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Abstract: Genomic profiles of cancer patients such as gene expression have become a major source
to predict responses to drugs in the era of personalized medicine. As large-scale drug screening
data with cancer cell lines are available, a number of computational methods have been developed
for drug response prediction. However, few methods incorporate both gene expression data and
the biological network, which can harbor essential information about the underlying process of
the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug
response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph
by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature
selection of drug-related genes, and the GCN model detects the local features such as subnetworks of
genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of
DrugGCN using biological data showing its high prediction accuracy among the competing methods.

Keywords: neural network; graph convolutional network; spectral graph theory; drug response;
bioinformatics

1. Introduction

Cancer is a disease driven by the accumulation of somatic mutations. Mutations
on specific genes that are called cancer driver genes can affect the transcription of the
genes and cause the differential expression of the genes. As many of the driver genes are
signaling molecules that control the expression of downstream genes, their differential
gene expressions may impinge on the cell and contribute to the hallmarks of cancer such
as sustained cell proliferation and resistance to cell death [1,2].

In the early stages of the analysis on differential gene expression in cancer, several
research works focused on comparative studies between normal and cancer cells [1,3].
Since the era of precision medicine or personalized medicine, however, the analysis of the
differential gene expression among individual patients has become popular, as researchers
have observed heterogeneity for immune responses induced by the same cancer therapy
due to the diverse genetic background of individuals [4,5]. A recent study suggested
that only around 5% of patients benefit from precision oncology [6], which highlights the
importance of improving the prediction accuracy of drug response.

As the number of molecular data from cancer patients increases, several large-scale
database have been created including The Cancer Genome Atlas (TCGA) and the Interna-
tional Cancer Genome Consortium (ICGC) [7,8]. Although TCGA and the ICGC provide
multi-platform genomic profiling data across cancer types, these databases do not include
a large number of patient records with drug response or responses to multiple drugs as
the data were collected from patients (donors). On the other hand, the Genomics of Drug
Sensitivity in Cancer (GDSC) [9] database provides large-scale drug screening results for
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266 drugs on around 1000 human cancer cell lines that can be utilized to learn and predict
drug responses from gene expression by computational methods.

With a large number of cell line data, various computational methods based on
machine learning have been proposed to predict drug response [10,11]. Drug response
prediction is one of the supervised learning problems. Computational models are trained
to compute a drug response value (output) of cell lines (m samples) with a genomic profile
(n input features). Depending on the type of method, learning can be performed using
data of the d entire drugs at once or for each drug separately. The genomic profile of cell
lines is usually given as a matrix Cm×n, and the responses to d drugs are given as a matrix
Rm×d. The purpose of learning here is to predict the response accurately when a new
cell line is given for a known drug. Various types of genomic profiles of cell lines can be
provided, among which the gene expression profile is the most frequently used one [10],
owing to its representability of the cellular state and the amount of data released. Drug
responses in Rm×d are often measured as the half maximal inhibitory concentration (IC50).
IC50 represents the amount of drug needed to inhibit a cell’s activity by 50%. Another
measure is the Area Under the concentration response Curve (AUC), where a lower AUC
implies lesser effectiveness of the drug.

Reference [10] reviewed several computational methods for drug response prediction
that utilized gene expression data including linear regression methods and their gener-
alizations. The linear regression model learns a response function r(x) = w · x with the
coefficient vector w ∈ Rn where x ∈ Rn is a genomic profile vector of a cell line. Kernelized
Ridge Regression (KRR) maps x to a vector in a high-dimensional feature space with a
kernel function and computes w in the image vector space [12]. Reference [13] recently
developed a method called Kernelized Ranked Learning (KRL) that recommends the k
most sensitive drugs for each cell line, rather than the response value itself [13]. Response-
Weighted Elastic Net (RWEN) is based on the linear regression model, but it incorporates
additional weights to find a coefficient vector w that results in a good prediction for cell
lines with low drug responses [14]. As shown in KRR and KRL, feature engineering such
as feature selection or extraction can help improve the prediction accuracy. Recent stud-
ies on feature engineering included kernel principal component analysis integrated with
bootstrapping [15] and rough set theory [16].

When gene expression is used as the genomic profile of a cell line, information on
the relationship among genes can be incorporated into the drug response prediction
process. The relationships among biological entities such as genes or proteins are usually
represented as a biological network. STRING [17] is one of the databases that provides a
Protein-Protein Interaction (PPI) network that corresponds to the gene-gene relationship.
As biological processes in a cell are operated by certain groups of genes with interactions
like binding or regulation, we can assume that expression values of genes located close
to each other in a network may affect the cellular state of a cell line together, thereby
contributing to the drug response. However, the computational models for drug response
prediction mentioned above do not incorporate the prior knowledge of the biological
network, which may enhance the prediction accuracy.

Deep learning with neural networks has shown remarkable achievements compared
to the traditional machine learning methods in the field of drug development such as
drug-drug interaction extraction [18], drug target prediction [19,20], drug side effect
detection [21], and drug discovery [22]. For drug response prediction, a number of methods
have been developed as well, each of which utilizes different input data for prediction [11].
Multi-omics Late Integration (MOLI) [23] is a deep learning model that uses multi-omics
data including gene expression, Copy Number Variation (CNV), and somatic mutations
to characterize a cell line. Three separate subnetworks of MOLI learn representations for
each type of omics data, and a final network uses concatenated features and classifies
the response of a cell as a responder or non-responder. Reference [24] proposed a deep
autoencoder model for representation learning of cancer cells from input data consisting
of gene expression, CNV, and somatic mutations. The latent variables learned from the
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deep autoencoder are used to train an elastic net or support vector machine to classify the
response. Those methods share two characteristics in common: the integration of multiple
input data (multi-omics) and binary classification of the drug response. Although the
integration of multiple types of omics data can improve the learning of the status of the
cell lines, it might limit the availability of the method for testing on different cell lines or
patients as the model requires additional data other than gene expression. Furthermore,
a certain threshold of the IC50 values should be set before binary classification of the
drug response, which may vary depending on the experimental condition such as drug or
tumor types.

The Convolutional Neural Network (CNN) is one of the neural network models
adopted for drug response prediction [11]. The CNN has been actively used for image,
video, text, and sound data due to its strong ability to preserve the local structure of data
and learn hierarchies of features [25]. Twin Convolutional Neural Network for drugs in
SMILES format (tCNNS) [26] takes a one-hot encoded representation of drugs and feature
vectors of cell lines as the inputs for two encoding subnetworks of a One-Dimensional
(1D) CNN. One-hot encodings of drugs in tCNNS are derived from Simplified Molecular
Input Line Entry System (SMILES) strings that describe the chemical structure of a drug
compound. Binary feature vectors of cell lines represent 735 mutation states or CNVs of
a cell. Cancer Drug Response profile scan (CDRscan) [27] proposes an ensemble model
composed of five CNNs, each of which predicts the IC50 values from the binary encoding
of the genomic signature (mutation) and the drug signature (PaDEL-descriptors [28]).
KekuleScope [29] adopts transfer learning, which uses a pre-trained CNN on ImageNet
data. The pre-trained CNN is trained with images of drug compounds represented as
Kekulé structures to predict the drug response. Recently, several algorithms have been
proposed to extend CNNs for data on irregular or non-Euclidean domains represented
as graphs [30–32]. Reference [33] proposed a method to predict drug response called
GraphDRP, which integrates two subnetworks for drug and cell line features, similar to
tCNNS [26]. Instead of one-hot encoding, GraphDRP uses a molecular graph to represent
the drug structure converted from the SMILES string, and the Graph Convolutional Net-
work (GCN) model from [32] is used to learn the features of drugs. Along with GraphDRP,
there have been a number of approaches to use graphs to represent the structural properties
of drug compounds for drug development and discovery [34].

Although the aforementioned CNN models incorporate a number of features in the
input data, they do not include gene expression values in the genomic features because
gene expression cannot be described as 1D binary sequences [26,27] or images [29] used
in those CNN models. However, gene expression is known to be the most informative
data type for drug response prediction [35,36], whereas mutation and the CNV profiles of
cell lines added little to the performance in a comparative study [10]. Furthermore, most
of the regression-based methods that utilize gene expression data in the prediction do
not consider interactions between genes [12–14]. Recent studies successfully introduced a
GCN model to use gene expression data for subtype classification of cancer [37,38], and a
similar model can be transferred into the problem of drug response prediction. Thus, we
propose an analysis framework, DrugGCN, for drug response prediction that can leverage
gene expression data and network information using a GCN. DrugGCN constructs an
undirected graph from a PPI network and maps gene expression values to each vertex
(gene) as graph signals, which will be learned by the GCN to predict the drug response
such as the IC50 or AUC. In addition, DrugGCN incorporates the feature selection process
to use genes that can possibly improve the prediction accuracy using prior knowledge. The
main contributions of DrugGCN are as follows:

• We propose a novel framework for drug response prediction that uses a GCN model
learning genomic features of cell lines with a graph structure, which is the first
approach to our knowledge.
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• DrugGCN generates a gene graph suitable for drug response prediction by the inte-
gration of a PPI network and gene expression data and the feature selection process of
genes with high predictive power.

• DrugGCN with localized filters can detect the local features in a biological network
such as subnetworks of genes that contribute together to the drug response, and its
learning complexity is suitable for biological networks with a huge number of vertices
and edges.

• The performance of the proposed approach is demonstrated by a GDSC cell line dataset,
and DrugGCN shows high prediction accuracy among the competing methods.

2. Materials and Methods

Figure 1 shows the proposed DrugGCN framework. DrugGCN introduces a two-step
approach for drug response prediction as follows: (1) construction of an input graph with
signals and (2) learning a graph convolutional network with localized filters. The following
sections describe the methods and evaluation criteria for the comparative analysis in
Section 3.

Figure 1. Drug Graph Convolutional Network (DrugGCN) framework for drug response prediction.

2.1. Graph Construction for Drug Response Prediction

DrugGCN utilizes three biological databases, GDSC [9], L1000 [39], and STRING [17].
GDSC dataset retrieved from [10] includes gene expression matrix C734×8046 of 8046 genes
in 734 cell lines and drug response matrix R734×201 of 201 drugs for the same cell lines with
two measures, common logarithms of the IC50 and AUC. Drugs with missing responses
for 80% or more cell lines were removed from the initial 266 drugs.

2.1.1. Feature Selection on Gene Expression Data

To select effective features that potentially contribute to drug response, two criteria
can be used in DrugGCN: prior knowledge on landmark genes or statistical measurement
from the given data. A list of landmark genes is derived from Library of Integrated
Network-Based Cellular Signatures (LINCS) L1000 project by the National Institutes of
Health (NIH) [39]. In the LINCS L1000 project, nine-hundred seventy-eight landmark
genes are selected as the assay targets of large-scale experiments on multiple time points,
doses, perturbagens, and cell lines due to their representability of human genes. The
landmark genes are known to be widely expressed across different cellular contexts and
have good predictive power for inferring the expression of the other 22,268 human genes,
based on the model built from Gene Expression Omnibus (GEO) data. After the feature
selection on the GDSC dataset, six-hundred sixty-three common genes with landmark
genes remained, leading to the final gene expression matrix C734×663. As another criterion
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for feature selection, DrugGCN calculated the 1000 most variable genes from the GDSC
dataset according to the variance of gene expression across cell lines. High variances of
genes imply that the genes may be dependent on the heterogeneous cellular states and
responsive to perturbation such as drug treatment. The criteria of feature selection can be
selected by the user configuration in the DrugGCN framework.

2.1.2. Graph Construction with Gene Expression Data

The input of the GCN model is an undirected input graph G = (V , E , W) where
V is a set of vertices, E is a set of edges, and W is a weighted adjacency matrix. We
assumed that the vertices and edges of the graph indicate genes and interactions between
genes, respectively. To construct the gene graph, biological network information was
retrieved from the STRING database [17], which provides the known and predicted PPI
corresponding to gene-gene interactions. The original STRING database contains 11,759,454
interactions among 19,566 genes for Homo sapiens, reduced as 25,069 interactions with
663 landmark genes after feature selection. STRING also provides the weights of the
interactions that reflect the amount of available evidence of the interaction between two
genes, which is used to construct a weighted adjacency matrix. A signal x : V → R is
defined for each gene in the graph as a row vector x ∈ R663 of C734×663 that represents the
gene expression values in a certain cell line.

2.2. Localized Filters for the Graph Convolutional Network

To capture the localized patterns of the gene expression profile, convolution is per-
formed on the input graph G with signal x. The graph Laplacian matrix L of G is defined as
L = D− A where D is the degree matrix and A is the adjacency matrix of the graph. With
normalized Laplacian matrix L = In −D−1/2WD−1/2, L has a complete set of orthonormal
eigenvectors {ul}n−1

l=0 ∈ Rn and corresponding eigenvalues {λl}n−1
l=0 . The graph Laplacian

can be diagonalized as L = UΛUT on the Fourier basis U = [u0, . . . , un−1] ∈ Rn×n where
Λ = diag([λ0, . . . , λn−1]) ∈ Rn×n. The graph Fourier transform of the signal x ∈ Rn is
defined as x̂ = UTx ∈ Rn, with its inverse as x = Ux̂ [40].

Based on the Fourier inversion theorem, the convolution operator on graph ∗G can be
defined in the Fourier domain as x ∗G y = U((UTx)� (UTy)) where � is the element-wise
Hadamard product. A signal x filtered by gθ is:

y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx. (1)

where gθ(Λ) is a diagonal matrix diag([gθ(λ0), . . . , gθ(λn−1)]). That is, only gθ(Λ) is used
to define convolution filters as U is determined by the input graph. Reference [31] suggested
a polynomial filter gθ(Λ) = ∑K−1

k=0 θkΛk [31] that is localized in K hops from the central
vertex where the parameter θ ∈ RK is a vector of polynomial coefficients. To reduce the
learning complexity of the polynomial filter from O(n2) to O(K|E), a fast filtering by
Chebyshev expansion [41] is introduced [31]. A filter is parameterized as the expansion:

gθ(Λ) =
K−1

∑
k=0

θkTk(Λ̃), (2)

where the parameter θ ∈ RK is a vector of Chebyshev coefficients and Λ̃ = 2Λ/λmax − In.
Tk(Λ̃) is the Chebyshev polynomial of order k that can be computed by the recurrence
relation Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x. The filtering operation is
learned by the backpropagation algorithm with a cost of O(K|E |FinFoutS) where Fin and
Fout are the number of input and output convolution filters, respectively [31].

Coarsening of the graph is performed by the Graclus multilevel clustering algorithm,
which is a greedy algorithm to compute coarser versions of a graph by picking a vertex
i and its neighbor j that maximize the local normalized cut [42]. Graph signals are then
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coarsened as well by pooling with a structure of a balanced binary tree as proposed in [31].
Among the pooling methods, max pooling is selected empirically in DrugGCN.

2.3. Evaluation Criteria

In the following section, the performance of DrugGCN and other algorithms is evalu-
ated by four metrics: Root Mean Squared Error (RMSE), Pearson Correlation Coefficient
(PCC), Spearman Correlation Coefficient (SCC), and Normalized Discounted Cumulative
Gain (NDCG). The metrics are based on the difference between the observed drug re-
sponses y = (yi)

m
i=1 (IC50 or AUC) and the predicted drug responses ŷ = (ŷi)

m
i=1 where m

is the number of cell lines.
RMSE is defined as the square root of the mean squared error, which is the average

squared difference between the true and predicted responses by a method:

RMSE(y, ŷ) =

√
∑i(yi − ŷi)2

m
. (3)

PCC attempts to measure if there is a linear correlation between two variables. The
PCC of y and ŷ is defined as follows where µ(X) is the mean of a random variable X:

PCC(y, ŷ) =
∑i

(
ŷi − µ(ŷ)

)(
yi − µ(y)

)
√

∑i

(
ŷi − µ(ŷ)

)2
√

∑i

(
yi − µ(y)

)2
. (4)

The SCC between two variables is equivalent to the PCC between the rank values of
the two variables. That is, the SCC assesses whether the two variables are monotonically
related. Assume that r(y) and r(ŷ) are the rank vector of y and ŷ, respectively. SCC is
defined as:

SCC(y, ŷ) = PCC(r(y), r(ŷ)). (5)

The Discounted Cumulative Gain (DCG) [43] is a measure of ranking quality.

DGG(y, ŷ) =
m

∑
i=1

2−yi − 1
log2(r(−ŷi) + 1)

. (6)

To only consider the highest k scores in the ranking, m can be set as k. The NDCG
is used to normalize the DCG by the ideal DCG(y, y), as the DCG can be affected by the
number of scores.

NDCG(y, ŷ) =
DCG(y, ŷ)
DCG(y, y)

. (7)

3. Results and Discussion
3.1. Performance Evaluation on the GDSC Dataset

To assess the prediction accuracy of the proposed framework, gene expression and
drug response data from the GDSC database including 734 cell lines and 201 drugs were
used. Pre-processed GDSC data were retrieved from the paper by Chen and Zhang [10]
where genes with little variation in expression and drugs with missing responses in 80% or
more cell lines were removed. We generated four sets of data with two different gene sets
(L1000 and Var1000) and two types of drug response values (IC50 and AUC), referred to as
the L1000-IC50, L1000-AUC, Var1000-IC50, and Var1000-AUC datasets. The L1000-IC50
and L1000-AUC datasets contained 663 genes that commonly exist in 978 landmark genes
in L1000 and 8046 genes in the GDSC dataset. The Var1000-IC50 and Var1000-AUC datasets
included the top 1000 genes with the largest variance of gene expression values among
the entire cell lines, which might suggest that those genes can be expressed differently to
generate diverse cellular statuses and consequent drug responses.
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The computational models compared with DrugGCN were KRR, KRL [13], RWEN [14],
a Multi-Layer Perceptron (MLP), and a Bagging Regressor (BR). The methods using gene
expression data without considering the interaction between genes were selected to com-
pare the prediction accuracy and to analyze the contribution of gene-gene interaction
information utilized in DrugGCN. As for KRR, MLP, and BR, we used Python functions
implemented in the scikit-learn library [44]. The hyperparameters of the methods were
set as default values except the regularization parameter λ in KRL. λ was tuned with
a line search with λ ∈ 1.0, 0.1, 0.01, . . ., 1× 10−6 as described in the original paper and
finally selected as one. The hyperparameters of DrugGCN are described in Appendix A
Table A1. In the learning process, a three-fold cross-validation with a 50% training set, a
25% validation set, and a 25% test set was carried out.

Figure 2 shows the result of the six methods with four measures, RMSE, PCC, SCC,
and NDCG, using the L1000-IC50 dataset. k for NDCG was tested as k ∈ 1, 2, 5, 10, 20, 50.
As KRL calculates the predicted ranking of drugs to recommend for a given cell line rather
than the exact drug response values for all potential drugs, KRL was not included in the
plots of the RMSE results. As in Figure 2, the top three methods showed consistently high
performance in all measures in the order of DrugGCN, BR, and KRR. The ranks of the other
three methods changed depending on the measures.

To compare the result of the six methods using a statistical test, the RMSE, PCC, and
SCC values for each drug predicted by the six methods were ranked from one (the smallest
for RMSE and the largest for PCC and SCC) to six. The rank vectors of each method were
generated with the ranks that each method gained for 201 drugs. If a method always
predicted the drug response most correctly among the six methods, the rank vector would
be (1, 1, . . ., 1). On the contrary, the worst rank vector would be (6, 6, . . ., 6) for a method
whose prediction was always the worst. We performed the one-sided Wilcoxon signed-rank
test [45], which compares two matched measurements and assesses whether their means
differ, comparing pairs of rank vectors of DrugGCN and the other five methods. The
p-values estimated by the Wilcoxon signed-rank test are shown in Table 1. As expected, in
Figure 2, the mean rank of DrugGCN is significantly higher (smaller in number) than the
other methods.
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Figure 2. Performance evaluation results of the six methods from L1000-IC50 dataset using the (a)
RMSE, (b) PCC, (c) SCC, and (d) Normalized Discounted Cumulative Gain (NDCG). KRR, Kernelized
Ridge Regression; BR, Bagging Regressor; KRL, Kernelized Ranked Learning; RWEN, Response-
Weighted Elastic Net.

Table 1. p-values of the one-sided Wilcoxon signed-rank test using the L1000-IC50 dataset comparing
the ranks of DrugGCN and the other five methods.

Measure BR KRR KRL MLP RWEN

RMSE 1.48 ×10−10 9.44 ×10−38 - 6.99 ×10−37 2.77 ×10−37

PCC 9.57 ×10−15 5.03 ×10−28 2.93 ×10−31 1.38 ×10−35 3.89 ×10−35

SCC 5.77 ×10−12 1.07 ×10−25 1.31 ×10−28 2.11 ×10−35 9.28 ×10−35

For the remaining three datasets, DrugGCN showed consistently high performance as
shown in Appendix A Figures A1–A3 and Tables A2–A4. In most tests of the Wilcoxon
signed-rank test from the RMSE, PCC, and SCC measures, DrugGCN predicted better than
the other methods except two tests with KRL and BR, where the mean ranks of DrugGCN,
KRL, and BR were nearly the same as in Appendix A Figure A1c and Figure A2a. In the
NDCG results of the three other datasets, BR showed the highest accuracy.

In summary, DrugGCN and BR were the first and second methods that showed good
prediction power for the GDSC datasets. KRR-KRL and RWEN-MLP showed similar results
in the 3rd-4th and 5th-6th places. The high performance of DrugGCN and BR presumably
stemmed from the power of network information and ensemble learning, respectively.
From this result, we can suggest an ensemble model integrated with GCN, for which similar
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approaches have been made for other biological problems such as subtype classification of
cancer [37,38]. Lee et al. [38] constructed an ensemble model from multiple GCNs of smaller
subnetworks of PPI (biological pathways) with hundreds of genes, known to regulate a
biological process together. In addition, the GCN model can be extended with other
types of networks rather than PPI such as molecular graphs of drugs [33] and biological
networks from multi-omics data [23], which can provide additional information for drug
response prediction. As in [23,33], different types of input features can be integrated into a
multi-modal neural network, and the contribution of each drug or genomic features can be
measured and compared with the augmented model structure.

3.2. Case Study: ERK MAPK Signaling-Related Drugs

We investigated the L1000-IC50 dataset to uncover how the network of genes affected
the accuracy of drug response prediction. First, drugs were classified into 23 drug groups
depending on their target pathways, as defined by [10]. For each accuracy measure, two-
hundred one drugs can be ranked from one (a drug predicted with the smallest RMSE or
largest PCC or SCC) to 201. The ranks of drugs in the same drug group were collected,
and a box plot showing the distribution of the ranks of each drug group was generated, as
shown in Figures 3 and 4. Figure 3 shows the distribution of ranks when ranks from all
measures were put together, and Figure 4 is the individual box plots for the RMSE, PCC,
and SCC. The overall prediction accuracy was high in a group of drugs targeting the ERK
MAPK signaling pathway.

Figure 3. Box plot of ranks for each drug group predicted by DrugGCN using the L1000-IC50 dataset.
Results from the RMSE, PCC, and SCC are combined.
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Figure 4. Box plot of ranks for each drug group predicted by DrugGCN using the L1000-IC50 dataset.
Ranks of drug groups are calculated from the (a) RMSE, (b) PCC, and (c) SCC.

We assumed that high prediction accuracy of a drug response was derived by the
information from the highly connected genes forming a subnetwork in the PPI network.
On the contrary, lower prediction accuracy may result from the important genes scattered
in the network, even though those drugs with high and low prediction accuracy have
similar roles in a cell. To verify the hypothesis, we selected two drugs from the “ERK
MAPK signaling pathway” group with the highest rank (refametinib, rank one) and
the lowest rank (PLX-4720, rank 109) in terms of the PCC. For refametinib and PLX-
4720, fifty genes that potentially contributed to predict the IC50 were selected by the
correlation between their gene expression values and the IC50. That is, the gene expression
of 50 genes had a relatively strong (positive or negative) correlation with the IC50 values
across cell lines, among 663 genes. With those two sets of 50 genes, we performed a
pathway enrichment analysis that assessed the ratio of query genes found together in the
subnetworks of the PPI network called biological pathways. The DAVID platform [46]
provided over-representation analysis, one of the pathway enrichment analyses [47] that
conducts statistical tests on query genes based on the hypergeometric distribution.

The pathway analysis results of refametinib and PLX-4720-related genes are shown in
Tables 2 and 3, respectively. Fifty genes having a high correlation with refametinib were
enriched (p-value under 0.05) in a number of biological pathways including MAPK signaling
itself; even four pathways remained as significantly enriched after FDR correction of the
p-values. On the other hand, genes selected for PLX-4720 had three or zero enriched pathways
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with p-values or FDR corrected p-values under 0.05. The results from pathway enrichment
analysis supported our hypothesis that the gene network contributes to the prediction of
drug response.

Table 2. Pathway enrichment test results with 50 genes for refametinib. QueryG indicates the number of query genes found
in the pathway, and PathwayG is the number of total genes in the pathway.

Pathway QueryG PathwayG % p-Value FDR

hsa05212:Pancreatic cancer 6 65 12.2449 7.65 ×10−6 9.11 ×10−4

hsa05210:Colorectal cancer 5 62 10.20408 1.38 ×10−4 0.008185
hsa05220:Chronic myeloid leukemia 5 72 10.20408 2.46 ×10−4 0.009764
hsa05200:Pathways in cancer 8 393 16.32653 0.001218 0.036235
hsa04380:Osteoclast differentiation 5 131 10.20408 0.002345 0.054046
hsa05214:Glioma 4 65 8.163265 0.002725 0.054046
hsa05166:HTLV-I infection 6 254 12.2449 0.004409 0.074948
hsa05205:Proteoglycans in cancer 5 200 10.20408 0.010509 0.156321
hsa04068:FoxO signaling pathway 4 134 8.163265 0.019992 0.26434
hsa04010:MAPK signaling pathway 5 253 10.20408 0.023081 0.264767
hsa05223:Non-small cell lung cancer 3 56 6.122449 0.024474 0.264767
hsa05206:MicroRNAs in cancer 5 286 10.20408 0.034222 0.32247
hsa04917:Prolactin signaling pathway 3 71 6.122449 0.037938 0.32247
hsa05218:Melanoma 3 71 6.122449 0.037938 0.32247
hsa04062:Chemokine signaling pathway 4 186 8.163265 0.046265 0.367033

Table 3. Pathway enrichment test results with 50 genes for PLX-4720. QueryG indicates the number of query genes found
in the pathway, and PathwayG is the number of total genes in the pathway.

Pathway QueryG PathwayG % p-Value FDR

hsa05010:Alzheimer’s disease 4 168 8 0.027233 1
hsa05120:Epithelial cell signaling in Helicobacter pylori infection 3 67 6 0.028047 1
hsa04912:GnRH signaling pathway 3 91 6 0.049052 1

4. Conclusions

In this study, DrugGCN, a computational framework for drug response prediction,
was proposed. DrugGCN incorporated PPI network and gene expression data into the
GCN model to detect the local features in graphs by localized filtering. The effectiveness of
DrugGCN was tested with four GDSC datasets, and it showed high prediction accuracy
in terms of the RSME, PCC, and SCC. In the case study of ERK MAPK signaling-related
drugs, we discovered supporting evidence of the hypothesis that the high accuracy of
DrugGCN was due to the genes forming a subnetwork in the PPI network that provided
much information to predict cellular states and consequent drug responses.

The prediction accuracy of DrugGCN can be further improved in terms of the current
limitations pertaining to the model structure and input features as described below. Among
the competing methods of DrugGCN, the bagging regressor showed high performance
with the support of the ensemble model. An ensemble model consisting of multiple GCN
was proposed in [38] for the cancer subtype classification problem where the original graph
of the biological network was divided into smaller subnetworks with hundreds of genes
using prior knowledge on which genes cooperated with each other for a certain biological
process, such as biological pathways from the KEGG database [48]. The prediction accuracy
of the DrugGCN model can be improved with the aforesaid ensemble model, as we showed
the predictive power of subnetworks in the case study of ERK MAPK signaling.

The DrugGCN model also can be extended with additional genomic features from
different omics data or drug features such as the chemical structures of drug compounds.
In particular, the structural properties of drug compounds have been used for drug devel-
opment and discovery as the form of a graph [34], which can be easily integrated into the
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GCN model. As in the similar models [23,26], learning from multiple types of features can
be implemented with multiple GCN models, the learned representations of which are then
concatenated and put into fully connected layers.

Author Contributions: Conceptualization, K.J.; methodology, K.J.; software, S.K. and Y.P.; valida-
tion, S.K., S.B. and K.J.; formal analysis, K.J.; investigation, S.K. and S.B.; data curation, S.B. and
S.K.; writing—original draft preparation, K.J. and S.B.; writing—review and editing, K.J. and Y.P.;
visualization, S.B.; supervision, K.J.; project administration, K.J.; funding acquisition, K.J. All authors
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1G1A1003558).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: GDSC data used in the paper are retrieved from https://github.com/
Jinyu2019/Suppl-data-BBpaper (accessed on 30 October 2020) [10]. Python codes of DrugGCN
framework are available at https://github.com/BML-cbnu/DrugGCN.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Hyperparameters of DrugGCN used for the GDSC dataset.

Hyperparameters

GCN Layer = 2
Number of Kernels = [20, 10]
Kernel Size = [40, 20]
Polling size = [4, 4]
FC Size = [128, 1]
Reg = 0
Dropout = 1
l_rate = 0.02
Momentum = 0.9
Decay_rate = 0.95
Batch_size = 4

https://github.com/Jinyu2019/Suppl-data-BBpaper
https://github.com/Jinyu2019/Suppl-data-BBpaper
https://github.com/BML-cbnu/DrugGCN
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Figure A1. Performance evaluation results of six methods from the L1000-AUC dataset using the (a)
RMSE, (b) PCC, (c) SCC, and (d) NDCG.

Table A2. p-values of the one-sided Wilcoxon signed-rank test using the L1000-AUC dataset compar-
ing the ranks of DrugGCN and the other five methods.

Measure BR KRR KRL MLP RWEN

RMSE 0.0038 9.91 ×10−35 - 4.55 ×10−46 1.99 ×10−36

PCC 0.0082 1.43 ×10−8 4.09 ×10−9 1.01 ×10−32 3.73 ×10−23

SCC 0.0025 1.71 ×10−8 0.5151 2.75 ×10−30 3.28 ×10−26
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Figure A2. Performance evaluation results of the six methods from the Var1000-IC50 dataset using
the (a) RMSE, (b) PCC, (c) SCC, and (d) NDCG.

Table A3. p-values of the one-sided Wilcoxon signed-rank test using the Var1000-IC50 dataset
comparing the ranks of DrugGCN and the other five methods.

Measure BR KRR KRL MLP RWEN

RMSE 0.9914 4.87 ×10−37 - 4.59 ×10−36 2.34 ×10−37

PCC 3.66 ×10−14 2.39 ×10−29 4.10 ×10−26 1.31 ×10−35 1.48 ×10−35

SCC 6.01 ×10−13 1.18 ×10−27 1.03 ×10−25 1.31 ×10−35 9.06 ×10−36
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Figure A3. Performance evaluation results of the six methods from the Var1000-AUC dataset using
the (a) RMSE, (b) PCC, (c) SCC, and (d) NDCG.

Table A4. p-values of the one-sided Wilcoxon signed-rank test using the Var1000-AUC dataset
comparing the ranks of DrugGCN and the other five methods.

Measure BR KRR KRL MLP RWEN

RMSE 0.0957 1.12 ×10−32 - 5.76 ×10−36 1.00 ×10−36

PCC 0.0001 3.56 ×10−11 1.08 ×10−10 2.93 ×10−33 9.47 ×10−27

SCC 4.52 ×10−6 8.06 ×10−16 0.0002 5.81 ×10−35 4.88 ×10−33
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