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Abstract: This contribution deals with introducing the innovative concept of extended fuzzy set
(E-FS), in which the S-norm function of membership and non-membership grades is less than or
equal to one. The proposed concept not only encompasses the concept of the fuzzy set (FS), but it
also includes the concepts of the intuitionistic fuzzy set (IFS), the Pythagorean fuzzy set (PFS) and
the p-rung orthopair fuzzy set (p-ROFS). In order to explore the features of the E-FS concept, set and
algebraic operations on E-FSs, average and geometric operations of E-FSs are studied and an E-FS
score function is defined. The superiority of the E-FS concept is further confirmed with a score-based
decision making technique in which the concepts of FS, IFS, PFS and p-ROFS do not make sense.

Keywords: fuzzy set (FS); intuitionistic fuzzy set (IFS); pythagorean fuzzy set (PFS); p-rung orthopair
fuzzy set (p-ROFS); extended fuzzy set (E-FS); decision making

1. Introduction

Decision making is one of the most important and critical activities of the human
being. However, human beings” opinions or preferences are pervaded with vagueness and
imprecision. Zadeh [1] proposed a new methodology to address vagueness and imprecision
based on the concept of ‘fuzziness or gradual degree of membership’ to a set, which was
term 'fuzzy set’ (FS). Since then, fuzzy sets have been extensively studied and extended
with other types of fuzziness based sets: intuitionistic fuzzy set (IFS) [2], Pythagorean
fuzzy set (PFS) [3] and p-rung orthopair fuzzy set (p-ROFS) [4] . The definitions of FS, IFS,
PFS and p-ROFS rely on the concepts of membership and non-membership degrees of an
element to a set. In the case of FSs, the sum of membership and non-membership degrees
of an element to a set is constrained to be equal to one; for IFSs, this sum is constrained to
be less than or equal to one; while constraints on the sum of powers of membership and
non-membership degrees to be less than or equal to one are used in the case of PFS (powers
of two) and p-ROFSs (p-power). Recall that if p = 1 and p = 2, then a p-ROFS reduces to
an IFS and a PFS, respectively, making IFS and PFS special cases of the p-ROFS.

The concepts of FS, IFS, PFS and p-ROFS have been applied to a wide-range of deci-
sion making problems including aggregation-based studies, information measure-based
research and ranking-based developments [5-8]. Among a large number of aggregation-
based studies, we highlight those carried out by Xu and Yager [9], where geometric
aggregation operators were introduced, and He et al. [10] where the geometric interaction
average operators for IFSs was proposed. By using Einstein operations, Garg [11] presented
the concept of information and geometric aggregations for PFSs; Liu and Wang [12] ex-
tended the weighted average and geometric operators to p-ROFSs, while Wei et al. [13] and
Peng et al. [14] investigated the Heronian mean and an exponential operations for p-ROFSs,
respectively. Abundant information measure-based research studies have been dedicated
to the concepts of FS, IFS, PFS and p-ROFS. Wu et al. [15] exploited the isomorphism be-
tween IFSs and interval-valued FSs to formally develop an approach to consistency of IFSs.
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Garg and Kumar [16] studied a class of similarity measures of IFSs, while Wu and Chiclana
in [17] and Urena et al. in [18] applied IFSs approaches to estimate missing preferences
and consensus building. Zhang [19] worked on a multiple criteria group decision making
technique of PFSs, and Guolin et al. [20] proposed a new decision-theoretic rough set
model with p-ROFSs.

An important topic worth attention is how to compare and rank FSs, IFSs, PFSs or
p-ROFSs. Xu and Yager [9] presented a score and accuracy functions on IFSs. Peng [21]
introduced a score function for PFSs and then investigated a number of its properties.
Farhadinia and Liao [22] first reviewed the existing score functions for p-ROFSs, and then
proposed a parametrised score function of p-ROFSs.

It is worth noting that, as p value increases in p-ROFSs, the space of acceptable
orthopairs increases and more orthopairs satisfy the boundary constraint. Therefore, we
can express a wider range of fuzzy information by using p-ROFSs than using FSs, IFSs or
PFSs. However, it is observed that their approaches are limited in nature. For example,
if an expert provides the value 0.95 for membership degree and the value 0.9 for non-
membership degree, then 0.95+ 0.9 # 1, 095+ 0.9 £ 1, (0.95)? + (0.9)> £ 1, while
(0.95) + (0.9)P < 1 when p > 10, which restricts the option of selecting p in p-ROFS
theory. Hence, FSs, IFSs, PFSs and p-ROFSs cannot describe this information properly
and effectively. To manage such a situation, and releasing the restriction of p selection in
p-ROFS theory, the concept of extended fuzzy set (E-FS) is introduced herein with a S-norm
function of the membership and non-membership degrees being constrained to be less than
or equal to 1. The proposed E-FS concept is therefore more effective and more general than
the existing concepts for handling uncertain information in real-life decision processes.
Indeed, our proposed E-FS concept expresses a wider range of fuzzy information than
p-ROFS without needing to consider the extra parameter p, which is essential in defining
a p-ROFS. In addition, the proposed E-FS diminishes the restriction that FS, IFS, PFS
and p-ROFS impose on membership grades and it provides decision-makers with more
elasticity to express their opinions according to the membership grades of an element than
the concepts of FS, IFS, PFS and p-ROFS.

Summarising, this study main research contributions are:

1.  The introduction of the concept of E-FS, as an overarching concept of FS to include
the concepts of IFS, PFS and p-ROFS;

2. The study of the fundamental principles of E-FSs in comparison to FSs, IFSs, PFSs
and p-ROFSs;

3. The definition of some algebraic and set operations on E-FSs, including the average
and geometric operations on E-FSs;

4.  The presentation of a score function for E-FSs.

The rest of this contribution is organised as follows—Section 2 provides a brief review
of some preliminaries needed before the concept of E-FS is introduced. Sections 3-5 are
devoted to the study of set and algebraic operations on E-FSs, average and geometric
operations of E-FSs and a score function of E-FSs, respectively. Section 6 presents the
application of the proposed E-FS score function to solve a decision making problem.
Conclusions are drawn in Section 7.

2. Fundamental Principles

This section is devoted to reviewing some existing basic concepts and notions that are
of importance in fuzzy set theory. Then, we deal with the main part of this contribution,
which is the introduction of the concept of extended fuzzy set (E-FS).

Formally, given a universal set X, a set A on X is characterised by two functions on X
that measure the degree of membership (114 (x)) and the degree of non-membership (v4(x))
to A of each element of the universal set x € X.

e Aisaclassical set (CS) when 4 and v4 range is {0,1} and verify the property

pa(x)+va(x) =1, VxeX. 1)
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In this case, the membership function is known as a characteristic function and usually
denoted by ¢ 4; the non-membership function is uniquely defined by (1).
e Aisafuzzy set (FS) when 4 and v4 range is [0, 1] and verify the property

pa(x)+valx) =1, VxeX. )

Consequently, as with CSs, the non-membership function v4 is uniquely defined from
the membership function.
e A is an intuitionistic fuzzy set (IFS) when y4 and v range is [0,1] and verify the
property
pa(x)+va(x) <1, VxeX. 3)

In this case, given a membership function, multiple non-membership functions ver-
ifying (3) may exist. The concept of hesitancy is therefore present in an IFS, which
is modelled in this framework via the hesitancy function m4 =1 — (pa(x) +va(x)).
For IFSs, membership and non-membership functions are specifically denoted as
HAps and Vg o, respectively.
e Ais a Pythagorean fuzzy set (PFS) when 14 and v4 range is [0, 1] and verify the
property
pa(x) +14(x) <1, VrxeX. 4)
As with IFSs, a membership function may have associated more than one non-
membership functions as per (4). For PFSs, membership and non-membership func-
tions are specifically denoted as yi,,,; and v, respectively.
e Aisap-rung orthopair fuzzy set (p-ROFS) (p > 1) when pt4 and v4 range is [0,1] and
verify the property
ph(x) +vh(x) <1, VxeX. (5)
If p = 2, then (5) becomes (4); while if p = 1, then (5) becomes (3).
It is obvious from examining the above set concept definitions that all of them follow

the same pattern in that all impose a constraint to the membership and non-membership
functions of the type

(6)

{ ¢:[0,1] x [0,1] — [0,1]
P(pa(x),va(x)) €[0,1], VxeX.

A CS requires that p4(x),va(x) € {0,1}, and can be seen as a subclass of FS, IFS,
PFES or p-ROFS. Although, the concept of p-ROFS has been widely studied by researchers,
very little is known about the pre-determination of the parameter p. This motivates us to
propose the concept of extended fuzzy set (E-FS), which is not dependent on any value
of p.

Definition 1. Consider the referential set X. An extended fuzzy set (E-FS) Ap_rs on X is
characterised by two functions, pa, ,.: X = [0,1]andva, ,.: X — [0,1], called the membership
and non-membership functions of Ap_rg, respectively, that verify the property

0<pia; ;s(x)Ova, ((x) <1, VxeX, )

where © is a S-norm or union function. Using set theoretic notation, an extended fuzzy set (E-FS)
on X will be denoted as follows

Ap_rs = {(x, Hay s (X),va, (%)) x € X}

Recall that an S-norm is a binary function ® : [0,1] x [0,1] — [0, 1] that satisfies the
following properties (see e.g., [23])
1.  ®(x,0) = x (boundary condition);
2. Vxyze€][0,1],ify <z then ®(x,y) < ®(x,z) (monotonicity);
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3. Vx,yel01],o(xy) = Oy, x) (commutativity);
4. Vx,y,z€[0,1], ©(x,0(y,z)) = ©(®(x,y),z) (associativity).

The following S-norms are respectively known as Algebraic, Einstein, Hamacher and
Frank norms:

O1(xy) =x+y—ay;

X+
O2(x,y) =1+xyy;
x+y—xy—(1—¢€)x
oSy = AL s

(el —1)(el¥ —-1)
e—1

O4(xy) =1—loge(1+ ), e>1

Proposition 1. Any FS, IFS, PFS and p-ROFS on X is an E-FS on X.
Proof of Proposition 1 is in Appendix A.1.

Remark 1. The converse is not true. Indeed, an E-FS may not necessarily be a p-ROFS for all
values of p € [1,00). For instance, the E-FS { (pa,_ (%), va,_,s(x))} = {(0.95,0.9)} is not a
p-ROFS for any p € [1,10).

Remark 2. In order to simplify the following discussions, (pa,_po(X), Vap_po(x)) is called an
extended fuzzy number (E-FN). This is nothing else than a special case of E-FS. Furthermore, since
the same treatment strategy will be applied for all types of S-norm ©, we only consider © 1= ©1 in
what follows.

3. Set and Algebraic Operations on E-FNs

The usual operations of addition and multiplication between E-FSs are denoted by
@ and ® while the operation relating the membership and non-membership degrees of
an E-FS is denoted by ©1. We now propose a number of set and algebraic operations on
E-FNs.

Definition 2. For any E-FNs Ap_rN = (MA;_py/VAp py) @14 BE_pN = (MBp pys VBe gy ) the
following operations are defined:

Ap_pn = (pac_ovas ) = (VA ey BAp_py ) ®)

AE FN n BE FN = (yAE—FNmBE—FN’VAE—FNUBE—FN) (9)
(min{:uAEpr' MBr_rn }' maX{VAE—FN’ VBe_rn })'

AE FNUBE FN — (VAEfFNUBE—FN’VAE—FNQBE—FN) (10)
(maX{VAE—FN' HBe_pn % min{VAE—FN’ VBe_pn })'

Ap-rN®Be-FN = (Ha, FN@BE ens VAE_pn®Br_pn ) (11)
(1 VAE—FN)( _VBE—FN)’VAE—FNVBE—FN)"

AE FN®BE FN — (VAE FEN®Bp_ FN’VAE EN®BE_ FN) (12)
(VAE enMBe_pns 1 — (1- VAE—FN)(l - VBE—FN));

AE_FN = (‘u/\AE—FN’V/\AE—FN) = (1 - (1- ‘uAE—FN)A’ (VAEpr)A)" (13)

A A A
AE—FN = (nuA/g N’ UA;E\—FN) = ((VAE—FN) /1 - (1 _VAE,FN) )/ A >0. (14)

Proof of Definition 2 operations are well defined is in Appendix A.2.
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Definition 3. For any E-FNs Ap_rN = (MAp pnrVAp py) @14 BE_EN = (HBp pys VBe pn )
Ap-rN € BppN = [VAE—FN S MBe gy ANVAp by 2 VBE—FN]‘ (15)
An early source of representation of fuzzy subsets can be found in [24,25].

4. Average and Geometric Operators of E-FNs

The weighted average operator and the weighted geometric operator of a set of E-FNs
are defined. Some of their properties are also outlined.

Definition 4. The weighted average operator for a set of E-FNs is a mapping E — IFWA: E — FN X
-+ X E—FN — [0,1] given by:

AiE-FN

m m m
E— IFWA(A1g—rN, - AmE—EN) = P wiAip_pN = (1 —TT = pag ) TTVS ) (16)
-1 1

i=1 i=
where w; > 0 forany 1 <i <m,and y|' ; w; = 1.
Theorem 1. The output of the weighted average operator E-IFWA is an E-FN.
Proof of Theorem 1 is in Appendix A.3.

The above-proposed aggregation operator satisfies the impotency, boundary and
monotonicity properties, which are stated below.
Theorem 2. (Idempotency property) The weighted average operator E — IFWA satisfies

E— IFWA(A1g—pN, - -, AmE—FN) = AE—FN (17)

for a set of equal E-FNs Ap_pN := A1E—FN = -+ = AmE—FN.

Proof of Theorem 2 is in Appendix A 4.

If we set
AlE—FN = (VAIE,FN,VA,E,FN) = (1I§r}glm{yAiEpN}’1r£1ia<):n{vAjEFN}) (18)
AuE-FN = (‘uAuEfFN’VAuEfFN) = (lrgag’(n{yAiE—FN}’1r§r}i§nm{vAiE—FN}>’ (19)

then we have the following result.

Theorem 3. (Boundedness property) The weighted average operator E — IFWA satisfies
Aip-pN € E— IFWA(A1g—pN, -, Ame—FN) C Aue—rN (20)

for a set of E-FNs A1E_FN, -, AmE—FN-

Proof of Theorem 3 is in Appendix A.5.

Theorem 4. (Monotonicity property) Suppose that for any two classes of E-FNs A1g_pn, - -,

AmE—FN and BlE*FN/ caey BmE—FNr it holds that AiE—FN - BiE_prOT all 1 < i < m. Th(i‘I’l,

the weighted average operator E — IFWA satisfies

E— IFWA(A1E_FN, - Ame—rn) € E — IFWA(B1E_FN, - - -, Bue—FN)- (21)

Proof of Theorem 4 is in Appendix A.6.
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Definition 5. The weighted geometric operator for a set of E-FNs is a mapping E — IFWA :
E—FN(X) x---x E—FN(X) — [0,1] given by:

m m m
E—IFWG(A1g—pN, - Ame—rN) = QA py = (H pa =TT - uAiEFN)“"> (22)
i=1 i=1

i=1

where w; > 0 forany 1 <i <m,and ' ; w; = 1.

The weighted geometric operator E — IFWG also satisfies idempotency, monotonicity
and boundedness properties.

5. Score Function of E-FNs

In what follows, we propose a score function for E-FNs based on the S-norm ®7, and
prove its properties.

Definition 6. Given an E-FN Ag_ry, we define its score function

Sce, (Ap-rN) = (1 - VAE—FN) - A(l - ‘uAE—FN®1VAE—FN)

= (1 - VAE,FN) - )\(1 - (1 - (1 - AuAE—FN) (1 - VAE—FN)))’ >

where A € [0,1].

Itis Sce, € [0,1] for any pa, ;.\, Va; sy A € [0,1]. When A increases in [0, 1], the
score function Scy, decreases from the value 1 —v,, . (for A = 0) to the value 4, .
(1—vap ;) (for A =1).

One of the superiorities of the proposed E-FS score function with respect to the existing
p-ROFS score functions, given next in Equations (25)—(31), is that it is defined based on
the multiplication of pa, , and (1 —va, ), (1 —va, ;) (1 =A) +Apua, ), while
existing p-ROFS scores are mainly based on the difference pa, . — va, ;y, which is
meaningless in the case yia, ;. = Va, - In addition, for all A € [0,1], it can be easily
observed from Definition 6 and the S-norm ®; that
*  Sco,(Ap-pn) = 1if Ap_pn = (1,0);

L4 SC®1(AE7FN> :OifAE,FN = (0,1)

Thus, the maximum score is obtained for full membership, while complete non-
membership has associated a score value of 0. We provide below other interesting proper-
ties for the proposed score function.

Theorem 5. For any two E-FNs Ap_pn and Bp_pN, if Ac_pn C Be_pn, then
Sce, (AE-FN) < Sco, (BE-EN)- (24)
Proof of Theorem 5 is in Appendix A.7.

Theorem 6. For any E-FN Ap_pn = (Map sy VAgp_py ). the score function Sce, (Ap—pn) is
monotonically increasing with respect to pa, ., and monotonically decreasing with respect to
VAp -

Proof of Theorem 6 is in Appendix A.8.
Lemma 1. For any E-FN Ag_pn, the score function Sc, (Ap_pN) is a decreasing function of A.

Proof of Lemma 1 is in Appendix A.9.
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6. Decision Making with E-FSs

Through this section, we first compare the performance of the proposed E-FS score
function and the existing p-ROFS scores in the same setting on the pairs of p-ROFS and
E-FS datasets. A classical multiple attribute group decision making (MCGDM) problem in
which the ranking order of alternatives based on the Evaluation based on Distance from
Average Solution (EDAS) method is a worthy topic for this evaluation study.

6.1. A Critical Analysis of all Existing p-ROFS Score Functions

In what follows, we first present a set of existing score functions of p-ROFSs, and then
compare their outcomes with the proposed E-FS score function from a point of view of
finding weaknesses in them. Notice that in all cases discussed the higher the value of a
score the more preferable the p-ROFS is.

Let A,_rors = {(x, HA, rors (x), VA, rors (x)): x € X}, the following existing p-ROFS
score functions in the literature are:

*  Yager’s [4] score function:
Sey(Ap-ROFS) = Ha rops (0) = VA o (¥)i (25)
e  Weietal.s [13] score function:
1
Sew(Ap-rors) = 2 (1 + yzp—mfs(x) B VZV—ROFS(X)); (26)

e Pengetal.’s [14] score function:

p v e"{;p—ROFs( ) Zp—KOFS(x) 1
SCPDG(A;?—ROFS) = ]/lAp—ROFS (.X') - VAp—ROFS (x) + (x>_ P (x) - E

eF‘ZHops Yay-rors\Y) | q 27)
x (1— yZHOFS(x) — VZ%ROFS (x));
e  Mietal’s [26] score function:
2+ yiprOFS (x) - V’r‘]‘r’*ROFS () ; (28)

Semrr(Ap-—rors) =
_4F 4 _ P _ P
<2 yAprors (x) + vAp—ROFS (x)) x (2 ”Aprors (x) vAprors (x))

¢  Farhadinia and Liao’s [22] score function:
Scrr (Ap_rors) = uh (x) +A(1 -4, (x) —vh (x)), 0<A<1. (29
FL\#2p—ROFS ‘uAp—ROFS VAp—ROFS Ap-ROFs
*  Peng and Huang’s [27] score function:
Scpr(Ap-RoFS) = My ors (V) = Vi o (1) + ln<2 A ors () = VA s (x)); (30)

e  Peng and Dai’s [14] score function:

P p
yAp—ROFS (x) o szp—ROFS (x) -1 &
3

SCPD(AprOFS) = 3 + (VZ}FROFS(X) + VZ;;—ROFS (x) + 2); (31)

The above score functions may not provide good performance, even when considering
different p-ROFSs. For instance, if we consider p-ROFSs A = (0.3,0.3) and B = (0.2,0.2),
then the first, second, third and seventh score functions are not able to distinguish between
them when p = 1,2,3 (refer to Tables 1-3). This is not the case with the proposed new
score function (denoted Scpc in Table 4). Furthermore, it is not possible to apply the
existing score functions of p-ROFSs to E-FSs that are not p-ROFSs. For instance, if we have
A =(0.9,0.8) and B = (0.2,0.2), then the existing score functions when p = 1,2, 3 cannot
be applied because, for such p-values, A = (0.9,0.8) is not a p-ROFS. Therefore, existing
score functions of p-ROFSs are not useful in ranking A and B, but we can use the proposed
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new score function (see Table 5). All of these findings indicate that the proposed E-FS
score function Scc, allows the decision-maker to effectively discount the influence of other
score-based decisions.

Table 1. The ranking of p — ROFS A = (0.3,0.3) and B = (0.2,0.2) with existing score functions with

p=1
Score Function A-Score B-Score Ranking

Scy 0 0 A=B

Scw 0.5 0.5 A=B

Scppg 0 0 A=B

Scmrr 0.7143 0.625 A>B

Scpr (A=1) 0.7 0.8 A<B

Scpy —0.3365 —047 A>B

Scpp 0 0 A=B

Table 2. The ranking of p — ROFS A = (0.3,0.3) and B = (0.2,0.2) with existing score functions with

p=2
Score Function A-Score B-Score Ranking

Scy A=B

Scw 0.5 0.5 A=0B

Scppg 0 0 A=B

ScymrL 0.5495 0.5208 A>B

Scpr (A=1) 091 0.96 A<B

ScpH —0.5988 —0.6523 A>B

Scpp 0 0 A=B

Table 3. The ranking of p — ROFS A = (0.3,0.3) and B = (0.2,0.2) with existing score functions with

p=23
Score Function A-Score B-Score Ranking

Scy 0 0 A=B

Scw 0.5 0.5 A=B

Scppe 0 0 A=B

SemrLL 0.5139 0.504 A>B

Scpr (A=1) 0.973 0.992 A<B

Scpy —0.6658 —0.6851 A>B

Scpp 0 0 A=B

Table 4. The ranking of p — ROFS A = (0.3,0.3) and B = (0.2,0.2) as extended fuzzy sets (E-FSs)
with new score function.

Scec (A) A-Score B-Score Ranking
Scrc (A =1) 0.21 0.16 A>B
Scrc (A =1/2) 0.455 0.48 A<B

Scrc (A =0) 0.7 0.8 A<B
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Table 5. The ranking of A = (0.9,0.8) and B = (0.2,0.2) as E-FSs with new score function.

Scec (A) A-Score B-Score Ranking
Scrc (A =1) 0.18 0.16 A>B
Scpc (A =1/2) 0.19 0.48 A<B
Scrc (A =0) 0.2 0.8 A<B

6.2. E-FS-Based EDAS Technique for MCGDM

The EDAS model is useful to determine the best alternative(s) corresponding to the
biggest value of positive distance from average solution (PDAS) and the smallest value of
negative distance from average solution (NDAS), that is, it is useful to deal with conflicting
attributes [28].

Suppose that {R1, Ry, ..., Ry } is the set of alternatives, {Cy, Cy, ..., Cy } a set of criteria,
and {Ej, Ey, ..., E; } a set of experts who evaluate alternatives against criteria using E-FNs

Aith,FN = (VAijtg,pN’UAith,pN) fori =1,2,.,m,j =1,2,..,n,t =12,.,1. Assume
that {wE,, wE,, ..., wE, } and {wc,, wc,, ..., wc, } are these of weights of experts and criteria,
respectively, subject to the constraints: 0 < WE,, We; <1, Zi:l WEg, = Z?:l we; = 1. The
E-FS-based EDAS technique for MCGDM problem may be carried out by the following steps:
Step 1. Construct the individual experts” evaluation matrices A® = {Aijtg PN} t =
- mxXn
1,2,..1.
Step 2. Apply a weighted aggregation operator, for instance operator E — IFWA (16), to

compute the E-FN group matrix Ap_py = |:Ai]'E—FN} e

Step 3. Compute the following average value for each alternative

1 n

(VAE—FN’VAE—FN)i = (iJ 1- ﬁ(l - 'MZE—FN) ' ’H(VAE—FN)

By

j=1 j=1

), i=1,2,..m. (32)

Step 4. Apply Scp, (23) to derive the positive distance (PD) and negative distance (ND)
from Ap_pn:
max{O, Se ( (‘UAE—FN’ VAE—FN)ij) —Sc ( (VAspr' VAg_rn ) 1) }
PD(IMAE—FN’VAE—FN)I']' =
Sc ( (VAE—FN +VAg_pN )1)

max{O, Sc ( (VAE—FN’ VAp_rn ) i) —Sc ( (HAE—FN’ VAp_rN ) ij) }

SC((MAE—FN’VAE—FNL)
where Sc and Sc stand for the score function of E-FNs and their average E-FN,
respectively.

, (33)

ND( , (34)

HAp_pNrVAE PN ij =

Step 5. Compute the positive weighted distance P; (i = 1,2,..,m) and the negative
weighted distance N; (i = 1,2,...,m):

n

Py = ;ijPD (‘uAE—FN’VAE—FN)ij’ (35)
j=
n

N; = ngjND (HAE—FN’VAE—FN)Z']" (36)
]:

Step 6. Normalise P; (i =1,2,..,m)and N; (i = 1,2, ..., m)

— P;

Pi= max{Py, P, ..., Pm}; (37)
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— N;
Ni= max{Ny, Ny, ..., Ny} (38)

Step 7. Compute the integrative appraisal scores
1 - —
ISCiZE(Pi-I—l—Ni), i=1,2,..,m. (39)

Step 8. Produce the ranking of alternatives, with best alternative being the one with
maximum [Sc; value.

6.3. An EDAS-Based Case Study

A refrigerator is an essential appliance that contributes most in the living standards of
a household, although it also consumes a considerable amount of energy due to its continue
24-h running. Therefore, the adequate selection of refrigerator can benefit positively to
the individual household by reducing its energy-consumption cost, and to the general
environment sustainability on the other side. Below, we consider a decision-making process
related to the purchasing of a refrigerator within the context of information dealt with in
this paper.

In a recent contribution, Li et al. [29] proposed a MCGDM technique based on the
EDAS model with p-ROFS data, which they applied to the application problem of buying an
adequate refrigerator based on the following 6 criteria: C; = safety, C, = the performance
of refrigeration, C3 = designation, C4 = the reliability scale, C5s = the economical benefit,
Ce = aesthetics for deciding which of 5 available refrigerators R; (j=1,2,3,4,5) should be
bought. All the criteria are of benefit-type, and their corresponding weights are considered
as we = (we,,we,, ..., we,) = (0.20,0.15,0.25,0.17,0.13,0.10), and obtained the below p-
ROFS collective decision matrix D by applying the -ROFHA operator, with entry d;; the
decision value of the pair (C;, R;):

(0.618,0.3734)  (0.5438,0.4149) (0.3948,0.3148) (0.5283,0.2186)  (0.546,0.3148)
(0.5928,0.4149)  (0.6304,0.362)  (0.4937,0.3148) (0.5693,0.3037) (0.3948,0.3148)

b | (04937,03148) (05928,0.3148)  (0.547,0.1945)  (0.6297,0.3053) (0.4937,04149)
= | (0.3948,02133)  (0.6923,0.4149) (0.5225,0.3148) (0.3961,0.4334) (0.4937,0.3148)
(0.4937,0.3402)  (0.5925,0.3036) (0.4651,0.2623)  (0.296,0.4649)  (0.3948,0.3513)
(0.4281,0.2572)  (0.6014,0.3169) (0.5928,0.4149) (0.3948,0.3148) (0.4247,0.2856)

With the above p-ROFS collective decision matrix at hand, the average p-ROFS of
each of its rows with p = 3 in (32) results in the following alternatives average p-ROFSs:

5 1 5 1
3 = = .
(;uAp—ROFS’VAp—ROFS)I = 1- q(l - V?‘lprops) 5, ' 1(VAp—ROF5) 51, i=12...,6
= =
(i, corsr V4 rors ), = (05378,0.32), (1, sorsr VA, rors ), = (05514,0.3397),

(1, sors ¥4y sors ), = (05583,0.3003), (1, xorssVa, sors ), = (0.5314,03281),

(ay vors VA rors ), = (04725,0.3382), (1A, xorss VA4, sors ), = (0.5083,0.3138).

Table 6 presents the score values of the average p-ROFSs based on the score functions
(25)—(31), and the proposed one (23).
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Table 6. Score values of alternatives average p-rung orthopair fuzzy sets (p-ROFSs).
Score Function  (pa,va)y (ava), (pava); (mava)y  (rava)s  (pava)g

Scy 0.1228 0.1284 0.1469 0.1147 0.0668 0.1004
Scw 0.5614 0.5642 0.5735 0.5574 0.5334 0.5502
Scmrr 0.6242 0.6342 0.6441 0.6182 0.5761 0.6017
Scppg 0.1477 0.1539 0.1762 0.1381 0.0811 0.1214
Scrr 0.9672 0.9608 0.9729 0.9647 0.9613 0.9691

Scpy —0.4715 —0.4555  —0.4402 —0.4811 —0.5515 —0.5081
Scpp 0.0614 0.0642 0.0735 0.0574 0.0334 0.0502
Scpe (A=1) 0.3657 0.3641 0.3906 0.3570 0.3127 0.3488

SCY =

Semrr =

SCFL =

Scpp

If we denote the ij-th entry of Table 6 by ( HA

p—ROFS’ UAp—ROFS)i]-’

then the score matrices

obtained by applying the considered score functions in this contribution are:

0.1840 0.0894 0.0303 01370  0.1316 05920 0.5447 05152 0.5685 0.5658
0.1369 02031 00891 01565 0.0303 05684 0.6015 05446 0.5783 0.5152
0.0891 01771 01563 02212  0.0489 | e — | 05446 05886 05782 0.6106 0.5245 |
0.0518 02604 0.1114 —0.0193 0.0891 |’ W= 105259 06302 05557 04904 0.5446 |
0.0810 0.1800 0.0826 —0.0745 0.0182 0.5405 05900 0.5413 0.4627 0.5091
0.0614 0.1857 0.1369  0.0303  0.0533 0.5307 05928 0.5684 0.5152  0.5267
0.7025 0.6186 0.5405 0.6227 0.6317 02166 0.1065 0.0372  0.1658  0.1581
0.6667 07203 05915 0.6544 0.5405 0.1615 0238 0.1080 0.1872  0.0372
05915 0.6784 0.6395 07252 0.5808 | s 101080 02107 0.1886 02610  0.0588 |
05461 08137 06122 05284 0.5915 |’ €PGD = 100639 02990 0.1344 —0.0234 0.1080 |’
05892 0.6790 0.5773 0.4954 0.5374 0.0980 02143 0.1007 —0.0908 0.0223
05583 0.6881 0.6667 0.5405 0.5551 0.0753 02204 0.1615 0.0372  0.0653
09479 09286 0.9688 0.9896 0.9688 —0.3536 —04803 —0.6153 —0.4739 —0.4596
09286 09526 0.9688 0.9720 0.9688 —04056 —0.3287 —05252 —0.4243 —0.6153
09688 09688 09926 09715 0.9286 | ooy | 705252 03885 04474 03222 05434 |
09903 09286 09688 0.9186 0.9688 |’ CPH= 1 _06050 —0.2076 —04908 —0.6379 —0.5252 |’
09606 09720 0.9820 0.8995 0.9566 —05290 —03876 —0.5494 —0.7024 —0.6211
09830 09682 09286 0.9688 0.9767 —05828 —0.3743 —0.4056 —0.6153 —0.5886
0.0920 0.0447 00152  0.0685  0.0658 0.3872 03182 02705 04128 0.3741
0.0684 0.1015 0.0446  0.0783  0.0152 0.3468 04022 03383 0.3964 0.2705
0.0446 0.0886 0.0782  0.1106  0.0245 | s 0.3383 04062 0.4406 0.4375 0.2889
0.0259 01302 0.0557 —0.0096 0.0446 |’ CFC(=1) = | 03106 04051 03580 02244 03383
0.0405 0.0900 0.0413 —0.0373 0.0091 03257 04126 03431 0.1584 0.2561
0.0307 0.0928 0.0684 00152  0.0267 0.3180 04108 0.3468 0.2705 0.3034

In order to save space,

we only provide the PD and ND matrices

for Scy and the

proposed Scpe (A =1).
0.4984 0 0 0.1158  0.0716 0 02719 0.7529 0 0
0.0658  0.5811 0 0.2184 0 0 0 0.306 0 0.7638
0 0.2054 0.0638 0.5056 0 0.3934 0 0 0 0.6671
PDSey = 0 1.2693 0 0 o | NDSer =153 0 0.0287 1.1679 0.2231 |’
02119 1.6946 0.2359 0 0 0 0 0 21159  0.7278
0 0.849  0.3631 0 0 0.3882 0 0 0.6979  0.4692
0.0589 0 0 0.1288  0.023 0 013 0.2603 0 0
0 0.1047 0 0.0888 0 0.0474 0  0.0709 0 0.257
0 0.0398 0.1279  0.1198 0 0.134 0 0 0 0.2605
PDScre = 0 0.1345  0.0027 0 o |© NPSee=lp1301 o0 0 03714  0.0526
0.0417 03195  0.0972 0 0 0 0 0 0.4935 0.1810
0 0.1778 0 0 0 0.0883 0  0.0056 0.2244 0.1301

The positive and negative weighted distances, with (wj,ws, w3, wa, ws, we) =
(0.2,0.15,0.25,0.17,0.13,0.1) adopted from [29], are computed and the corresponding
integrative appraisal scores are obtained and reported in Table 7, from which we observe
slightly different arrangements of possible refrigerators, based on the existing p-ROFS
score functions and the E-FS one, although the best refrigerator is same. Needless to say
that if the decision matrix D elements are E-FSs, then existing p-ROFS-based methods
would be inapplicable.
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Table 7. Ranking of alternatives with considered score functions.

Score-Based EDAS

Method IS¢y I1Scy 1Sc3 IScy 1Scs Ranking Order

Scy (Equation (25)) 0.392 0.95 0.3776 0.1382 0.0868 Ry > Ry > R3 > R4 > Rs

Scw (Equation (26)) 0.3489 0.9387 0.3317 0.2326 0.013 Ry >Ry >R3> Ry > Rs

Scprr (Equation (28)) 0.3067 0.9874 0.2584 0.2657 0.0096 Ry > Ry > R4 > R3 > Rs
Scppg (Equation (27)) 0.3944 0.9488 0.3829 0.1419 0.0902 Ry > Ry > R3 > R4 > Rs
Scrr (Equation (29)) 0.4911 0.0733 0.876 0.3131 0.2953 R3 >Ry >Ry >R5>Ry

Scpy (Equation (30)) —6.6229 23.0165 —9.6394 —6.9174 —20.1849 Ry > Ry > R4 > R3 > Rs
Scpp (Equation (31)) 0.392 0.95 0.3776 0.1382 0.0868 Ry >Ry >R3> Ry > Rs
Scpe (A=1) 0.3408 0.9132 0.4978 0.3201 0.0233 Ry > R3 > Ry > R4 > Rs

7. Conclusions

To deal with the complexity of decision making techniques in practice, this contribu-
tion introduced the concept of E-FS, which extends the concept of FS, and the concepts of
IFS, PFS together with p-ROFS. The prominent role of E-FS concept is apparent in that the
concepts of FS, IFS, PES and p-ROFS do not make sense in all the situations with uncertainty.
Other main contributions of the work are summarised in the following;:

1.  Development of E-FS algebraic and set operations;
2. Presentation of E-FS average and geometric aggregating operations;
3. Introduction of an E-FS score function.

The direction of the future work of this research may be be focused on different
forms of E-FS information aggregation operators and E-FS information measures, decision
makers’ preference information [30] of E-FSs, individual consensus and group consensus
measures [31] of E-FSs.
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Abbreviations

The following abbreviations are used in this manuscript:

A Classical set (CS)

Afrg Fuzzy set (FS)

Alrs Intuitionistic fuzzy set (IFS)
Aprs Pythagorean fuzzy set (PFS)

Ap_Rrors p-rung orthopair fuzzy set (p-ROFS)
AE_Fs Extended fuzzy set (E-FS)
Ar_FN Extended fuzzy number (E-FN)

Appendix A. Proofs of Main Results
Appendix A.1. Proof of Proposition 1
Proof. A p-ROFS A, rors is defined as follows:

Ap—ROFs = {(x, HA,—rors (x)’UAprOFS (x)):x € X}
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in which the membership degree jia, ;s € [0,1] and the non-membership degree
VA, rors € [0,1] satisfy 0 < yipiROFS(x) + vflp (x) <1lforany x € Xand p € [1,).

—ROFS
Now, if we set
(e rs () vap 1) = (W) ors IR0 (®)), (A1)
then, the latter relation implies that:
Case1(® := O1):
Hap ps(X) O1VAp po(X) 1= pagp oo (%) Fvap 1o (X) = pagp o (X)Va, (%)

=1— (1= pap () x (1 —va, (%))

=1- (1 — yiniROFS(x)) X (1 — Uip—ROPS(x)) <1.

Case 2 (® := ®y):

HAL_ (x) +va,. (x)
Pateps () ©2Vae s (¥) 1= 0 =
E-FS E-FS

_ HAp_ps (x) VA §s (x) — HAp_ps (x)VAEfps (x) + HAE 55 (x)VAEfps (x)
1+ HAp s (x)VAEfFS (x)

P p _ P 14 P P
_ 'uAp—ROFS (x) + UAp—ROFS (x) 'uAp—ROFS (x)VAp—ROFS (x) + ‘uAp—ROFS (x)UAp—ROFS (x)

P p
1+ ‘uAprops (x)vAp—ROPS (x)

Once again, applying (A1), we find that

=1

1 P P
Hap ps(X) ©2Va () - Hay rors (x)vAp—ROFs (x)
E—FS E—FS VZ

< p
1+ Ha, rors (%) p—ROFS (x)

Case 3 (© := O3):

HAg_rs (x) O3 VAp g (x) =

HAE s (x) T VA _ps (x) — HAp_rs (x)VAgfps (x) - (1 — €)VAE,F5 (x)VAEfps (x)
1- (1 - 6)]4AE,F5 (x)VAE—FS (x)

p P p p P p
_ ’/lAp—ROFS (x) + VAprops (x) - ‘uAprors (x)VAp—ROFS (x) - (1 B e)‘uAprors (x)VAprors(x)

p 4
1-(1- e)yAp—ROFS(x)VAprOFS(x)

Again, applying equation (A1), we deduce that

L S L/ CO LT/ C)
_ROFS _ROFS
HAp ps (x) ©3 VAp_ps (x) < 1—(1—e) p” (x)vpp (x) =1
VAp—ROFS Ap—ROFS

for any € > 0.
Cased (O := O4):

(4 rs ) ) (v rs 1) )

Hap po(X) @4va, po(x) :=1—loge|1+ py

(elfypAprops @ _ 1) (elivﬁprOFS @ _ 1)

e—1

=1—1loge| 1+
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1— p
The fact that € > 1 gives rise to € —1 > 0 together with € Kay-rors ) _ 1>0
P

(x)

14, _rors P P i
ande 77 —1 > 0 for any A, rors (x),vApiROFS (x) < 1. By taking these out-

(el;lipzeops () _ 1) (elVf‘pRops (%) _ 1)
>

comes into account, we getloge | 1+ e 1

logel =0, and
HAE rs (x) ©4 VAE_rs (x) <1,

for any € > 1.

The above results demonstrate that 0 < yipiRops (x)+ Vf\piROFS (x) <1lforanyx € X

and p € [1,00) leads to 0 < pia, (%) ©va, ,(x) <1, thatis, a p-ROFS A,_rors is an
E-FS Ar ps. [

Appendix A.2. Proof of Definition 2 Operations Are Well Defined

Proof. Below, we prove that (8)—(14) are well-defined. It suffices to prove that 0 < yr_rs®1ve_rs
< 1in all cases.

Proof of (8). It is obvious for any E-FN A _py, wehave 0 < pia, . ©1va; s < 1. There-

fore, from the fact that Has o O1vas . = Vap pyO1HAp py, We conclude that 0 <

VAgist@lVA%st <1, that is, AiijN = (‘uACE—FN' VA%—FN) is an E-FN.

Proof of (9). Since Ar_pn and Br_py are two E-FNs, that is,

0 < pap ;sO1VAL s = MAp ps T VAL ps — HAp psVAp rs
= 1- [1 — AMAE,FS} X [1 — VAEf.Es] S 1

and
0< MBr_ ps O1VBg_ps =  HBp_ps + VBr_ps — HBr_psVBr_ps

= 1- [1 — VBE—FS] X [1 _VBEfFS] S 1

therefore from definition Ag_ry N BE_Fn, it results that
HAp pnOBe_pn O1VAp pNUBE_py = min{luAE—FN’ HBe rn }on maX{UAE—FN’ VBE—FN}
=1- [1 - min{VAE—FN' VBE—FN}] X [1 - maX{VAE—FN'VB&FNH
=1~ max{l —HAp g1 — IuBE—FN} X min{l — HAg pyo L= HBg_py }
By taking the non-negativity property of all the terms 1 — pa, .\, 1 — pip; ;1 —
Hap pyand 1 —pp. . into consideration, we are able to get that
0 < HAp pnnBe_pyO1VAE_pNUBE_py
=1-—max{1—pay p, 1= ppy X min{l—pa, ;1= pp p} <1

Proof of (10). The proof is much like that of (9).

Proof of (11). Follows from definition Ar_rn®Bg_rn, we conclude that

HAp pn®Be_pny O1VAL pn@Be_py = [1 - (1 - #AE—FN)(l - VBE—FN)] ©1 [VAE—FNVBE—FN}
=1- [1 - [1 - (1 - VAE—FN) (1 - VB&FN)]] x [1 - [UAE—FNUBE—FNH

=1- (1 - VAE—FN) (1 - yBE—FN) X (1 - UAE—FNUBE—FN)'
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Again, the non-negativity property of all the terms 1 — ps, .\, 1 —pp, ;and 1 —
Var rnVBe gy 81Ves rise to

0< HAp pn@Be_ Ny O1VAE pN©Be PN

=1-(1- VAngN)(l - ﬁuBE—FN) x[1- UAE—FNUBE—FN] <1
Proof of (12). The proof is much like that of (11).
Proof of (13). The proof is immediate from the fact that

0<prap ;n©O1aAp ,y =1-— (1 - [1 - (1 - ]’lAE—FN))\}) x [1 - (VAE—FN)A:|

A A
=1- (1 - ‘uAE—FN) X (1 - (VAE—FN) ) <L

Proof of (14). The proof is much like that of (13).
O

Appendix A.3. Proof of Theorem 1

Proof. We prove this by induction on the number of aggregated E-FNs, denoted here by m
For m = 2, from parts of (11) and (13) of Definition 2, we easily conclude that

E — IFWA(Aig_FN, A2E—FN) = W1 A1E_FNDW2A2E_FN
is an E-FN, that is,

0< Hawr Arg - pn®wr Age -y Q1Y Arg_pn@wa Age—py

- (1 -(1- VAlEJN)wl (1- .”Azzsfm)wz) ©1 (V;]iE—FN Z@E—FN)

=1- (1 - (1 - (1 - llA“;_pN)wl (1 - AZ/[AZE—FN)WZ)> X (1 - (inEfFN

— w1 w2 w w
=1- (1 - ‘uAlE—FN) (1 - VAZE—FN) X [1 - VA}E,FNVAEE,FN] <1

)
VAo N ) )
Now, we assume that the result holds for m and prove it for m 4 1. Therefore, we
suppose that

m
E — IFWA(A1E—gN, - - -, Ami—pN) = D wiAie_rn
i=1
is an E-FN. We prove now that

m+1
E — IFWA(A1e—FN, - - - AmE—ENs Ami1e-FN) = €D wiAip_rn

i=1
is also an E-FN. To do this, we have

m+1
E — IFWA(A1E—EN, - - - AmE—ENs Amt1E—EN) = €D wiAip—rn

i=1

m
= P wiAie_ NP1 A 1E—EN
i—1
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in which

<
0 SHOM | wiAip NGOy ApaE-FN @11/69?7:1 Wi Aig FN®Wy11Am+1E-FN

m
- <1 B H(l - yAiE—FN)wl (1 - #Aer]E—FN mH) <H AlE o MZEE FN)

i=1

1 wj Wiy
=1- (1 — <1 - < q —HAg_ FN ( - VAm+1E—FN) "
i=
N wm+1
(1 <HVAE FN Am1E- FN))
m+1 w: m+1 w
=1—(1-— 1—11: (1 - .Z’lAiEpr) x(1- ' 1/A;E—FN <1
i= 1=

This completes the proof. [

Appendix A.4. Proof of Theorem 2

Proof. Taking the equality relationship between all the unified E-FNs, thatis, Ap_ry :=
AN = -+ = Ayp—r£n together with the condition }}" ; w; = 1 in which w; > 0 for any
1 <i < m, we conclude that

m

E — IFWA(A1g—pN, - -, Ami—pN) = E— IFWA(Ag_pN, -, Ap—rn) = D AF py
i=1

m m w:
=|1- H(l — Hap_ ) VAr_ry

i=1 i=1

nwi | Nty wi
- (1 - (1 - tuAE—FN)Z 1 ’VAE—lFZ>

= (1= (1= B ) Vi)

= Ag_fFN.

O

Appendix A.5. Proof of Theorem 3
Proof. Let )" ; w; = 1 such that w; > 0 Vi. Denoting

Min, = minlgigm{ﬂAig,FN}; Max, = maxlgigm{ﬂAiE,pN};
Min, = mini<j<,y{va, v} Max, = maxi<i<m{va, ;}-

Since w; > 0, itis:

(1= Miny)*" > (1= pay p)" = (1= Max,)“;

(Miny, )9 < (Va, o) < (Maxy)®,
which implies
(1 — Min, )59 > T (1= pag o) > (1 — Max, ) 595

(Miny )Em € < Ty (A ) < (May) B,

Since " ; w; = 1, it is
Min}‘ <1- I—[zmzl(1 - VAingN)Wi = MaxV;

Min, <TTL; (VA py)Y < Max,.
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From
m

m
Min, <1-J](1=pa, ) and  [](va, ) < Max,,
i=1 i=1

we deduce that
Ajp—rN € E— IFWA(A1g_FN, -+, AmE—FN),

while from

m m
Min, <1—=J](1=pa, ) and  [](va, ) < Max,,
=1

i=1 i

we deduce that
E—IFWA(A1E-FN, -+, AmE—FN) € AuE_FN,

which completes the proof. [

Appendix A.6. Proof of Theorem 4
Proof. Let )" ; w; = 1 such that w; > 0 Vi. From Definition 3

Ap-rN € Be—pn <= [Map py < BB py ANVAp gy = VBe py)-

Since w; > 0, itis:

m m

m m
1- H(l - nuAiEpr)wl <1- H(l - nuBz‘E—FN)WI A 1_!<VA,'E—FN)WI 2 H(UBiE—FN)WI'
1= 1=

i=1 i=1

Therefore, we conclude that

E— IFWA(A1g—¢N, -, Ami—iN) € E — IFWA(Big_N, - - - Bnb—FN).

O

Appendix A.7. Proof of Theorem 5
Proof. Since Ar_pNn C Br_pp, itis

PAr en < BB rn NVAr in 2 VBe_pnv
which implies
(=g p) S~V ppp ey ) AL = Vap gy S 1= VB gy
Algebraic manipulation lead to the following:
1= (U= pap ) (= vag py) S 1= (1= pp_py) (1= VB py),

1- (VAE—FNQN/AE—FN) >1- (#BE—FN®1UBE—FN)’
(1 =vappy) = A = Hap_pyO1Vag_py) < (
The latter inequality implies that Sco, (Ag—pn) < Sco, (Be—pn). O

Appendix A.8. Proof of Theorem 6

Proof. The first partial derivatives of

Scoy (AE—FN) = (1 - VAE—FN) - )\(1 B (1 - (1 - AuAE—FN) (1 - UAE—FN)))

1- VBE—FN) - /\(1 ~ MBe_rn ®1VBE—FN)'
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are:

dSce, (AE—FN)
OHAp py

dSce, (A—rN)
MWAp py

= /\(1 — VAE—FN);

= ~VAp pn — A(_VAE—FN) (1 - ‘uAE—FN)
= _UAE,FN (1 - A(l - VAE—FN))'

9Sce, (AE—FN) > 0 while 95ce, (AE—FN)

It is obvious that
OHMAp py WAp py

<Oforany A € [0,1]. O
Appendix A.9. Proof of Lemma 1
Proof. The partial derivatives of Sc, (Ag_pn) with respect to A is:

dSc -
w =0— (1 — (1 — (1 - VAE,FN) (1 - VAE—FN)))

== (1 - yAE—FN) (1 - VAE—FN)'

9Sce, (AE—FN)

It is obvious that <Oforany A € [0,1]. O

oA
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