Section 2, the
Hamiltonian and partition function of the ferromagnetic 3D Ising model in the zero external
field are represented, and the Zhang’s conjecture 1 is introduced with mathematical aspects.
In Section 3, the Clifford algebra of the ferromagnetic 3D Ising model and its Knot/Clifford
(K/C) algebra are constructed. In Section 4, the knot structure of the ferromagnetic 3D
Ising model in the zero external field is investigated, and the partition function of the 3D
Ising model can be generated by construction of the K/C-knots with the normal lattice
knot γ, two types of basic knots (circles and braids), and their crossings. In Section 5, the
knot/link structure is realized on a hyperelliptic Riemann surface, by the complex analysis.
In Section 6, the method of the Riemann–Hilbert problem is applied for the representation.
In Section 7, monoidal transforms are applied to give the desired trivialization of knot
structures. In Section 8, the construction of solution to the Zhang’s conjecture 1 is given,
based on the procedures in the previous sections, which proves the Main Theorem, namely,
that Zhang’s conjecture 1 has been proven. In Section 9, the conclusion is given. The details
for proofs of Theorems II and III are represented in Appendices A and B, respectively.

2. 3D Ising Model and Zhang’s Conjectures

We recall some basic facts on the ferromagnetic 3D Ising model in the zero external
field and represent its description by Clifford algebra.

2.1. Hamiltonian and Partition Function of 3D Ising Model

We consider the orthorhombic lattice in the 3D Euclidean space [3,4]. Either up-spin
or down-spin is located at each lattice point. The Hamiltonian of this statistical model is
given as

H = H1 + H2 + H3
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H1 = −J
n
∑

τ=1

m
∑

ρ=1

l
∑

δ=1
s(τ)ρ,δ s(τ+1)

ρ,δ

H2 = −J′
n
∑

τ=1

m
∑

ρ=1

l
∑

δ=1
s(τ)ρ,δ s(τ)ρ+1,δ

H3 = −J ′′
n
∑

τ=1

m
∑

ρ=1

l
∑

δ=1
s(τ)ρ,δ s(τ)ρ,δ+1

Here, only the nearest neighboring interaction between spins at each lattice point is
considered. J, J′ and J” are ferromagnetic interaction constants along three crystallographi-
cal axes of the lattice, respectively.

The partition function Z of the ferromagnetic 3D Ising model in the zero external field
can be given as follows [3,4,8]:

Z = (2sinh 2K)
m·n·l

2 · trace(V3V2V1)
m ≡ (2sinh 2K)

m·n·l
2 ·

2n·l

∑
i=1

λm
i

V3 =
nl

∏
j=1

exp{iK′′ Γ2j

[
j+n−1

∏
k=j+1

iΓ2k−1Γ2k

]
Γ2j+2n−1} =

nl

∏
j=1

exp
{

iK′′ s′ js′ j+n };

V2 =
nl

∏
j=1

exp
{

iK′Γ2jΓ2j+1
}
=

nl

∏
j=1

exp
{

iK′s′ js′ j+1
}

;

V1 =
nl

∏
j=1

exp
{

iK∗ · Γ2j−1Γ2j
}
=

nl

∏
j=1

exp(K∗Cj).

Here, we introduce variables K = J/(kBT), K′ = J′/(kBT) and K′′ = J′/(kBT) instead
of J, J′ and J”. K* is defined by e−2K ≡ tanhK∗ [2–4,20,56]. We define the matrices Cj and s′ j
as follows: Cj = I ⊗ I ⊗ . . .⊗ I ⊗ C⊗ I ⊗ . . .⊗ I and s′ j = I ⊗ I ⊗ . . .⊗ I ⊗ s′ ⊗ I ⊗ . . .⊗ I.
Note that although only the nearest neighboring interaction between spins at each lattice
point is considered in the Hamiltonian, the expressions of higher degree than quadratic in
Γ-matrices (i.e., non-local terms like the log of V3) appear in the partition function, which
represent the existence of a long-range many-body entanglement between spins in the
ferromagnetic 3D Ising model, because of the nature of three dimensions.

2.2. Zhang’s Conjecture 1

Here, we discuss the main problem on a ferromagnetic 3D Ising model in the zero
external field and state the Zhang’s conjecture 1. Although the ferromagnetic 3D Ising
model we studied has the nearest neighboring interaction only, the nature of three di-
mensions results in two different behaviors for the interactions: (i) Cj or s′js

′
j+1 represents

the nearest interaction along the first or second dimension, and (ii) s′js
′
j+n represents the

nearest interaction along the third dimension, which consists of the non-local behavior,
namely, a kind of long-range many-body entanglement. The interaction Cj or s′js

′
j+1 can be

described by use of the Lie group/algebra (so-called Gaussian type). The main concern is
s′js
′
j+n, which leads to our main problem of trivialization for the non-trivial knot structure.

Zhang has discussed this problem in terms of topology [4], namely, the knot theory [57,58].
Topologically, there are two choices for smoothing a given crossing (×), and thus there
are 2N states of a diagram with N crossings [57,58]. The bracket state summation is an
analog of a partition function in discrete statistical mechanics, which can be used to express
the partition function for the Potts model for appropriate choices of commuting algebraic
variables [57,58]. This means that not only the local spin alignments but also the crossings
of knots contribute to the partition function Z of the 3D Ising model in the zero external
field. The contribution to the partition function Z by knots also reflects the entropy cost of
tying knots, as the partition function Z is related with the free energy F, the internal energy
U, and the entropy S.
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In this paper, we introduce the knot structure which is called “Knot/Clifford (K/C)
knot” and associate the knot for the partition function. We can have the representation from
the K/C knot to Clifford algebra, and describe the topological structure of the partition
function of the ferromagnetic 3D Ising model in the zero external field, which might give
the answer of the problem by making the trivialization of the given (non-trivial) knot. The
trivialized knots constitute with the knot of trivial type only.

Consider the 3D lattice Z3 and take a knot γ which is constructed by the horizontal
line and vertical joint line with vertex {Pj}, which is denoted by γ = {Pj}, as illustrated below
in Figure 1, for example.
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Generators of the transfer matrices V1, V2, and V3 are associated to some points in γ,
which are denoted by X = {Vi

(j)}. Then, we have a data (γ, X) which is called Knot/Clifford
(K/C) data, Zγ. The Zhang’s conjecture 1 can be stated in the following manner:

For a given Zγ, can we make a trivialization Z̃γ̃?
More exactly, we can state the Zhang’s conjecture 1 as:

Can we find a four-dimensional manifold M̃4, and a K/C data
{

γ̃, X̃
}

on M̃, where
γ̃ is usually a nontrivial knot (however, it can also be a trivial one for simple cases) and
X̃ =

{
Γ̃j

}
, Γ̃j is a member of generators satisfying the following condition. We can find a

trivialization mapping, F : M̃× K/C(M̃)→ Z3 × K/C(Z3) , satisfying F(Z̃γ̃) = Zγ. Here,

we have put Z̃γ̃ =
{

γ̃, X̃
}

.

2.3. Steps to Prove Zhang’s Conjecture 1 on Trivialization

In this paper, we shall give a positive answer to the Zhang’s conjecture 1 in the
following steps:

(1) The Clifford algebra Cl(I3D) is extended to the K/C algebra which has the original
Clifford algebra and its conjugate algebra Cl(I3D) as subalgebras (Section 3).

(2) Zγ is extended to the K/C algebra which is denoted by σ(Zγ, Zγ). Therefore, we have
a knot carrying the elements in K/C algebra for the partition function (Section 4).

(3) After the realization of the knot on a Riemann surface (Section 5), we formulate the
Riemann–Hilbert problem for the representation and obtain the solution (Section 6).

(4) Applying the monoidal transformation to the solution in (3), we construct the desired
trivialization in K/C algebra (Section 7).

3. Clifford Algebra of the Ferromagnetic 3D Ising Model and Its K/C Algebra

In this section, we state the generation of Clifford algebra of the ferromagnetic 3D
Ising model in the zero external field by the basic construction and then give its extension
which is called a K/C algebra.

3.1. Clifford Algebra of the Ferromagnetic 3D Ising Model

We give the basic construction of Clifford algebra and list up the generators.
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Let Cl(2N−1, C) be the Clifford algebra with the generators Aj (j = 1,2, . . . , 2N−1):

Ak Aj + Aj Ak = 2δkj1

Then, putting Ãj = σ1 ⊗ Aj =

[
0 Aj
Aj 0

]
(j = 1,2, . . . ,2N−1),

Ã2N = σ2 ⊗ E =

[
0 iE
−iE 0

] (
i2 = −1

)
, Ã2N+1 = σ3 ⊗ E =

[
E 0
0 −E

]
,

where σi(i = 1, 2, 3). We can obtain the Clifford algebra Cl(2N+1,C) with the generators Ãj
Aj (j = 1,2, . . . ,2N+1).

Ãk Ãj + Ãj Ãk = 2δkj I

Repeating the basic construction successively, we can obtain general Clifford algebra:
Following the notation due to Onsager-Kaufman-Zhang [2–4,8,56], we choose the

notation s′′ =
[

0 −1
1 0

]
(= iσ2), s′ =

[
1 0
0 −1

]
(= σ3), C =

[
0 1
1 0

]
(= σ1). Following

the generation process of Clifford algebra based on C, we obtain the generation

Cl(3, C) : C, s′, s′′

Cl(5, C) : C⊗ C, C⊗ s′, C⊗ s′′ , s′ ⊗ 1, s′′ ⊗ 1

Cl(7, C) :
C⊗ C⊗ C, C⊗ C⊗ s′, C⊗ C⊗ s′′ , C⊗ s′ ⊗ 1, C⊗ s′′ ⊗ 1
s′ ⊗ 1⊗ 1, s′′ ⊗ 1⊗ 1

. . . . . .
Cl(2N− 1, C) : C⊗ C⊗ C . . . . . .⊗ C (2N− 1 times C)

C⊗ C⊗ C . . . . . .⊗ C⊗ s′ (2N− 2 times C)

C⊗ C⊗ C . . . . . .⊗ C⊗ s′′ (2N− 2 times C)

. . . . . .
C⊗ C⊗ . . . . . .⊗ C⊗ s′ ⊗ 1⊗ . . .⊗ 1 (r times C)

C⊗ C⊗ . . . . . .⊗ C⊗ s′′ ⊗ 1⊗ . . .⊗ 1 (r times C)

. . . . . .
C⊗ s′ ⊗ 1 . . . . . .⊗ 1 (1 times C)

C⊗ s′′ ⊗ 1 . . . . . .⊗ 1 (1 times C)

s′ ⊗ 1 . . . . . .⊗ 1 (0 times C)

s′′ ⊗ 1 . . . . . .⊗ 1 (0 times C)

Therefore, we can introduce the following generators of Clifford algebra of the 3D
Ising model:

Γ2k−1 = C⊗ C⊗ . . . . . .⊗ C⊗ s′ ⊗ 1⊗ . . .⊗ 1 (k− 1 times C)

Γ2k = C⊗ C⊗ . . . . . .⊗ C⊗ (−is′′ )⊗ 1⊗ . . .⊗ 1 (k− 1 times C)

3.2. K/C Algebra Associated to the Knot Structure

We introduce the K/C algebra which is an extension of Clifford algebra of the ferro-
magnetic 3D Ising model. We put the generators of the Clifford algebra and its conjugate
elements:

Γi = C⊗ . . .⊗ C⊗ s(i) ⊗ 1⊗ . . .⊗ 1

Γi = C⊗ . . .⊗ C⊗ s(i) ⊗ 1⊗ . . .⊗ 1
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where

s(i) =
{

s′√
−1s′′

(i = 2j− 1)
(i = 2j)

, s(i) = s(i),

In order to obtain the commutation relations
{

Γi, Γj
}

, we introduce the following
algebra with the product table which is called knot-algebra (see Table 1).

Table 1. The knot/Clifford algebra with the product table.

a
b

1 ¯
1 C ¯

C

1 1 1 C C

1 1 1 C C

C C C 1 1

C C C 1 1

The product is defined by a · b. For example, 1 · 1 = 1, 1 · C = C, etc.
We can obtain the following proposition.

Proposition:

(1) Knot/Clifford algebra is an associative algebra.
(2) We have ΓiΓj = ΓiΓj, ΓiΓj = ΓiΓj. Here, we have calculated the product including s′, s′′

as the usual matrix calculus. It implies that the first element determines the sequence to be
Γ-sequence or Γ–sequence.

In the following we call Γ-sequence positive sequence, Γ-sequence negative sequence,
respectively.

The K/C algebra has the following commutation relation: ΓiΓj + ΓjΓi = 2δij I; ΓiΓj +

ΓjΓi = 2δij I; ΓiΓj + ΓjΓi = 2δij I; ΓiΓj + ΓjΓi = 2δij I.
It is seen that the K/C algebra has subalgebras which are real Clifford algebra and its

conjugate algebra, and they are conjugate each other.

4. Knot Structure of the Ferromagnetic 3D Ising Model

In this section, we introduce a special class of knots, which are called knots of the
ferromagnetic 3D Ising model in the zero external field, by use of the product structure of
Γ-factors. Then, the representation from the K/C algebra of 3D Ising type to the knots of
3D Ising type can be found.

The topological structures of the ferromagnetic 3D Ising model in the zero external
field are constructed by two parts of contributions. First, there exist normal (either trivial
or nontrivial) knots γ (or links), which are generated by lattice points. Second, the Pauli
matrices themselves may be treated as crossings [57,58], which also contribute the fine
structure of the topology. The latter case is the main concern of this paper, as the non-
linear terms in the partition function contribute the non-trivial topological structure of the
ferromagnetic 3D Ising model in the zero external field.

4.1. Knots with Clifford Algebra Data

In this paper, when we say a knot, it has always Clifford algebra data. We choose a
knot γ which is generated by lattice points {P1, . . . , Pn}. Namely, γ = P1, . . . , Pn. Choos-
ing elements X1, . . . Xn, X′1, . . . X′n ∈ Cl(I3D), and making their conjugates X′1, . . . X′n.
(Xi,X

′
i) is associated to γ at Pi. The sequence is denoted by

γ⊗ (X, X′) = (P1 ⊗ (X1, X′1)) . . . (Pn ⊗ (Xn, X′n))
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4.2. Association of Circle/Interval to Γ-Factors

We choose an element Γ ∈ Cl(I3D) and associate a circle (or interval) to Γ.

Γk = C⊗ C⊗ . . . . . .⊗ C⊗ s(k) ⊗ 1⊗ . . .⊗ 1

We take its conjugate element Γk ∈ Cl(I3D) and associate a dotted circle (or dotted
interval):

Γk′ = C⊗ C⊗ . . . . . .⊗ C⊗ s(k
′) ⊗ 1⊗ . . .⊗ 1

4.3. Generation of Knots of Ferromagnetic 3D Ising Model for Partition Functions

We treat the knot structure of the partition function of the ferromagnetic 3D Ising
model in the zero external field as follows. There exist two types of basic forms: the
elements iΓiΓj (and iΓiΓj) can be represented as a circle (or an interval), while the element
iΓiΓj or iΓiΓj can be represented by the following knot called basic form of type I (see
Figure 2).
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Figure 2. A knot called basic form of type I, with the element iΓiΓj or iΓiΓj.

The detailed construction of this knot structure from Pauli matrices in the transfer
matrices V1 and V2 are omitted for simplicity. The elements ik(Γi1Γj1) . . . . . . (ΓikΓjk) (and
ik+1Γi(Γi1Γj1 . . . . . . ΓikΓjk)Γj) (with j = 1,2, . . . ,nl; k = 2n) together with their conjugate
elements are called basic form of type II (see Figure 3), which can be represented as a braid
with many crosses (k = 2n).
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Indeed, each factor of iΓ2k−1Γ2k in the internal factors of the transfer matrices V3 is
equal to the Pauli matrix −σz

k [13], contributing a crossing topologically [57,58]. Therefore,
each term of exponential elements in the transfer matrices V1 and V2 contributes a circle
to the knot structure, while each term of exponential elements in V3 contributes a braid.
There is also a type which is defined by the product of exponential elements generated by
the basic types above. The circles in V1 and V2 can be adjoined together with the lattice
points of the normal knots γ, while the braids in V3 can be connected as the product type
of knots. As an example, the following figure (Figure 4) just shows three of the braids in
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V3 connecting to the lattice points of the knot γ, while it does not show the circles of V1
and V2 for simplicity.
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Figure 4. Schemes illustrate three of the braids in the transfer matrix V3 connecting to the lattice
points of the knot γ, while the circles of V1 and V2 are not shown for simplicity.

Note that the knot structure of the ferromagnetic 3D Ising model in the zero external
field is much more complicated than what we illustrated in the above figure. The other end
of these braids should be connected to other lattice points in accordance with the expression
for the partition function. Adjoining the braids for different j in V3 forms new crosses,
making the topological structure much more complicated. We can introduce a concept of
confluency of knots and discuss the generation of K/C knots by use of successive confluence
operations, to obtain the K/C knots of the generators Vi (i = 1,2,3) of the partition functions
of the ferromagnetic 3D Ising model in the zero external field. Nevertheless, the process for
trivialization of the above topological structure can be employed directly to trivialize the
more complicated one, as the concept, the principle, the role, and the process are kept the
same.

By these observations, we see the following theorem.

Theorem I. The partition function of the ferromagnetic 3D Ising model in the zero external field
can be generated by construction of the K/C-knots with the normal lattice knot γ, two types of
basic knots (circles and braids), and their crossings. The transfer matrices V1 and V2 contribute the
trivial parts to the topological structure of the ferromagnetic 3D Ising model in the zero external
field, while the transfer matrices V3 contribute the non-trivial knots to the system.

5. Realization of Knots on a Riemann Surface

In this section, the knot/link structure is realized on a hyperelliptic Riemann surface.
This is the first step of the realization of knot/link structure by the complex analysis.

5.1. Realization of Knots

We choose a knot ξ, which is expressed as ξ = α1α2 . . . . . . α2n. Assume that ξ is a
positive sequence, and that α1 = a+1 . The intersection points are denoted as a1, a2, . . . . . . ,
an. We prepare two copies of complex projective space P1. A 2-covering Riemann surface
Mg is made by use of cut-segments:

In the case where n is even (n = 2m), one has Figure 5.
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In the case where n is odd (n = 2m + 1), one has Figure 6.
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Figure 6. A 2-covering Riemann surface Mg made by use of cut-segments where n is odd (n = 2m + 1).

In a well-known manner, make a Riemann surface. We demonstrate in Figure 7 the
construction of the Riemann surface

√
z: in this case, we make the cut along (0∞) and glue

in the figure. As for a general case, the construction is performed in a completely analogues
manner.
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z with the cut along (0∞).

5.2. Realization of Knots on a Four-dimensional Manifold

In order to make clear the role of monoidal transform, we realize the base Riemann
surface Mg in P × C as a covering space over P1 (Figure 8). Then, we assume that the knot
has a singularity of normal crossing.
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Figure 8. The base Riemann surface Mg in P × C as a covering space over P1 in which the knot has a
singularity of normal crossing.

5.3. Realization on a Riemann Surface

For the realization of knots on the Riemann surface, we choose a knot ξ with in-
tersection points {a1, . . . . . . , an}. At first, we make a small circle C(j)

ε at each point aj:

C(j)
ε =

{∣∣z− aj
∣∣ = ε

}
. Assume that C(j)

ε ∩ C(k)
ε = φ(j 6= k)

(1) For each aj, we take ã+j , ã−j on C(j)
ε corresponding a+j , a−j , respectively.

(2) Starting from a+1 , we take ã+1 on the upper surface.
(3) The next element is denoted by αk. When αk = a+k , we take ã+k and joint them without

cut segment (Figure 9).
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When αk = a−k , we take ã−k on the lower surface and joint them crossing the cut-
segment (Figure 10).
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(4) Repeating this process, we obtain a closed curve which is located very near to the
original knot curve.
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Remark 1. Here, we have to pay attention to check whether entanglement appears or not. We will
not be concerned with this problem. This is because when the entanglement points appear, we extend
the knot and associate the trivial matrix and solve our problem.

Example. We choose a knot sequence in Figure 11: α = a+1 a+2 a−3 a+4 a−2 a−1 a−4 a+3 .
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Figure 11. A knot with crossings.

We prepare two sheets of P1 and make cuts between a1a2, a3a4, and make a hyper-
elliptic curve. Making small circles at a1, a2, a3, a4, and following the generation scheme in
Figure 12, we can obtain the realization of the knot in Figure 11 on the Riemann surface.
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Figure 12. The realization of the knot in Figure 11 on the Riemann surface.

We can prove the following Proposition.

Proposition. From the representation ρ0 : K/C(I3D)→ exp(Cl(I3D)) , there exists a representation

ρ̃0 : π1
(

Rg − {a1 . . . . . . aN}
)
⊗ Cl(I3D)→ exp(Cl(I3D)),

such that the following commutative relations hold:
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6. Method of Riemann–Hilbert Problem for 3D Ising Model

In this section, the method of the Riemann–Hilbert problem is applied for our repre-
sentation. At first, let us recall the Riemann–Hilbert problem.

6.1. Riemann-Hilbert Problem

As for a function f on a compact Riemann surface Rg which has a regular singularity
at a1, a2, . . . , aM. The function has the following form:

f(z) = (z− aj)
β(c(j)

o + c(j)
1 (z− aj) + c(i)2 (z− aj)

2 + . . . . . .)
(
βj ∈ C

)
We have the monodromy representation,

ρ : π1
(

Rg − {a1 . . . . . . aM}
)
→ C∗

where π1(E) is the fundamental group. The Riemann–Hilbert problem asks the converse
problem [59,60]: “when a monodromy representation is given, can we find a multi-valued
function with regular singularities satisfying γ∗ f = ρ(γ) f ?” H. Röhrl has proved the
following Theorem:

Theorem (H. Röhrl [59]). For a given monodromy representation ρ : π1
(

Rg − {a1 . . . . . . aM}
)

→ GL(M, C) , there exists a multi-valued function with regular singularities at aj (j = 1,2, . . .
. . . ,M) which realizes the given representation, i.e., γ∗ f (z) = ρ(γ) f (z) for any closed path γ.

Here, γ in ρ(γ) denotes the homotopy class of the closed path γ, while γ∗ denotes the
analytic continuation of f (z) along γ [59,60].

Remark 2. The solution may have additional singularities which are rational singularities with
trivial local monodromies, which is called “accessory singularity”.

6.2. Riemann–Hilbert Problem for the Ferromagnetic 3D Ising Model

The Riemann–Hilbert problem can be formulated for our representation and it can be
solved. The following theorem can be proven:

Theorem II. The Riemann–Hilbert problem is applied for the representation on the ferromagnetic
3D Ising model in the zero external field.
(1) For a given generator Vi (i = 1,2,3) of the partition function of the ferromagnetic 3D Ising model
in the zero external field, we find a knot γi , which is given in Section 4. After making the realization
of knots on a Riemann surface, we can find the following representation:

ρ̃0 : π1
(

Rg − {a1 . . . . . . aN}
)
⊗ Cl(I3D)→ exp(Cl(I3D))

which realize Vi (i = 1,2,3) by γi.
(2) For the representation in (1) we can find expCl(I3D) valued function W̃i (i = 1, 2, 3) with
regular singularities satisfying: γ∗i

(
W̃i

)
= ρ̃

(i)
0 (γi)W̃i and W̃i realize exp Vi.

Proof of Theorem II is represented in Appendix A.

Remark 3. We can treat knot points which arise from the entanglement by use of singularities.
In fact, when a given knot is realized on the Riemann surface, we have entanglements. Then, we
consider an extended knot which includes entangle knot points and associate the trivial identity
matrix as Γi or Γi, the same process can be performed.

Note that although Riemann–Hilbert problem, aiming to keep under control non-
linearity, is a technique designed for the differentiable continuum rather than a lattice, in
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the thermodynamic limit the 3D Ising model on a manifold can be treated as a differentiable
continuum, including its partition function, the transfer matrices and the K/C-knots.

7. Construction of Trivialization by Monoidal Transforms

In this section a concept of monoidal transform is introduced. It will be shown that
successive applications of the transforms give the desired trivialization.

7.1. Direction Separation—Basic Idea

There is a curve which has a normal crossing at 0. By use of the following mapping,
Q: R2 → R2.

Q :
{

x = uv
y = v

We can separate the direction at 0 and get the desired trivialization (Figure 13):
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7.2. Monoidal Transform

In order to realize the basic idea for general knots and for K/C elements, we introduce
the concept of monoidal transform [61–75]. The monoidal categories as well as monoidal
transforms are related with braided categories, monoidal equivalence of quantum group,
Yang–Baxter equations, and invariants of knots and manifolds [61–80]. We consider a
2-dimensional complex manifold (real 4-dimensional manifold) M.

Take a point P0, we choose a local coordinate Uε(P0)
(
=
{
(x, y)

∣∣x2 + y2 < ε
})

. A
complex manifold Ûε(P0) is made to satisfying the following condition: There exists a
mapping (see Figure 14)

QP0 : Ûε(P0)→ Uε(P0)
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(i) Q−1(P0) ∼= P1 (complex projective space)
(ii) QP0 : Ûε(P0)− P ∼= Uε(P0)− {P0}
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7.3. Complex Line Bundle of Monoidal Transformation

In consideration of the following complex line bundle over P: F π→ P, the tuber
neighborhood Ûε(P0) satisfies the conditions (i) and (ii). The construction of π : F → P is
given as follows:

Let {V0,V∞} be the standard local coordinate system of P1: P = V0 ∪V∞

V0 = {v||v| < +∞}
V∞ = {v′||v′| < +∞}

ν′ν = 1

By use of the identification
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{
νν′ = 1
u′ = νu

We have a complex line bundle:

F = π−1(V0) ∪ π−1(V∞)

7.4. Construction of Monoidal Transform

Putting
Ûε = Û(0)

ε ∪ Û(∞)
ε

Û(0)
ε =

{
(u, ν)

∣∣∣|u|2 + |uν|2 < ε
}

Û(∞)
ε =

{
(u′, ν′)

∣∣∣|u′|2 + |u′ν′|2 < ε
}

and
{

x = uν
y = u

on Û(0)
ε ;

{
x = u′

y = u′ν′
on Û(∞)

ε ,

We have the desired mapping

QP0 : Ûε(P0)→ Uε(P0)

This is the direct calculation and may be omitted.
By the condition (ii), a monoidal transformation can be introduced,

QP0 : M̃→ M

which satisfies the conditions (i) and (ii) above.

Remark 4. We make stress on the following fact: Even if M = C2 (= R4), the manifold M̃ is not
Euclidean and non-trivial topology appears.

7.5. Basic Notations on Trivialization

For the definition of the concept of trivialization, we begin with some basic notations:

(1) Trivial elements of exponential type

A direct sum of elements of exponential type of basic 1-form:

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
exp(I3D) =

m
⊕

i=1
[exp Γi ⊕ exp Γ′ i]
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is called trivial element. The following mapping:

F′ :
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

exp(I3D) → [exp(Γ1) ◦ . . . ◦ exp(Γm)] · [exp(Γ′m) ◦ . . . ◦ exp(Γ′1)]

is called generation mapping.

(2) K/C mapping

The set of K/C elements on a manifold M is denoted by K/C(M). Then, we have

K/C(M) = {γ⊗ Xγ|γ ⊂ M.Xγ ∈ Cl(I3D) on γ}

where Xγ is the direct sum of algebras of exponential type.

Xγ =
l
⊕

j=1
X(j)

Pj
, γ = P1 ⊗ . . .⊗ Pl

Let M and M′ be two manifolds, and let K/C(M) and K/C(M′) be the K/C elements.

7.6. Basic Idea on Trivialization

Before giving to the statement of Theorem, we demonstrate the basic idea on the
trivialization by monoidal transforms in the case of basic type. We consider the following
configuration:

As have remarked, we may assume that the Riemann surface is realized in P × C and
the knot has singularities of normal crossing (Figure 15):
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Figure 15. A knot with singularities of normal crossing.

We consider the solution of the Riemann–Hilbert problem:∣∣∣W̃ = exp(iKΓ1) ∗ exp(iKΓ1)(z− α1)
β1(z− α′1)

β′1

and next make the monoidal transform (Figure 16) at the intersection point c1 in Figure 15:(
w = u′v′

t = v′

)
Mathematics 2021, 9, x FOR PEER REVIEW 18 of 29 
 

 

 
Figure 16. The monoidal transform at the intersection point c1 in Figure 15. 

)( 1czw −=  



=
=
uvt
uw

 

Then, we have 




=
1

1

1

)''(
*

β

β
β

vu
u

wQ  
on
on  

∞V
V 0  and obtain the following knot (Fig-

ure 17): 

 
Figure 17. The monoidal transform for trivialization of a knot. 

Therefore, we can make the following identification (Figure 18): 

 
Figure 18. Identification of the monoidal transform. 

and have the “trivialization”: 

)exp(exp)*exp( 1111 Γ⊕Γ=ΓΓ QF  

Then we can prove the following Theorem: 

Theorem III. For an arbitrary K/C element X⊗γ  on M, we can construct a trivialization on 

a four-dimensional manifold M~  by monoidal transform trivialization. 

Proof of Theorem III is given in Appendix B. 
Finally, the trivialization mapping can be constructed in the explicit manner for the 

transfer matrices V = V1V2V3. The process can be performed in a completely analogous 
manner, but it is much more complicated, as there are many products of knots. 

Figure 16. The monoidal transform at the intersection point c1 in Figure 15.



Mathematics 2021, 9, 776 17 of 28

(w = z− c1)

{
w = u
t = uv

Then, we have Q ∗ wβ1 =

{
uβ1

(u′v′)β1

on
on

V0
V∞

and obtain the following knot

(Figure 17):
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Therefore, we can make the following identification (Figure 18):
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and have the “trivialization”:

exp(Γ1 ∗ Γ1) = FQ(exp Γ1 ⊕ exp Γ1)

Then we can prove the following Theorem:

Theorem III. For an arbitrary K/C elementγ⊗ X on M, we can construct a trivialization on a
four-dimensional manifold M̃ by monoidal transform trivialization.

Proof of Theorem III is given in Appendix B.
Finally, the trivialization mapping can be constructed in the explicit manner for the

transfer matrices V = V1V2V3. The process can be performed in a completely analogous
manner, but it is much more complicated, as there are many products of knots.

Remark 5. Decomposing the trivialization into Clifford algebra and its conjugate algebra, we have
Z̃γ̃ and Z̃γ̃. Then it is seen that Z̃γ̃ is the desired trivialization: F(Z̃γ̃) = Zγ.

As mentioned in the previous sections, there exist normal knots γ (or links), which are
generated by lattice points. Furthermore, the Pauli matrices themselves may be treated as
crossings, which contribute the fine structure of the topology. The topological structure
of the ferromagnetic 3D Ising model is much more complicated than the examples above.
Nevertheless, the trivialization procedure is in an analogous manner, and it can be gen-
eralized to be appropriate for any knots (and links) which fit with the partition function
(together with normal knots/links γ in lattice points) of the 3D Ising lattice. The monoidal
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transform utilized here for trivialization of knots consist with the Clifford algebra approach
developed in [3,4,8], in which the topology theory [57,58] is employed to take into account
of the contribution of non-trivial knots to physical properties of the 3D Ising model, and
the generalized Yang–Baxter equations (i.e., the so-called tetrahedron equations) [76–80],
corresponding to a Reidemeister move of type III, are used to guarantee the integrability of
the system [4]. However, the generalized Yang–Baxter equations [76–80] involve not only
the Reidemeister moves, but also the disconnection and fusion of crossings (which can be
mapped to the creation and annihilation of spins or particles). Furthermore, the tetrahedron
equations are highly overdetermined and constraints must be imposed on the variables
of each local weight to allow for a solution [79]. These make the difficulties of explicitly
solving the 3D Ising model. In [8], we introduced a local transformation as a topological
transformation to deal with the crossings in the 3D Ising model, in order to satisfy the
requirements of the tetrahedron equations and to take into account the contribution of
these crossings to the physical properties. Meanwhile, we utilized the Largest Eigenvalue
Principle that only the largest eigenvalue contributes dominantly to the partition func-
tion of the 3D Ising model in the thermodynamic limit. With this constraint, we pick up
the desired solution among all 2nl possible solutions in 2nl sub-spaces produced by the
direct product of all the sub-transfer matrices. The combination of the local transformation
and the Largest Eigenvalue Principle solves the problems of overdetermined tetrahedron
equations. The exact solution we found is KK∗ = KK′ + K′K′′ + K′′K [3], which is a star–
triangle relationship and a solution of the tetrahedron equations and also the Yang–Baxter
equations [4,8].

8. Construction of Solution to the Zhang’s Conjecture 1

With the preliminaries in the previous sections, we can construct the trivialization for
the Zhang’s conjecture 1 in the following steps:

(1) We assume that a knot γ is given on the lattice: γ = {Pi}, where Pi is on the lattice
points.

(2) We take a partition function which is defined by the transfer matrices V1, V2, and V3.
The members are denoted by V(i) (i = 1,2, . . . , M).

(3) We distribute V(i) (i = 1,2, . . . , M) on knot points Pi of γ, and then have K/C knots
Zγ = (γ, X), with X = {V(i)}.

(4) Making the K/C algebra, we make the conjugate element Zγ = (γ, X) and introduce
a K/C knot σ(Zγ, Zγ)

(5) After realization of the knot σ(Zγ, Zγ) on a Riemann surface, we can formulate the
Riemann–Hilbert problem for the representation.

(6) We find the solution to the problem with regular singularities at the knot points of the
realized knot on the Riemann surface which is denoted by [Zreg

γ , Zreg
γ ].

(7) Applying the monoidal transforms at the knot points, we obtain the trivialization

[Z̃reg
γ , Z̃

reg
γ ], to eliminate the singularities from knots.

Summarizing the procedures of this paper, we have proved the following Theorem.

Main Theorem: The Zhang’s conjecture 1 proposed in [3] can be solved. Namely, for a given
K/C knot which is given by the partition function of the ferromagnetic 3D Ising model in the zero
external field, we can make the trivialization by use of monoidal transform trivialization.

9. Conclusions

In conclusion, we have developed a method of Riemann–Hilbert problem for Zhang’s
conjecture 1 proposed in [3], regarding to the trivialization of topological structure, for
the ferromagnetic 3D Ising model in the zero external field. Three claims are formulated
in form of Theorems: (I) The partition function Z of the ferromagnetic 3D Ising model in
the zero external field can be generated not only by spin alignments, but also by knots. In
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between these knots one has components which have a complicated topological structure
that is contributed by nonlinear terms in the transfer matrices V3. (II) In order to relax this
complicated structure, realizations of knots are produced on a four-dimensional Riemann
manifold, which are formulated in the Riemann–Hilbert problem for the representation.
(III) The monoidal transformations are applied at the knot intersection (singular) points,
eliminating these from knots, thus producing the trivialization of the knots. The immediate
consequence of these claims is the main theorem that the Zhang’s conjecture 1 proposed
in [3] has been proved. The explicit expression for the resulting partition function Z have
not been provided directly by the present procedure of the Riemann–Hilbert problem
and the monoidal transformations. The partition function Z in a 4-fold integral form was
presented in Equation (49) in [3] (see also Equation (24) in [4]) based on the Zhang’s two
conjectures, which was proven to be correct in [8] by a Clifford algebra approach. The
thermodynamical properties (including the free energy, the specific heat, the spontaneous
magnetization, the spin correlation, the susceptibility, as well as the critical exponents) of
the ferromagnetic 3D Ising model in the zero external field are derived explicitly in [3].
However, attention should be paid on using the present procedure to demonstrate rigorous
formulation for the non-trivial knots’ components of the partition function Z. A subsequent
paper, on the method of Riemann–Hilbert problem for Zhang’s conjecture 2, regarding to
the generation of topological phases, will be published soon [81]. Furthermore, because the
exact solution for the antiferromagnetic 3D Ising model with all the negative interactions
but without frustration in the zero external field has the same formula as the exact solution
obtained in [3,4,8], the results in [3,4,8] for the ferromagnetic 3D Ising model in the zero
external field are suitable for the antiferromagnetic 3D Ising model without frustration.

It should be emphasized that the procedures developed in [8] and this work, to
deal with the non-trivial topological structures in the ferromagnetic 3D Ising lattices in
the zero external field, and the exact solution obtained in [3], are valid for any positive
inverse temperature β = 1/(kBT) > 0 (including the area of phase transitions, βc), where
the non-trivial topological structures exist. It is clear now that the non-trivial topological
structures (knots) contribute additional terms to the partition function and the physical
properties (such as the free energy, the specific heat, the spontaneous magnetization, the
spin correlation, the susceptibility, the critical exponents). Any approaches based on
only local environments, such as conventional low-temperature expansions, conventional
high-temperature expansions, Monte Carlo simulations, Renormalization Group, etc.,
are not exact, because these approximative approaches miss the contributions of knots.
The conventional high-temperature expansions work only at/near infinite temperature
β = 0, where only the trivial topological structure exists. Our procedures in [3,4,8] and the
present work indicate that it is necessary to introduce an additional dimension (the time) to
trivialize the knots and take into account their contributions, to achieve the exact solution
of the 3D Ising models. The temperature–time duality in the 3D Ising model can be seen by
inspecting the resemblance between the density operator in quantum statistical mechanics
and the evolution operator in quantum field theory, with the mapping β = (kBT)−1 →
it = τ [82–84]. In [84], Zhang and March pointed out that besides the Wick rotation, which
represents the temperature as the imaginary time, we have to introduce also the time for
the time average and for untying the knots (see also in [3,4,8] and this work). Therefore,
one has to deal with the topological quantum field theory within a (3 + 2) or (4 + 1)-
dimensional framework [85]. With Wick representation, the ε-expansions [86–88] start
from four dimensions and do not account the non-trivial topological contributions, which
are still in the approximative level. It can be improved by accounting the contributions
of the non-trivial topological structure in the (3 + 2) or (4 + 1)-dimensional framework.
Finally, we would like to notice that our work illustrates that the 3D Ising spin system can
serve as a platform for describing a sensible interplay in between the physical properties of
interacting many-body systems, algebra, topology, and geometry.
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Appendix A. Proof of Theorem II

Appendix A.1. Construction of the Representation (Proof of (1) in Theorem II)

We give the construction ρ̃ which is given in (1) of Theorem II and make the twisted
knot from the standard knot. Then the Riemann–Hilbert problem can be formulated.
We put

Γi = C⊗ . . .⊗ C⊗ s(i) ⊗ 1⊗ . . .⊗ 1

Γi = C⊗ . . .⊗ C⊗ s(i) ⊗ 1⊗ . . .⊗ 1

(i = 1, 2, . . . , m)

(1) The case of basic type

We make the knot of twisted type from the knot of standard type (Figure A1):
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framework [85]. With Wick representation, the ε-expansions [86–88] start from four di-
mensions and do not account the non-trivial topological contributions, which are still in 
the approximative level. It can be improved by accounting the contributions of the non-
trivial topological structure in the (3 + 2) or (4 + 1)-dimensional framework. Finally, we 
would like to notice that our work illustrates that the 3D Ising spin system can serve as a 
platform for describing a sensible interplay in between the physical properties of interact-
ing many-body systems, algebra, topology, and geometry. 
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Next construct a Riemann surface. We prepare two branch points α1, α′1 in the fol-
lowing configuration and construct the knot. As the knot is a1

+a1
−, it becomes in the

configuration (Figure A2).
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Figure A2. Construct the knot on a Riemann surface.

The over (under) going path from P (respective Q) through P1 to Q (respective P) is
denoted by γ

(+)
1 (respective γ

(−)
1 ). We put γ1 = γ

(+)
1 γ

(−)
1 .

(2) The case of simple/multi-type

We choose the knot of multi-type with the following orientation of twist type: We
consider the case m = 4 (see Figure A3).
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Figure A3. The knot of multi-type with the following orientation of twist type for the case m = 4.

The over (under) going path from P (respective Q) to Q (respective P) is denoted
by γ

(+)
m , γ

(−)
m ) and γm = γ

(+)
m γ

(−)
m . We choose a realization on a Riemann surface in the

following manner:

(i) Choose a Riemann surface (Figure A4)
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(ii) Make a realization of γ by use of association of twisted type (Figure A5).
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The approach above can be applied for the general case of m.

Appendix A.2. Construction of the Solutions (Proof of (2) in Theorem II)

The solution of Riemann–Hilbert problem can be constructed. We give the solutions
in the cases of basic types I and II, separately. We have to pay attention to the method of the
construction. We construct the solutions both for positive elements and negative elements
at the same time. Therefore, the solutions are considered in the universal K/C algebra.

(1) The solution for the basic form of type I

The solution is given as follows:
Putting
F = (z− α1)

β1(z− α′1)
β′1(β1, β′1 = ±1/2),

we have 
γ∗1 F = γ

(−)∗
1 · γ(+)∗

1 F
γ
(+)∗
1 = e2πiβ1 exp(iKΓ1)

γ
(−)∗
1 = e2πiβ′1 exp(iKΓ1)

(2) The solution for the basic form of type II
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Following the method of the Röhrl’s solution for the Riemann–Hilbert problem [59],
we have the solution

F(z) =
m

∏
i=1

(z− αi)
βi (z− α′1)

β′1(βi, β′1 = ±1/2)

Then, we have the following representation: ρ̃(γ
(+)
m γ

(−)
m ) = ρ̃(γ

(+)
m ) · ρ̃(γ(−)

m ), where
ρ̃(γ

(+)
m ) =

m
∏
i=1

e2πiβi exp(imK′′ Γ1Γ2 . . . Γm)

ρ̃(γ
(−)
m ) =

m
∏
i=1

e2πiβ′ i exp(imK′′ ΓmΓm−1 . . . Γ1)

(3) The general type

In this case, there are two kinds of intersection points: (1) {a1, . . . an} are the singulari-
ties arising from the knot of multi-type; (2) {b1, . . . , bm} are the singularities arising from
the part of the given non-trivial knot. For the simplest sake, we write the sequence {an, bm}
as {ck}, k = 1, 2, . . . , n+m, and put Γi = Γi = 1 for bi, we can rewrite them {ck}.

{
Γk, Γk

}
.

Then, following the procedure above, we can formulate the Riemann–Hilbert problem and
find the desired solution. The discussion is completely identical, and it may be omitted.

Appendix B. Proof of Theorem III

We begin with recalling the classification of the knots in the transfer matrices V1, V2,
and V3. From the results in Section 4, there are knots of the following types: basic types I
and II, product type (and adjoint type). In the following, we construct the trivializations
for these basic types and combining the results, the desired trivialization is obtained for
the product type.

The configuration of type I can be trivialized by the scheme in the basic idea. We have
the following trivialization (Figure A6):
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We construct the trivialization in the case of the configuration type II and m = 3 as the
following process (Figure A7).
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The desired trivialization is given by

(exp Γ1 ⊕ exp Γ1)⊕ (exp Γ2 ⊕ exp Γ2)⊕ (exp Γ3 ⊕ exp Γ3)

We treat the product type by the choice of an example:

exp(iK∗Γ2k−1Γ2k) exp(iK′Γ2lΓ2l+1) exp(inK′′ Γ2j(Γ2j+1Γ2j+2∆Γ2j+2m−2)Γ2j+2m−1)

Following the results of Theorem I, one can obtain the following configuration
(Figure A8):
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Figure A8. Schematic illustration of a configuration of braids as an example.

The trivialization can be made for each block (I), (II), or (III), separately, and joint
each construction. The joint is given as follows: At each point Pi, we have no information
on knot structures. At each point, we associate the trivial matrix which is denoted by
Γ(Pi) and Γ(Pi), make extensions, for example, the extension is given at Pi in the following
manner and other cases are treated in a completely analogous manner (Figure A9).
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Figure A9. The trivialization of a configuration.

Then, we see that

exp[(Γ(P1) ◦ Γ2j−1 ◦ Γ2j) ∗ (Γ2j ◦ Γ2j−1 ◦ Γ(P1))] = exp[(Γ2j−1 ◦ Γ2j) ∗ (Γ2j ◦ Γ2j−1)]

Therefore, the representation does not change, i.e., is invariant. The monoidal trans-
form becomes as follows (see Figure A10):
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Here, the dotted circle implies the S2 (∼=P1) which does not contribute to the partition
functions. Thus, we may omit it.

Performing the process to P2, P3, the following diagram is obtained by monoidal
transforms (Figure A11):
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