
mathematics

Article

A Hybrid Metaheuristic for the Unrelated Parallel Machine
Scheduling Problem

Dung-Ying Lin * and Tzu-Yun Huang

����������
�������

Citation: Lin, D.-Y.; Huang, T.-Y. A

Hybrid Metaheuristic for the

Unrelated Parallel Machine

Scheduling Problem. Mathematics

2021, 9, 768. https://doi.org/

10.3390/math9070768

Academic Editor: Chin-Chia Wu

Received: 24 February 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industrial Engineering and Engineering Management, National Tsing Hua University,
Hsinchu 30013, Taiwan; zxcv6564@gmail.com
* Correspondence: dylin@ie.nthu.edu.tw; Tel.: +886-(03)-574-2694

Abstract: The unrelated parallel machine scheduling problem aims to assign jobs to independent
machines with sequence-dependent setup times so that the makespan is minimized. When many
practical considerations are introduced, solving the resulting problem is challenging, especially when
problems of realistic sizes are of interest. In this study, in addition to the conventional objective of
minimizing the makespan, we further consider the burn-in (B/I) procedure that is required in practice;
we need to ensure that the scheduling results satisfy the B/I ratio constrained by the equipment.
To solve the resulting complicated problem, we propose a population-based simulated annealing
algorithm embedded with a variable neighborhood descent technique. Empirical results show that
the proposed solution strategy outperforms a commonly used commercial optimization package;
it can obtain schedules that are better than the schedules used in practice, and it does so in a more
efficient manner.

Keywords: unrelated parallel machine scheduling; simulated annealing; variable neighborhood
descent; metaheuristic; production scheduling

1. Introduction

The unrelated parallel machine scheduling problem aims to assign a set of jobs to a
set of unrelated machines that can process the jobs in parallel without affecting each other.
Unrelated parallel machine scheduling problems are of significant practical relevance, and
they arise in many applications (i.e., the electronic assembly industry investigated in this
study). However, many constraints and additional considerations need to be addressed
in practice. For instance, jobs completed at machines need to go through a burn-in (B/I)
process prior to being placed in service. The B/I process forces certain manufacturing
failures to occur under supervised conditions so that the quality of the product can be
examined and ensured. However, as B/I equipment is expensive, many companies have
only a limited amount of this kind of equipment, and this becomes the bottleneck of this
type of scheduling problem. In this study, we investigate the unrelated parallel machine
scheduling problem that aims to minimize the makespan and maximize B/I equipment
utilization. As each job has its own suitable B/I equipment, the maximization of B/I
equipment utilization can be achieved by making the ratio of completed jobs match the
number of B/I equipment available. Other than this additional consideration, the conven-
tional constraints (i.e., sequence-dependent setup times) are also accommodated in the
study. As the unrelated parallel machine scheduling problem possesses non-deterministic
polynomial-time (NP)-hard complexity [1], solving problem instances with practical sizes
is a challenging task, especially when many practical constraints need to be considered. To
address this type of problem, we propose a population-based simulated annealing (PBSA)
method embedded with a variable neighborhood descent (VND) heuristic to solve it. The
proposed solution strategy is empirically applied to real-world problem instances. A com-
parison with a commercial optimization package demonstrates that the devised approach
can determine the optimal schedules in small problem instances. When the problem size

Mathematics 2021, 9, 768. https://doi.org/10.3390/math9070768 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9070768
https://doi.org/10.3390/math9070768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9070768
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/7/768?type=check_update&version=1

Mathematics 2021, 9, 768 2 of 20

increases, we show that the designed approach can determine schedules that are better
than the schedules used in practice, and it does so in a much more efficient manner than
the commercial optimization package, which fails to obtain solutions.

The remainder of this paper is structured as follows. Section 2 critically overviews
the related work regarding production schedules. Section 3 presents the mathematical
formulation for the unrelated parallel machine scheduling problem considering various
practical constraints. The solution strategy tailored for solving the resulting program is
presented in Section 4. Empirical studies are summarized in Section 5 to demonstrate the
efficiency and effectiveness of the proposed solution strategies. The final section offers
conclusions and provides suggestions for future research.

2. Literature Review

In this section, we broadly categorize the production scheduling problem into single
and multiple operation problems according to the production process. In a single operation
problem, a job only needs to be processed/assembled once in a single and suitable machine
to complete its production procedure. In a multiple operation problem, a job needs to
go through various production/assembly steps. Each production/assembly step can
only be performed in a specific machine. Only when a job goes through all the required
steps is its production procedure completed in a multiple operation problem. Single
operation problems can be further classified into single and parallel machine problems.
Multiple operation problems can be further divided into flow shop, job shop and open
shop problems.

2.1. Single Operation

In single operation production, the problem is considered as a single machine schedul-
ing problem if all the jobs are completed by a single machine.

2.1.1. Single Machine Scheduling

Different research streams analyze single machine scheduling problems while con-
sidering various objective functions and constraints. Ref. [2] studied the single machine
scheduling problem that aims to minimize both energy consumption and maximum tar-
diness, and they proposed a mixed-integer linear programming model to formulate it. A
ε-constraint method that integrated local search, preprocessing, valid inequalities and solu-
tion space reduction techniques was developed to determine the Pareto optimal solution of
the two obtained compromised objective functions. Ref. [3] considered the minimization
of maximum costs, considering uncertain processing times. Various cost functions were
analyzed, and polynomial algorithms were devised to solve the resulting problem. Ref. [4]
investigated a single machine scheduling problem that takes release dates and inventory
constraints into consideration. With the predetermined processing time of each job and
each job’s known impact on the inventory level, the work aimed to determine the optimal
sequence of jobs such that the makespan was minimized. It was shown that the problem is
strongly NP-hard, and a series of algorithms were proposed to tackle it.

2.1.2. Parallel Machine Scheduling

When there are multiple machines with similar functionalities and these machines
can work simultaneously without affecting each other, the problem is considered a parallel
machine scheduling problem. Based on the features of the employed machines, parallel
machine scheduling can be further classified into identical and unrelated parallel machine
scheduling problems. The machines considered in identical parallel machine scheduling
problems are homogeneous, and the processing time of a job at any machine is identical.
The processing times of a job at the different machines considered in the unrelated parallel
machine scheduling problem, however, can be different, and the processing times at
different machines are not relevant.

Mathematics 2021, 9, 768 3 of 20

Identical Parallel Machines

Ref. [5] presented a mathematical model for an identical parallel machine scheduling
problem in which job splitting and sequence-dependent setup times were considered.
Simulated annealing and genetic algorithm metaheuristic-based approaches were proposed
with various encoding and decoding methods. The encoding effectively represented the
solutions compactly, while the decoding heuristically split jobs in a different manner. The
numerical results showed that the proposed approaches could determine solutions of good
quality. Ref. [6] investigated the parallel machine scheduling problem that takes job tooling
requirements and job-dependent setup times into consideration. A biased random-key
genetic algorithm integrated with a variable neighborhood descent-based local search was
proposed to solve the resulting NP-hard problem. Numerical results showed that the
proposed solution approach outperformed benchmark methods.

One variant of the identical parallel machine problem is the uniform parallel schedul-
ing problem. The processing times of a job at different machines considered in the uniform
parallel scheduling problem can vary. However, the processing times are proportional to
each other and are at a fixed rate. Ref. [7] examined a uniform parallel-machine scheduling
problem with the objective of minimizing the total resource consumption subject to a
bounded makespan. They developed a metaheuristic and showed that it could outperform
the particle swarm optimization heuristic and approximate the theoretical lower bound.

Unrelated Parallel Machines

For the unrelated parallel machine scheduling problem, the genetic algorithm (GA)
proposed by [8] is a popular solution method that has been employed in many past studies.
Compared to the situation with the conventional GA, many researchers have attempted to
incorporate various enhancements to solve unrelated parallel machine scheduling problems.
For instance, ref. [9] added a fast local search and local search-enhanced crossover operator
for the GA. Ref. [10] proposed a hybrid GA that integrates dispatching rules (i.e., processing
time-based, completion time-based and sequence-based rules) into the overall solution
framework. Ref. [11] studied the unrelated parallel machine scheduling problem and
derived a strategy to dynamically allocate jobs to dedicated machines so that the total
earliness and tardiness times could be minimized. A modified GA with a distributed
release time control mechanism was proposed and was shown to perform well. Ref. [12]
introduced new decoding methods developed for the total tardiness objective within a GA
solution framework, and they were able to improve the performance of the GA.

Based on simulated annealing (SA), ref. [13] introduced a sine cosine algorithm as a
local search method to improve algorithmic convergence when solving unrelated parallel
machine scheduling problems with sequence-dependent and machine-dependent setup
times. Ref. [14] evaluated the performances of four stochastic local search methods, namely,
simulated annealing, iterated local search, late acceptance hill-climbing, and step counting
hill-climbing, in solving unrelated parallel machine scheduling problems with sequence-
dependent setup times. These methods were compared together with the GA proposed
by [9] and the heuristic devised by [15]. Empirical results showed that SA performed
best in solving large problem instances. Ref. [16] targeted the unrelated parallel machine
scheduling problem with a random rework and presented two mixed-integer programs. As
the problem is strongly NP-hard, a genetic algorithm and a simulated annealing algorithm
that utilize aggregate task estimation techniques were proposed and were shown to be
effective in solving the problem. Additionally, it was reported that the simulated annealing
algorithm performed better than the genetic algorithm.

In the literature, local search (LS) has also been widely used or integrated with other
solution techniques in tackling production scheduling problems. The variable neighbor-
hood descent (VND) approach is the extension of LS. The VND method explores several
neighborhood structures sequentially (say, 1 to n structures) from an incumbent solution. If
an improved solution is identified, the search restarts from the first structure and explores
neighborhood solutions with these structures again until a prespecified stopping criterion

Mathematics 2021, 9, 768 4 of 20

is met [17]. Ref. [18] combined VND with mathematical programming techniques and
proposed a multi-start VND method for solving unrelated parallel machine problems.
The core concept was to decompose the given problem into job assignment and job se-
quencing subproblems. Numerical results showed that the proposed algorithm performed
well. Ref. [19] integrated variable neighborhood search and SA and proposed a two-stage
hybrid metaheuristic to solve the unrelated parallel machine scheduling problem. The
first stage determines an initial solution with the “earlier release date first” (ERD) rules,
while the second stage explores the neighborhood with various structures. It was shown
in the conducted numerical experiments that the proposed solution strategy outperforms
a commercial optimization package. Ref. [20] substituted local search with VND in the
iterated greedy search, artificial bee colony and genetic algorithms to evaluate whether the
substitution could improve the performances of these metaheuristics for solving unrelated
parallel machine scheduling problems. The Taguchi robust method was used to calibrate
the parameters used in the framework. Empirical results showed that replacing local search
with VND indeed increases the performance of all tested metaheuristics.

Aside from the above methods, many researchers have attempted various approaches
to address unrelated parallel machine scheduling problems. For instance, ref. [21] consid-
ered various practical resources in such problems and tried to solve the resulting problem
with the GA and an artificial immune system (AIS). After calibrating the parameters with
the Taguchi method, the AIS was shown to outperform the GA in solving large problem
instances. Ref. [22] addressed machine load minimization in the unrelated parallel ma-
chine scheduling problem. A hybrid particle swarm optimization (PSO) technique and a
GA were proposed, and the Taguchi method was used to calibrate the parameters. The
results showed that the hybrid approach performed better than the GA, PSO algorithm
or PSO algorithm with local search. Ref. [23] developed a two-stage heuristic to solve
unrelated parallel machine scheduling problems with more than two machines. In the
first stage, a mixed-integer linear programming model was solved to estimate the lower
bound. In the second stage, a constraint programming model was employed to schedule
jobs on machines.

Some past studies discussed B/I related issues (i.e., [24–28]). One of the most relevant
study is [27] which considered the B/I machines as the batch processing machines. In that
study, the aims were to minimize the maximum tardiness or to minimize the number of
tardy jobs while considering the processing time, due date and release time constraints.
Dynamic programming-based algorithms were developed to solve the resulting problems.
Similarly, ref. [28] proposed a mixed-integer linear programming model that formulates
the B/I requirement as a batch processing problem. Two solution heuristics, delay window-
time parallel saving algorithm (DWPSA) and delay window-time generalized saving
algorithm (DWGSA), were proposed to solve the proposed formulation.

2.2. Multiple Operation

There are three major types of problems in multiple production scheduling, namely,
flow shop, job shop and open shop problems. In a typical flow shop scheduling problem,
all jobs are required to complete an identical production process that can be processed at
different machines. Conventional job shop scheduling is similar to flow shop scheduling,
except that each job should complete the procedure in a specific order. In the open shop
scheduling problem, jobs can be completed in random order.

2.2.1. Flow Shop scheduling Problem

Ref. [29] developed a greedy algorithm to solve the flow shop scheduling problem
in two phases. The first phase, destruction, eliminates some jobs from the incumbent
solution, while the second phase, construction, heuristically reinserts the eliminated jobs
from the first phase into the sequence. It was shown that the greedy algorithm is easy
to implement and can outperform many benchmarks. Ref. [30] studied the flow shop
scheduling problem. First-in-first-out batch dispatching rules were designed to determine

Mathematics 2021, 9, 768 5 of 20

the initial solution, followed by mixed-integer program reoptimization techniques and
local search heuristics to improve the solution quality. Ref. [31] adopted artificial immune
system-based methods for solving a two-stage hybrid flow shop scheduling problem and
showed that the proposed methods outperformed the existing lower bounds. Ref. [32]
proposed a hybrid metaheuristic that integrated the GA and random sampling to solve
the sequence-dependent flow-shop scheduling problem. Ref. [33] solved the distributed
blocking flow shop scheduling problem with three hybrid iterative greedy algorithms.

2.2.2. Job Shop Scheduling Problem

Ref. [34] investigated the job shop scheduling problem to address the dynamic events
that are inevitable in production environments. A GA embedded with various heuristic
dispatching rules was devised to solve the problem. Ref. [35] studied the flexible job shop
scheduling problem (FJSP) that allows a job to be processed at any machine from a given
set. An algorithm that combines the advantages of the GA and tabu search was proposed
to tackle the FJSP and was demonstrated to be effective in solving it. Ref. [36] improved the
coding and decoding procedures in PSO and showed that the improvement was suitable
for practical job shop scheduling. Ref. [37] utilized the GA and decentralization scheme to
minimize the makespan in production scheduling. The proposed solution framework was
compared with a shortest processing time rule-based approach (SPT) and was shown to
outperform the SPT.

2.2.3. Open Shop Scheduling Problem

In solving the flexible open shop scheduling problem, ref. [38] proved the asymptotic
optimality of the general dense scheduling (GDS) algorithm and showed that the proposed
GDS-based heuristic could converge to good solutions in large problem instances. When
using the minimization of the total flow time as the objective function in the open shop
scheduling problem, ref. [39] adopted a GA and an ant colony optimization (ACO) method
to solve the problem. For cases when the minimization of the makespan is the objective
function, ref. [40] proposed using the GA to solve it.

2.3. Summary

In this work, the focus is on the unrelated parallel production scheduling problem.
We summarize the studies we have discussed above in Table 1 to highlight the contribution
of our work.

The obvious difference between the objective function in our work and those in past
studies is the B/I procedure considered in our formulation. The differences in constraints
can also be seen in the table. In terms of the solution approach, as suggested by [16],
SA is an ideal choice for solving this problem. However, as the problem investigated
in this work contains complicated constraints and objective functions, it is not rare to
have different solutions with identical objective values (or multiple optimal solutions).
As a standard SA needs the objective value to find the descent direction, having multiple
solutions with identical objective values makes it difficult to identify the direction based
on these values since they are all the same. To explore the neighborhood solutions in an
efficient manner, we decide to adopt the population-based simulated annealing (PBSA)
algorithm. Furthermore, as indicated by [20], replacing the local search process with VND
can potentially increase the performances of various metaheuristics. Therefore, we further
embed a VND procedure in the PBSA algorithm.

One of the most relevant studies in terms of the solution approach of our work is that
of [19], which integrated SA and VNS in solving unrelated parallel machine scheduling
problems. The primary difference between VNS and VND is that VNS introduces a shaking
procedure into the solution framework. However, as the constraints considered in our work
are rather complicated, so introducing a random shaking procedure can easily generate
an infeasible solution. From our preliminary experiments, we believe that VND is more
appropriate than VNS for solving our problem.

Mathematics 2021, 9, 768 6 of 20

Table 1. Literature comparison.

Study Objective Primary Constraints Solution Approach

[10] Minimizing the total
completion time

Setup time and
production availability GA

[21] Minimizing the
makespan

Resource constraints, sequence-dependent
setup times, different release dates, machine

eligibility and precedence constraints
GA and AIS

[22] Minimizing the total
machine load

Past sequence-dependent
setup times, release dates, deteriorating jobs

and learning effects
Integrated PSO and GA

[19] Minimizing the
makespan

Nonzero arbitrary release dates, limited
additional resources, and non-anticipatory

sequence-dependent setup times
Integrated SA and VNS

[16] Minimizing the total
weighted tardiness

Random rework and
due dates GA and SA

[20] Minimizing the total
weighted tardiness

Sequence- and machine-
dependent setup times VND

Current Study
Minimizing the

makespan and B/I
violations

Sequence-dependent setup times, different
work starting times, machine eligibility,
burn-in eligibility and work time limits

Integrated PBSA and VND

3. Mathematical Formulation

In this section, we formally define the problem under study, followed by the utilized
notations, resulting in a mathematical and detailed explanation.

In each planning horizon, as illustrated in Figure 1, the master production schedule
(MPS) outputs the jobs that need to be completed within the predefined time horizon.
The jobs completed in the production lines are then sent to B/I equipment to finalize the
manufacturing process. During the process, the daily production scheduling problem
(DPS) aims to assign jobs to appropriate production lines so that the makespan can be
minimized while meeting the B/I requirement as well as possible.

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 20

In each planning horizon, as illustrated in Figure 1, the master production schedule
(MPS) outputs the jobs that need to be completed within the predefined time horizon. The
jobs completed in the production lines are then sent to B/I equipment to finalize the man-
ufacturing process. During the process, the daily production scheduling problem (DPS)
aims to assign jobs to appropriate production lines so that the makespan can be minimized
while meeting the B/I requirement as well as possible.

Job 1

Job 2

Line 3

Line 2

Line 1
Level 1

Level 2

Level 3

Production Stage Burn-in StageMPS

Figure 1. Illustration of the production process considered in this study.

The current study focuses on the DPS. To focus on the core issues of the problem, the
following assumptions are imposed.
1. Each job contains only one kind of product. The products that need to be assembled

in each job are provided by MPS.
2. If two consecutive jobs processed in one production line are of different products,

setup time is required.
3. Each production line contains no job at the beginning of each day.
4. The process time of each job on each production line is given and fixed.
5. If a job begins in a production line, it will be completed without interruption.

The following practical constraints are considered in the mathematical formulation.
1. Each production line has its own maximum number of daily production hours.
2. Each product and its corresponding job have some production requirements and can

only be processed in the predetermined/specified production lines.
3. Each job has its own earliest starting time and can only start after that prespecified

time.
4. Each job requires a specific level of B/I equipment.
5. There is an upper bound of the total production hours for all the production lines

considered together.
Notations

Based on the abovementioned statements and assumptions, the problem studied cor-
responds to an unrelated parallel machine scheduling problem. The mathematical formu-
lation is revised from [9] with some modifications of the constraints to meet the require-
ments imposed in practice.
Sets N set of jobs M set of production lines BI set of burn-in levels

Figure 1. Illustration of the production process considered in this study.

The current study focuses on the DPS. To focus on the core issues of the problem, the
following assumptions are imposed.

1. Each job contains only one kind of product. The products that need to be assembled
in each job are provided by MPS.

Mathematics 2021, 9, 768 7 of 20

2. If two consecutive jobs processed in one production line are of different products,
setup time is required.

3. Each production line contains no job at the beginning of each day.
4. The process time of each job on each production line is given and fixed.
5. If a job begins in a production line, it will be completed without interruption.

The following practical constraints are considered in the mathematical formulation.

1. Each production line has its own maximum number of daily production hours.
2. Each product and its corresponding job have some production requirements and can

only be processed in the predetermined/specified production lines.
3. Each job has its own earliest starting time and can only start after that prespeci-

fied time.
4. Each job requires a specific level of B/I equipment.
5. There is an upper bound of the total production hours for all the production lines

considered together.

Notations
Based on the abovementioned statements and assumptions, the problem studied

corresponds to an unrelated parallel machine scheduling problem. The mathematical
formulation is revised from [9] with some modifications of the constraints to meet the
requirements imposed in practice.

Sets

N set of jobs

M set of production lines

BI set of burn-in levels

T set of the planning horizon

Parameters

Pij processing time of job j on production line i

Sijk

setup time between job j and job k on production line i. Sijk= setup time if two
consecutive jobs processed on production line i belong to different job types; Sijk = 0
if two consecutive jobs processed on production line i belong to identical job types.

capit maximum daily processing hours for production line i on day t.

TPt maximum daily processing hours for all the production lines considered together.

Q an extremely large number

Ut penalty parameter for burn/in ratio violations on day t

BI1, BI2, BI3

target ratio of jobs assigned to B/I levels 1, 2 and 3, respectively. Suppose that a
company hopes to maintain three B/I levels of 5:4:1; we can set BI1 = 5, BI2 = 4,
and BI3 = 1.

MNj
number of products that need to be assembled in each job j
As the B/I level violations are calculated based on MNj, this parameter is introduced.

Mathematics 2021, 9, 768 8 of 20

Decision Variables

Xijkt

Xijkt = 1 if job j is processed immediately before job k on production line i on day
t; Xijkt = 0 otherwise.
Note that if job j or k cannot be processed on production line i, then Xijkt = 0.

Bjbt
Bjbt = 1, if job j has a B/I level of b on day t;
Bjbt = 0 otherwise.

Cijt completion time of job j on production line i on day t

Fit complete time for each production line i on day t

Cmax,t maximum completion time on day t

Mathematical Formulation

Min ∑
t
(αCmax,t + βUt) (1)

Subject to

∑
t∈T

∑
i∈M

∑
j ∈ 0∪ N

j 6= k

Xijkt = 1 ∀k ∈ N
(2)

∑
t∈T

∑
i∈M

∑
k ∈ N
j 6= k

Xijkt ≤ 1 ∀j ∈ N
(3)

∑
k∈N

Xi0kt ≤ 1 ∀i ∈ M; ∀t ∈ T (4)

∑
h ∈ 0∪ N

h 6= k, h 6= j

Xihjt ≥ Xijkt ∀j, k ∈ N, j 6= k; ∀i ∈ M; ∀t ∈ T
(5)

Cikt ≥ Cijt + Sijk + Pik + Q·
(

Xijkt − 1
)

∀j, k ∈ N, j 6= k; ∀i ∈ M; ∀t ∈ T (6)

Fit ≥ Cijt ∀j ∈ N; ∀i ∈ M; ∀t ∈ T (7)

Fit ≤ capit ∀i ∈ M; ∀t ∈ T (8)

Cmax,t ≥ Fit ∀i ∈ M; ∀t ∈ T (9)

∑
i∈M

Fit ≤ TPt ∀t ∈ T (10)

∑
t∈T

∑
b∈BI

Bkbt ≤ 1 ∀k ∈ N (11)

∑
b∈BI

Bkbt = ∑
i∈M

∑
j∈{0}∪{N}

Xijkt ∀k ∈ N, j 6= k; ∀t ∈ T (12)∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
+

∣∣∣∣ ∑
k∈N

Bk2t·MNk − BI2
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
+

∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI2

∑
k∈N

Bk2t·MNk

∣∣∣∣
= Ut

(13)

Xijkt ∈ {0, 1} ∀j, k ∈ N, j 6= k; ∀i ∈ M; ∀t ∈ T (14)

Bjbt ∈ {0, 1} ∀j ∈ N; ∀b ∈ BI; ∀t ∈ T (15)

Mathematics 2021, 9, 768 9 of 20

The objective function (1) aims to minimize the makespan (Cmax,t) and the B/I level
violations (Ut). Parameters α and β are the weights of the corresponding terms, and these
will be calibrated in the numerical experiments.

Equation (2) ensures that each job is assigned to a production line i and that each job k
on this machine has only one preceding job j. Equation (3) is the constraint that each job j
has at most one succeeding job k. Each production line is assigned at most a dummy job 0
at the beginning that represents the first job of this production line. The design is described
in Equation (4). Equation (5) defines the job order. If job j is assigned to production line
i, there must be a preceding job h on this production line. If job j is the first job on this
production line, then h must be a dummy job. However, job j may not have a succeeding
job k.

Equation (6) defines the completion time Cikt of the jobs. As job k should be processed
after job j on production line i, the completion time of job k (Cikt) must be greater than the
completion time of job j (Cijt) plus the corresponding setup time Sijk and the processing
time of job k (Pik). If Xijkt = 0, which means that job k cannot be processed immediately
after job j on production line i, this constraint becomes a redundant constraint. Equation (7)
ensures that the completion time of each production line (Fit) is greater than or equal to the
completion time of any job in that production line (Cijt). Fit will be used to calculate the
objective value later.

Equation (8) sets the maximum number of processing hours capit for each production
line on each day t. Equation (9) calculates the maximum completion time Cmax,t according
to the statuses of all the jobs in all production lines. Equation (10) constrains the maximum
number of processing hours for all the production lines considered together.

The limitation that any job can be assigned to a B/I level is enforced in Equation (11).
Equation (12) establishes the relationship between a machine and the B/I level. Only if a job
is assigned (i.e., any Xijkt = 1) can a B/I level be assigned. The B/I ratio penalty Ut is calcu-

lated based on Equation (13). Let us use the first term
∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣
in that equation as an example to illustrate the proposed design. This term is designed as
the absolute value of the number of products that need to be assembled in jobs that are
assigned to B/I level 1 (∑

k∈N
Bk1t·MNk) minus the ratio BI1

BI3
of the number of products that

need to be assembled in jobs that are assigned to B/I level 3 (∑
k∈N

Bk3t·MNk). If the result of

the first term is zero, then the ratio of the jobs assigned to levels 1 and 3 exactly matches

the prespecified ratio BI1
BI3

. Otherwise,
∣∣∣∣ ∑
k∈N

Bk1t·MNk − BI1
BI3

∑
k∈N

Bk3t·MNk

∣∣∣∣ can serve as the

measure of how far away the assignment is from the desired value BI1
BI3

and can be used as
a penalty in the objective function to drive the assignment to match the desired value as
closely as possible. The second and third terms can be interpreted in a similar manner. Fi-
nally, Equations (14) and (15) state that the decision variable considered in the formulation
is of binary value.

As shown in [1], the unrelated parallel machine scheduling problem is an NP-hard
problem. The mathematical formulation presented in this section is a parallel machine
scheduling problem with additional side constraints. Therefore, it is at least of NP-hard
complexity. Solving such problems of practical sizes can be a challenging task. To address
this issue, we propose a metaheuristic-based solution approach in the following section.

4. Solution Approach

In this study, we propose population-based simulated annealing (PBSA), which is
an extension of SA [41,42]. SA is the search heuristic analogous to the process of solid
physical annealing. During the annealing process, a solid is heated and cooled down
slowly until it achieves the most likely crystal lattice configuration so that the resulting
solid has superior structural integrity. Similar to this process, SA compares the current
solution with its neighborhood solution and accepts an improved solution in each iteration.

Mathematics 2021, 9, 768 10 of 20

Inferior solutions can also be accepted with a limited probability so that the search process
can escape from local optima and finally approximate the global optimum. The probability
of accepting inferior solutions depends on a nonincreasing temperature parameter with
each iteration of the SA algorithm. In PBSA, instead of a single neighborhood solution, a
population of neighborhood solutions are generated during each iteration, and only the
best solution among them is used as the incumbent solution in the next iteration. With
this improvement, the search for a neighborhood solution can be highly effective. To
further enhance the performance of this approach, the traditional LS method employed
in SA is replaced by VND in the proposed PBSA method. We next detail our critical
algorithmic steps.

4.1. Initial Solution

The initialization step first sorts the jobs in descending order according to multiple
attributes, namely, the earliest starting time, the number of allowable production lines and
the total processing time. Then, the jobs are assigned according to the first-in-first-out
(FIFO) rule to different production lines while satisfying all the assignment rules. Some of
the jobs may be left unassigned after this procedure. However, the assigned and unassigned
jobs together form an initial feasible solution. Note that the initial solution is designed
to be the initial point for the following search procedure. The PBSA presented later can
always converge to a good final solution regardless of the initial solution.

4.2. Algorithm Steps

There are four primary steps in the proposed PBSA algorithm, namely, initialization,
neighborhood search, incumbent solution updating and termination.

4.2.1. Initialization

For ease of explanation, we introduce additional notations. We denote TH , T and TL
as the highest possible, current and lowest possible temperatures, respectively. We first
initialize the current temperature T as TH and reduce T over iterations to simulate the
“cooling down” process of solid physical annealing. The initial and incumbent solutions
are both initialized as ∞ in the beginning. Starting from the initial solution found in the
previous section, the PBSA algorithm enters the search procedure.

4.2.2. Neighborhood Search

In VND, three neighborhood search approaches/structures are employed in our
solution framework. The first is single job switching (Figure 2), which switches one
randomly selected job between two production lines (j1 and j4 in this illustrative example).
The second is moving jobs from one production line to another (illustrated in Figure 3).
A job (j2 in this example) from one production line is randomly selected and inserted at
the beginning of another production line. The final approach is one-to-two job switching
(illustrated in Figure 4), which switches one job in a production line with two consecutive
jobs in another production line. To reduce the number of setups, we sort the jobs so that
jobs with the same job type can be grouped together after any of the above changes occur
in any production line. Note that all the changes only take place when the scheduling rules
are not violated. In other words, we explore the neighborhood solutions within the feasible
region. As reported in the literature, there exist various alternative neighborhood search
procedures. However, from our preliminary experiments, these three procedures yield the
best performance and are incorporated in our solution framework.

Mathematics 2021, 9, 768 11 of 20

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 20

4.2.1. Initialization
For ease of explanation, we introduce additional notations. We denote 𝑇 , 𝑇 and 𝑇

as the highest possible, current and lowest possible temperatures, respectively. We first
initialize the current temperature 𝑇 as 𝑇 and reduce 𝑇 over iterations to simulate the
“cooling down” process of solid physical annealing. The initial and incumbent solutions
are both initialized as ∞ in the beginning. Starting from the initial solution found in the
previous section, the PBSA algorithm enters the search procedure.

4.2.2. Neighborhood Search
In VND, three neighborhood search approaches/structures are employed in our so-

lution framework. The first is single job switching (Figure 2), which switches one ran-
domly selected job between two production lines (𝑗 and 𝑗 in this illustrative example).
The second is moving jobs from one production line to another (illustrated in Figure 3). A
job (𝑗 in this example) from one production line is randomly selected and inserted at the
beginning of another production line. The final approach is one-to-two job switching (il-
lustrated in Figure 4), which switches one job in a production line with two consecutive
jobs in another production line. To reduce the number of setups, we sort the jobs so that
jobs with the same job type can be grouped together after any of the above changes occur
in any production line. Note that all the changes only take place when the scheduling rules
are not violated. In other words, we explore the neighborhood solutions within the feasi-
ble region. As reported in the literature, there exist various alternative neighborhood
search procedures. However, from our preliminary experiments, these three procedures
yield the best performance and are incorporated in our solution framework.

j1 j2 j3

j6j5j4

Figure 2. Single job switching.

j2j1 j3

j4 j5 j6

Figure 3. Job moving.

j1 j2 j3

j6j5j4 j1

j2 j3

j6

j5j4

Figure 4. One-to-two job switching.

Figure 2. Single job switching.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 20

4.2.1. Initialization
For ease of explanation, we introduce additional notations. We denote 𝑇 , 𝑇 and 𝑇

as the highest possible, current and lowest possible temperatures, respectively. We first
initialize the current temperature 𝑇 as 𝑇 and reduce 𝑇 over iterations to simulate the
“cooling down” process of solid physical annealing. The initial and incumbent solutions
are both initialized as ∞ in the beginning. Starting from the initial solution found in the
previous section, the PBSA algorithm enters the search procedure.

4.2.2. Neighborhood Search
In VND, three neighborhood search approaches/structures are employed in our so-

lution framework. The first is single job switching (Figure 2), which switches one ran-
domly selected job between two production lines (𝑗 and 𝑗 in this illustrative example).
The second is moving jobs from one production line to another (illustrated in Figure 3). A
job (𝑗 in this example) from one production line is randomly selected and inserted at the
beginning of another production line. The final approach is one-to-two job switching (il-
lustrated in Figure 4), which switches one job in a production line with two consecutive
jobs in another production line. To reduce the number of setups, we sort the jobs so that
jobs with the same job type can be grouped together after any of the above changes occur
in any production line. Note that all the changes only take place when the scheduling rules
are not violated. In other words, we explore the neighborhood solutions within the feasi-
ble region. As reported in the literature, there exist various alternative neighborhood
search procedures. However, from our preliminary experiments, these three procedures
yield the best performance and are incorporated in our solution framework.

j1 j2 j3

j6j5j4

Figure 2. Single job switching.

j2j1 j3

j4 j5 j6

Figure 3. Job moving.

j1 j2 j3

j6j5j4 j1

j2 j3

j6

j5j4

Figure 4. One-to-two job switching.

Figure 3. Job moving.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 20

4.2.1. Initialization
For ease of explanation, we introduce additional notations. We denote 𝑇 , 𝑇 and 𝑇

as the highest possible, current and lowest possible temperatures, respectively. We first
initialize the current temperature 𝑇 as 𝑇 and reduce 𝑇 over iterations to simulate the
“cooling down” process of solid physical annealing. The initial and incumbent solutions
are both initialized as ∞ in the beginning. Starting from the initial solution found in the
previous section, the PBSA algorithm enters the search procedure.

4.2.2. Neighborhood Search
In VND, three neighborhood search approaches/structures are employed in our so-

lution framework. The first is single job switching (Figure 2), which switches one ran-
domly selected job between two production lines (𝑗 and 𝑗 in this illustrative example).
The second is moving jobs from one production line to another (illustrated in Figure 3). A
job (𝑗 in this example) from one production line is randomly selected and inserted at the
beginning of another production line. The final approach is one-to-two job switching (il-
lustrated in Figure 4), which switches one job in a production line with two consecutive
jobs in another production line. To reduce the number of setups, we sort the jobs so that
jobs with the same job type can be grouped together after any of the above changes occur
in any production line. Note that all the changes only take place when the scheduling rules
are not violated. In other words, we explore the neighborhood solutions within the feasi-
ble region. As reported in the literature, there exist various alternative neighborhood
search procedures. However, from our preliminary experiments, these three procedures
yield the best performance and are incorporated in our solution framework.

j1 j2 j3

j6j5j4

Figure 2. Single job switching.

j2j1 j3

j4 j5 j6

Figure 3. Job moving.

j1 j2 j3

j6j5j4 j1

j2 j3

j6

j5j4

Figure 4. One-to-two job switching. Figure 4. One-to-two job switching.

In VND, we examine these three neighborhood structures sequentially. As we use the
PBSA framework, we generate 5 neighborhood solutions by examining each neighborhood
structure during each neighborhood search, and only the best solution is selected as a
candidate. If a solution that is better than the incumbent solution is identified, we restart
from the first structure and explore the neighborhood solutions with these structures again
until a stopping criterion is met.

Specifically, we first define a maximum number of neighborhood structures that can
be examined RLn. When the neighborhood search begins, we examine each neighborhood
structure sequentially, and a counter Rn is used to keep track of the number of times a
neighborhood structure is examined. If a superior solution is identified, we set Rn = 0 and
restart from the first neighborhood structure. If Rn = RLn when examining a neighborhood
structure, we examine the next neighborhood structure. If all the neighborhood structures
are examined, we continue to the next iteration of the PBSA algorithm.

Over the PBSA iterations, the probability of accepting inferior solutions decreases
due to the lowering temperature. Therefore, we increase RLn gradually to increase the
possibility of exploring a larger solution space. On the other hand, VND increases the
chance of finding a superior solution during each neighborhood search. Based on our
empirical experiment, the design balances the search procedure and is effective in solving
the overall problem.

4.2.3. Incumbent Solution Updating

When a neighborhood solution is superior to the incumbent solution, we update the
incumbent solution. To further improve the solution quality, after this update, we search
the unassigned jobs and examine whether the insertion of additional jobs into the solution
is possible. If yes, we insert the jobs and use the updated solution as the incumbent solution.
If insertion is not possible, the superior solution is used as the incumbent solution directly.

Mathematics 2021, 9, 768 12 of 20

Other than the above updating process, there is a limited probability (denoted as P in
this study) of allowing the search procedure to accept inferior solutions. This probability is
calculated based on the following modified Boltzmann function [41]:

P = min
{

1, e−
∆
T

}
In the function, ∆ = C(x′)− C(x) is the difference between the objective value of the

current solution (C(x′)) and that of the incumbent solution (C(x)). T denotes the current
temperature. If a randomly generated real number γ is greater than P, the current inferior
solution is accepted and becomes the incumbent solution in the next iteration. In this study,
we reduce the temperature T when the number of the searches for each neighborhood
structure reaches the prespecified limit. The reduction of T is controlled by:

T = T × Tscale

where Tscale is the rate at which the temperature decreases. The value of Tscale is set between
0 and 1, and this causes the value of T to decrease over multiple iterations. PBSA can
converge effectively with the above cooling mechanism.

4.2.4. Termination

As many companies need solutions periodically so that they can adjust their schedul-
ing results based on the current dynamic manufacturing environment, we terminate the
search procedure and report the incumbent solution when the maximum allowed compu-
tational time is reached.

4.3. Summary

Overall, the proposed PBSA can be summarized as in Figure 5. With the generated
initial solution and parameter settings, the search procedure examines the neighborhood
solution with VND, and controls the PBSA framework based on the obtained results until
the stopping criterion is met. Note that as VND is employed in the neighborhood search
procedure, the iteration counter Rn is reset to 0 only when the search procedure identifies a
solution that is superior to the incumbent solution or when each neighborhood structure
reaches the number of pre-specified limit. In other cases, Rn = Rn + 1.

Mathematics 2021, 9, 768 13 of 20

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 20

4.3. Summary
Overall, the proposed PBSA can be summarized as in Figure 5. With the generated

initial solution and parameter settings, the search procedure examines the neighborhood
solution with VND, and controls the PBSA framework based on the obtained results until
the stopping criterion is met. Note that as VND is employed in the neighborhood search
procedure, the iteration counter 𝑅 is reset to 0 only when the search procedure identifies
a solution that is superior to the incumbent solution or when each neighborhood structure
reaches the number of pre-specified limit. In other cases, 𝑅 = 𝑅 + 1.

Examine neighborhood
structure n

No

Reach the stopping
criterion?

Yes

Report the incumbent solution

Initial solution

n=n+1
Rn=0

Superior solution
identified?

Set n=0 and Rn=0

Accept inferior
solution?

Yes

No

No
Test additional job

insertion and update the
incumbent solution

Update the incumbent
solution

Yes

Rn=Rn+1n=0
Rn=0

Rn=RLn?

No

Yes

Initialize temperature
T=TH

Each neighborhood
structure reaches the
prespecified limit?

Yes

T=T· TscaleNo

Figure 2. Algorithmic steps of the population-based simulated annealing (PBSA) approach.

Figure 5. Algorithmic steps of the population-based simulated annealing (PBSA) approach.

5. Solution Approach

To validate the effectiveness of the proposed solution framework and evaluate its
performance, PBSA is empirically applied to problem instances of different sizes. In
the experiments, the solutions from a commercial optimization package Gurobi 9.1.0 are
used as the benchmark. Furthermore, we conduct a sensitivity analysis on the weights
imposed in the objective function to capture the impact of these parameters. The proposed
PBSA heuristic is implemented in the ANSI C++ programming language. The numerical
experiments for both Gurobi and our solution method are conducted on a Windows-based
machine with an Intel i7-8700 CPU at 3.20 GHz and 8 GB of memory. Note that the solutions
reported for the proposed PBSA algorithm are averaged over 10 runs as the search process
involves randomness.

Mathematics 2021, 9, 768 14 of 20

5.1. Parameter Calibration

We first perturb the parameters α and β to evaluate their impacts on the objective
value. The problem instance used contains 6 machines, 5 days for the planning horizon
and 150 jobs. The results are summarized in Table 2 and Figure 6.

Table 2. The impacts of α and β on the objective value.

α:β Cmax B/I Penalty

1:0.0001 43.26 1437.65
1:0.001 43.63 1357.95
1:0.01 44.48 1308.20
1:0.1 50.67 1303.20
1:1 57.93 1298.45

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 20

5. Solution Approach
To validate the effectiveness of the proposed solution framework and evaluate its

performance, PBSA is empirically applied to problem instances of different sizes. In the
experiments, the solutions from a commercial optimization package Gurobi 9.1.0 are used
as the benchmark. Furthermore, we conduct a sensitivity analysis on the weights imposed
in the objective function to capture the impact of these parameters. The proposed PBSA
heuristic is implemented in the ANSI C++ programming language. The numerical experi-
ments for both Gurobi and our solution method are conducted on a Windows-based ma-
chine with an Intel i7-8700 CPU at 3.20 GHz and 8 GB of memory. Note that the solutions
reported for the proposed PBSA algorithm are averaged over 10 runs as the search process
involves randomness.

5.1. Parameter Calibration
We first perturb the parameters 𝛼 and 𝛽 to evaluate their impacts on the objective

value. The problem instance used contains 6 machines, 5 days for the planning horizon
and 150 jobs. The results are summarized in Table 2 and Figure 6.

Table 2. The impacts of α and β on the objective value. 𝜶:𝜷 Cmax B/I Penalty
1:0.0001 43.26 1437.65
1:0.001 43.63 1357.95
1:0.01 44.48 1308.20
1:0.1 50.67 1303.20
1:1 57.93 1298.45

Figure 3. The tradeoff between Cmax and the burn-in (B/I) penalty.

As expected, given a fixed 𝛼, the result tends to improve the B/I penalty and worsen
Cmax simultaneously when 𝛽 increases. We can see the apparent tradeoff between Cmax
and the B/I penalty in Figure 6. However, as 𝛼: 𝛽 goes beyond 1:0.01, the improvement
in the B/I penalty is only marginal and almost ignorable. Therefore, we use 𝛼 = 1 and 𝛽 = 0.01 in the rest of the experiments. Furthermore, we conduct preliminary experi-
ments with various parameter combinations of 𝑇 , 𝑇 , 𝑇 and 𝑅𝐿 using datasets ob-
tained in practice and identify the parameter combination that performs best. The optimal
values are 𝑇 = 25, 𝑇 = 1, 𝑇 = 0.98 and 𝑅𝐿 = 500. Note that the Taguchi-based

1250

1280

1310

1340

1370

1400

1430

1460

43.26 43.63 44.48 50.67 57.93

B/
I

pe
na

lty

Cmax

Figure 6. The tradeoff between Cmax and the burn-in (B/I) penalty.

As expected, given a fixed α, the result tends to improve the B/I penalty and worsen
Cmax simultaneously when β increases. We can see the apparent tradeoff between Cmax
and the B/I penalty in Figure 6. However, as α: β goes beyond 1:0.01, the improvement
in the B/I penalty is only marginal and almost ignorable. Therefore, we use α = 1 and
β = 0.01 in the rest of the experiments. Furthermore, we conduct preliminary experiments
with various parameter combinations of TH , TL, Tscale and RLn using datasets obtained in
practice and identify the parameter combination that performs best. The optimal values
are TH = 25, TL = 1, Tscale = 0.98 and RLn = 500. Note that the Taguchi-based method
may be used to calibrate the parameters [20–22]. However, we observe that no significant
improvement can be obtained by that method for our cases. Therefore, we adopt the above
parameters. For practical purposes, the maximum allowed computational time is limited
to 1200 s. These parameters are used throughout the remaining experiments.

5.2. Validation

For validation purposes, we compare our solutions with the Gurobi solutions, which
can be considered the optimal solutions. Note that Gurobi is used to solve the formulation
presented in Section 3 with the default settings. The comparison is summarized in Table 3.
As shown in the table, the proposed PBSA algorithm can determine the same optimal
solutions as those obtained by Gurobi, demonstrating the efficacy of the proposed solution

Mathematics 2021, 9, 768 15 of 20

method. When the problem size increases, Gurobi fails to obtain feasible solutions for
problem instances with more than 15 jobs. However, the proposed PBSA method can still
determine solutions, thereby demonstrating its scalability. Furthermore, it is noted that
PBSA with the two neighborhood structures explained in Figures 2 and 3 (PBSA with
2VND) has a higher probability of finding improved solutions than PBSA with all three
structures (PBSA with 3VND). It is suspected that the neighborhood structure depicted
in Figure 4 makes it difficult for the search process to converge to an improved solution
within the limited CPU time allowed. Let us depict the convergence of the proposed
algorithm using the case with L/T/N = 6/3/100 as an example in Figure 7 to further
discuss the results.

Table 3. Validation of the proposed PBSA algorithm.

L/T/N 1 Gurobi PBSA with 3VND 4 PBSA with 2VND 5

Objective
Value CPU 2 (s)

Objective
Value Cmax B/I Penalty Objective

Value Cmax B/I Penalty

3/2/10 23.59 1.47 23.59 14.44 915.50 23.59 14.44 915.50
3/2/15 31.74 3614.93 31.74 20.60 1113.75 31.74 20.60 1113.75
4/2/10 19.12 0.14 19.12 9.97 915.50 19.12 9.97 915.50
4/2/15 27.95 10,790.65 27.95 16.81 1113.75 27.95 16.81 1113.75
4/2/20 *3 * 30.01 20.22 978.75 30.00 20.22 978.75
4/2/50 * * 45.86 25.34 2052.25 45.60 25.23 2036.75

4/2/100 * * 58.62 36.52 2209.50 59.69 36.86 2283.75
4/3/100 * * 54.14 40.00 1414.00 54.05 39.91 1414.00
5/3/100 * * 48.34 34.18 1416.00 48.07 33.88 1418.50
6/3/150 * * 71.38 50.50 2088.00 70.57 50.24 2032.75
6/4/150 * * 79.33 54.67 2466.00 79.34 54.68 2466.00
6/3/200 * * 74.06 51.69 2236.50 68.49 49.70 1878.75
6/4/200 * * 90.95 65.84 2511.00 88.81 63.70 2511.00
6/5/200 * * 121.60 78.51 4308.75 122.23 78.62 4361.25

1 L: number of production lines; T: number of scheduling days in a week; N: number of jobs. 2 CPU: computational time. 3*: fails to
determine solutions within 8 h. 4 3VND: all three neighborhood structures explained in Figures 2–4. 5 2VND: the neighborhood structures
explained in Figures 2 and 3.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 20

Figure 4.Convergence of the algorithm.

As the computational time of each iteration required for PBSA with 3VND increases,
the number of iterations that can be performed within the limited CPU time decreases,
resulting in poor convergence when compared with that of PBSA with 2VND. Although
PBSA can potentially explore large solution spaces, we still recommend PBSA with 2VND
for practical purposes. As the actual production environment is rather dynamic, faster
convergence to an ideal solution seems to be the most attractive option for most of the
companies we encounter.

We next evaluate the impact of the numbers of production lines and scheduling days
on the performance of the proposed algorithm. As Gurobi failed to determine feasible
solutions in most of the cases, we only summarize our solutions in Figure 8.

Figure 5. Impacts of the numbers of production lines and scheduling days.

Nevertheless, PBSA with 2VND outperforms PBSA with 3VND in most cases. Note
that, contrary to the mathematical formulation that assumes all jobs should be assigned,
the proposed PBSA algorithm has the flexibility to allow for unscheduled jobs if some jobs

42.5

43

43.5

44

44.5

45

45.5

46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O
bj

ec
tiv

e
va

ul
e

Percentage of CPU time allowed

PBSA with 2VND PBSA with 3VND

40

45

50

55

60

65

3/2/100 3/3/100 4/2/100 4/3/100 4/4/100 5/2/100 5/3/100 5/4/100 6/2/100 6/3/100

O
bj

ec
tiv

e V
al

ue

L/T/N

PBSA with 3VND PBSA with 2VND

Figure 7. Convergence of the algorithm.

Mathematics 2021, 9, 768 16 of 20

As the computational time of each iteration required for PBSA with 3VND increases,
the number of iterations that can be performed within the limited CPU time decreases,
resulting in poor convergence when compared with that of PBSA with 2VND. Although
PBSA can potentially explore large solution spaces, we still recommend PBSA with 2VND
for practical purposes. As the actual production environment is rather dynamic, faster
convergence to an ideal solution seems to be the most attractive option for most of the
companies we encounter.

We next evaluate the impact of the numbers of production lines and scheduling days
on the performance of the proposed algorithm. As Gurobi failed to determine feasible
solutions in most of the cases, we only summarize our solutions in Figure 8.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 20

Figure 4.Convergence of the algorithm.

As the computational time of each iteration required for PBSA with 3VND increases,
the number of iterations that can be performed within the limited CPU time decreases,
resulting in poor convergence when compared with that of PBSA with 2VND. Although
PBSA can potentially explore large solution spaces, we still recommend PBSA with 2VND
for practical purposes. As the actual production environment is rather dynamic, faster
convergence to an ideal solution seems to be the most attractive option for most of the
companies we encounter.

We next evaluate the impact of the numbers of production lines and scheduling days
on the performance of the proposed algorithm. As Gurobi failed to determine feasible
solutions in most of the cases, we only summarize our solutions in Figure 8.

Figure 5. Impacts of the numbers of production lines and scheduling days.

Nevertheless, PBSA with 2VND outperforms PBSA with 3VND in most cases. Note
that, contrary to the mathematical formulation that assumes all jobs should be assigned,
the proposed PBSA algorithm has the flexibility to allow for unscheduled jobs if some jobs

42.5

43

43.5

44

44.5

45

45.5

46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O
bj

ec
tiv

e
va

ul
e

Percentage of CPU time allowed

PBSA with 2VND PBSA with 3VND

40

45

50

55

60

65

3/2/100 3/3/100 4/2/100 4/3/100 4/4/100 5/2/100 5/3/100 5/4/100 6/2/100 6/3/100

O
bj

ec
tiv

e V
al

ue

L/T/N

PBSA with 3VND PBSA with 2VND

Figure 8. Impacts of the numbers of production lines and scheduling days.

Nevertheless, PBSA with 2VND outperforms PBSA with 3VND in most cases. Note
that, contrary to the mathematical formulation that assumes all jobs should be assigned,
the proposed PBSA algorithm has the flexibility to allow for unscheduled jobs if some jobs
cannot be inserted into the production schedule. For this reason, the objective values do
not increase/decrease monotonically with increases in the numbers of production lines
and scheduling days.

5.3. Practical Application Scenarios

Using the proposed PBSA algorithm with 2VND, we experiment with three application
scenarios, namely, scenarios with various B/I ratios (summarized in Table 4), additional
constraints (summarized in Table 5) and superhot runs.

From Table 4, we can see that the B/I ratio of 5:5:0 dominates 5:4:1 and 6:3:1 in
terms of the objective values and number of scheduled jobs (NSJ) yielded. In the case
where L/T/N = 6/3/100, the B/I penalty can reach zero, indicating that the ratio perfectly
matches 5:5:0. In other words, it is possible to fully utilize the expensive B/I equipment,
should we adjust the ratio properly.

In real-world applications, many supervisors may ask for additional constraints based
on their past experiences, as they believe that the additional constraints can improve the
scheduling performance of the algorithm. In Table 5, we introduce the additional constraint
to fully utilize long production lines as much as possible, as many supervisors may think
continuous processing without interruption can reduce the setup times and can improve
the overall performance. However, the effect of this additional constraint drastically
reduces the number of jobs that can be scheduled with the same setup and contradicts

Mathematics 2021, 9, 768 17 of 20

their intuition. Therefore, it is suggested to consider only the necessary constraints for
practical purposes.

Table 4. The impacts of various B/I ratios.

5:4:1 6:3:1 5:5:0

L/T/N Obj.
Value Cmax B/I

Penalty NSJ 1 Obj.
Value Cmax B/I

Penalty NSJ Obj.
Value Cmax B/I

Penalty NSJ

3/2/100 59.70 39.45 2025.00 75 66.89 39.44 2745.00 75 39.54 39.51 3.00 76
3/3/100 62.62 42.37 2025.00 76 69.88 42.43 2745.00 76 42.63 42.52 11.00 77
4/2/100 59.69 36.86 2283.75 63 62.28 37.23 2505.00 65 38.51 37.96 55.00 68
4/3/100 54.05 39.91 1414.00 99 62.11 39.19 2292.00 99 39.86 39.78 8.00 100
4/4/100 54.78 40.64 1414.00 100 62.47 39.55 2292.00 99 39.82 39.80 2.00 100
5/2/100 56.55 36.82 1973.25 64 65.94 38.12 2782.00 64 38.31 37.73 58.00 66
5/3/100 48.07 33.88 1418.50 100 55.28 32.36 2292.00 99 33.34 33.06 28.00 100
5/4/100 47.82 33.68 1414.00 100 55.35 32.43 2292.00 99 33.60 33.32 28.00 100
6/2/100 57.84 35.75 2209.25 62 63.05 35.87 2718.00 65 37.00 36.64 36.00 66
6/3/100 42.61 28.46 1415.50 100 51.47 28.55 2292.00 100 29.06 29.06 0.00 100

1 NSJ: number of scheduled jobs.

Table 5. Impacts of additional constraints.

Original Problem Problem with an Additional Constraint

L/T/N Obj. Value Cmax B/I Penalty NSJ Obj. Value Cmax B/I Penalty NSJ

3/2/100 59.70 39.45 2025.00 75 55.79 38.47 1732.50 57
3/3/100 62.62 42.37 2025.00 76 55.79 38.47 1732.50 57
4/2/100 59.69 36.86 2283.75 63 55.23 37.12 1811.25 58
4/3/100 54.05 39.91 1414.00 99 51.55 38.95 1260.00 88
4/4/100 54.78 40.64 1414.00 100 50.34 37.74 1260.00 88
5/2/100 56.55 36.82 1973.25 64 58.38 34.03 2434.25 59
5/3/100 48.07 33.88 1418.50 100 46.44 32.81 1363.00 97
5/4/100 47.82 33.68 1414.00 100 47.21 33.58 1363.50 97
6/2/100 57.84 35.75 2209.25 62 51.85 30.23 2161.50 60
6/3/100 42.61 28.46 1415.50 100 44.28 30.20 1408.50 99

To manufacture products with a sudden surge in demand, customers may place urgent
orders. For products such as this, the manufacturer may initiate a superhot run and charge
a higher price for manufacturing the product. For such urgent orders, we believe that the
proposed solution framework offers a possible pricing mechanism by charging based on
the impact of the order on the original schedule. We illustrate this concept by inserting
three urgent orders in the cases summarized in Table 6.

Table 6. The impact of superhot runs.

Original Order Original Order with Superhot Runs

L/T/N Obj. Value Cmax B/I Penalty NSJ 1 Obj. Value Cmax B/I Penalty NSJ

6/4/200 88.81 63.70 2511.00 164 89.16 62.16 2699.50 160
6/5/200 122.23 78.62 4361.25 184 137.09 83.96 5312.50 179

1 NSJ: number of scheduled jobs.

As seen from the cases, there are 4 and 5 jobs that cannot be completed within this
planning horizon due to the superhot runs. The impacts of the superhot runs on the rest of
the jobs are 2.5% and 2.7%, respectively, so this provides an ideal guide for pricing based
on superhot runs.

Mathematics 2021, 9, 768 18 of 20

6. Concluding Remarks

In this study, we developed a PBSA algorithm for the unrelated parallel machine
scheduling problem considering B/I constraints. The proposed PBSA algorithm integrates
the advantages of SA and VND and was implemented for practical applications. Numerical
results have shown that the proposed PBSA approach can solve the abovementioned
problem optimally for small problem instances and is scalable to solve problem instances
of realistic sizes. In practice, there are many industries that encounter the unrelated parallel
machine scheduling problem (i.e., the electronic assembly industry investigated in the
current study). For the unrelated parallel machine scheduling problem, we found that the
PBSA and VND can solve problems of various practical sizes efficiently.

Although encouraging results are obtained, this research can be extended in sev-
eral directions. First, it is apparent that this research can be extended to investigate the
multi-objective optimization problem since there are two objective functions considered.
Some practical techniques can be employed to approximate the Pareto-optimal solution
set (i.e., [43]). Second, as each job can be split into smaller jobs, we can find the optimal
splitting strategy for the jobs such that the overall scheduling performance can be improved.
Third, as the production environment is highly uncertain and stochastic, processing time
uncertainty can be incorporated in future research. Fourth, instead of minimizing the
deviation from the desired burn-in levels, future research can consider the optimal as-
signment of jobs to the exact grids in burn-in machines, which may potentially improve
the scheduling results further. Finally, as the production environment changes rapidly,
developing a system that can rapidly respond to the dynamic and changing environment
with the basis of this study can be another useful and interesting extension.

Author Contributions: Data curation, T.-Y.H.; Investigation, D.-Y.L.; Methodology, D.-Y.L. and T.-
Y.H.; Software, T.-Y.H.; Validation, D.-Y.L.; Writing—original draft, D.-Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by the Ministry of Science and Technology, Taiwan,
ROC grant number MOST 108-2410-H-007-097 -MY4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations

B/I burn-in
PBSA population-based simulated annealing
VND variable neighborhood descent
GA genetic algorithm
SA simulated annealing
LS local search
ERD earlier release date first
AIS artificial immune system
PSO particle swarm optimization
DWPSA delay window-time parallel saving algorithm
DWGSA delay window-time generalized saving algorithm
FJSP flexible job shop scheduling problem
GDS general dense scheduling
ACO colony optimization
SPT shortest processing time
MPS master production schedule
DPS daily production scheduling problem
NSJ number of scheduled jobs

Mathematics 2021, 9, 768 19 of 20

References
1. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Berlin/Heidelberg,

Germany, 1972; pp. 85–103.
2. Che, A.; Wu, X.Q.; Peng, J.; Yan, P.Y. Energy-efficient bi-objective single-machine scheduling with power-down mechanism.

Comput. Oper. Res. 2017, 85, 172–183. [CrossRef]
3. Fridman, I.; Pesch, E.; Shafransky, Y. Minimizing maximum cost for a single machine under uncertainty of processing times. Eur.

J. Oper. Res. 2020, 286, 444–457. [CrossRef]
4. Davari, M.; Ranjbar, M.; De Causmaecker, P.; Leus, R. Minimizing makespan on a single machine with release dates and inventory

constraints. Eur. J. Oper. Res. 2020, 286, 115–128. [CrossRef]
5. Kim, J.G.; Song, S.; Jeong, B. Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs

and sequence-dependent setup times. Int. J. Prod. Res. 2020, 58, 1628–1643. [CrossRef]
6. Soares, L.C.R.; Carvalho, M.A.M. Biased random-key genetic algorithm for scheduling identical parallel machines with tooling

constraints. Eur. J. Oper. Res. 2020, 285, 955–964. [CrossRef]
7. Lin, S.W.; Ying, K.C. Uniform Parallel-Machine Scheduling for Minimizing Total Resource Consumption With a Bounded

Makespan. IEEE Access 2017, 5, 15791–15799. [CrossRef]
8. Holland, J.H. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control and Artificial

Intelligence; ANAS: Roma, Italy, 1975.
9. Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup

times. Eur. J. Oper. Res. 2011, 211, 612–622. [CrossRef]
10. Joo, C.M.; Kim, B.S. Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time

and production availability. Comput. Ind. Eng. 2015, 85, 102–109. [CrossRef]
11. Cheng, C.Y.; Huang, L.W. Minimizing total earliness and tardiness through unrelated parallel machine scheduling using

distributed release time control. J. Manuf. Syst. 2017, 42, 1–10. [CrossRef]
12. Yu, C.L.; Semeraro, Q.; Matta, A. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine

eligibility. Comput. Oper. Res. 2018, 100, 211–229. [CrossRef]
13. Jouhari, H.; Lei, D.M.; Al-qaness, M.A.A.; Abd Elaziz, M.; Ewees, A.A.; Farouk, O. Sine-Cosine Algorithm to Enhance Simulated

Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics 2019, 7, 1120. [CrossRef]
14. Santos, H.G.; Toffolo, T.A.M.; Silva, C.; Vanden Berghe, G. Analysis of stochastic local search methods for the unrelated parallel

machine scheduling problem. Int. Trans. Oper. Res. 2019, 26, 707–724. [CrossRef]
15. Cota, L.P.; Haddad, M.N.; Souza, M.J.F.; Coelho, V.N. AIRP: A heuristic algorithm for solving the unrelated parallel machine

scheduling problem. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (Cec), Beijing, China, 6–11 July;
pp. 1855–1862.

16. Wang, X.M.; Li, Z.T.; Chen, Q.X.; Mao, N. Meta-heuristics for unrelated parallel machines scheduling with random rework to
minimize expected total weighted tardiness. Comput. Ind. Eng. 2020, 145, 106505. [CrossRef]

17. Hansen, P.; Mladenović, N. An introduction to variable neighborhood search. In Meta-Heuristics; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 433–458.

18. Fleszar, K.; Charalambous, C.; Hindi, K.S. A variable neighborhood descent heuristic for the problem of makespan minimisation
on unrelated parallel machines with setup times. J. Intell. Manuf. 2011, 23, 1949–1958. [CrossRef]

19. Al-Harkan, I.M.; Qamhan, A.A. Optimize Unrelated Parallel Machines Scheduling Problems With Multiple Limited Additional
Resources, Sequence-Dependent Setup Times and Release Date Constraints. IEEE Access 2019, 7, 171533–171547. [CrossRef]

20. Marinho Diana, R.O.; de Souza, S.R. Analysis of variable neighborhood descent as a local search operator for total weighted
tardiness problem on unrelated parallel machines. Comput. Oper. Res. 2020, 117. [CrossRef]

21. Afzalirad, M.; Rezaeian, J. Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup
times, precedence constraints and machine eligibility restrictions. Comput. Ind. Eng. 2016, 98, 40–52. [CrossRef]

22. Mir, M.S.S.; Rezaeian, J. A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the
total machine load on unrelated parallel machines. Appl. Soft. Comput. 2016, 41, 488–504. [CrossRef]

23. Fleszar, K.; Hindi, K.S. Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. Eur. J. Oper.
Res. 2018, 271, 839–848. [CrossRef]

24. He, Y.H.; Wang, L.B.; Wei, Y.; He, Z.Z. Optimisation of burn-in time considering the hidden loss of quality deviations in the
manufacturing process. Int. J. Prod. Res. 2017, 55, 2961–2977. [CrossRef]

25. Aghaee, N.; Peng, Z.B.; Eles, P. Temperature-Gradient-Based Burn-In and Test Scheduling for 3-D Stacked ICs. IEEE Trans. Very
Large Scale Integr. (VlSI) Syst. 2015, 23, 2992–3005. [CrossRef]

26. Kim, Y.D.; Kang, J.H.; Lee, G.E.; Lim, S.K. Scheduling Algorithms for Minimizing Tardiness of Orders at the Burn-in Workstation
in a Semiconductor Manufacturing System. IEEE Trans. Semicond. Manuf. 2011, 24, 14–26. [CrossRef]

27. Lee, C.Y.; Uzsoy, R.; Martinvega, L.A. Efficient Algorithms for Scheduling Semiconductor Burn-in Operations. Oper. Res. 1992,
40, 764–775. [CrossRef]

28. Pearn, W.L.; Hong, J.S.; Tai, Y.T. The burn-in test scheduling problem with batch dependent processing time and sequence
dependent setup time. Int. J. Prod. Res. 2013, 51, 1694–1706. [CrossRef]

http://doi.org/10.1016/j.cor.2017.04.004
http://doi.org/10.1016/j.ejor.2020.03.052
http://doi.org/10.1016/j.ejor.2020.03.029
http://doi.org/10.1080/00207543.2019.1672900
http://doi.org/10.1016/j.ejor.2020.02.047
http://doi.org/10.1109/ACCESS.2017.2735538
http://doi.org/10.1016/j.ejor.2011.01.011
http://doi.org/10.1016/j.cie.2015.02.029
http://doi.org/10.1016/j.jmsy.2016.10.005
http://doi.org/10.1016/j.cor.2018.07.025
http://doi.org/10.3390/math7111120
http://doi.org/10.1111/itor.12316
http://doi.org/10.1016/j.cie.2020.106505
http://doi.org/10.1007/s10845-011-0522-8
http://doi.org/10.1109/ACCESS.2019.2955975
http://doi.org/10.1016/j.cor.2020.104886
http://doi.org/10.1016/j.cie.2016.05.020
http://doi.org/10.1016/j.asoc.2015.12.035
http://doi.org/10.1016/j.ejor.2018.05.056
http://doi.org/10.1080/00207543.2016.1262081
http://doi.org/10.1109/TVLSI.2014.2380477
http://doi.org/10.1109/TSM.2010.2082470
http://doi.org/10.1287/opre.40.4.764
http://doi.org/10.1080/00207543.2012.694488

Mathematics 2021, 9, 768 20 of 20

29. Ruiz, R.; Stutzle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

30. Wang, I.L.; Yang, T.H.; Chang, Y.B. Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine
eligibility constraints. J. Intell. Manuf. 2012, 23, 2271–2280. [CrossRef]

31. Komaki, G.M.; Teymourian, E.; Kayvanfar, V. Minimising makespan in the two-stage assembly hybrid flow shop scheduling
problem using artificial immune systems. Int. J. Prod. Res. 2016, 54, 963–983. [CrossRef]

32. Costa, A.; Cappadonna, F.A.; Fichera, S. A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent
group scheduling problem. J. Intell. Manuf. 2017, 28, 1269–1283. [CrossRef]

33. Ying, K.C.; Lin, S.W. Minimizing Makespan in Distributed Blocking Flowshops Using Hybrid Iterated Greedy Algorithms. IEEE
Access 2017, 5, 15694–15705. [CrossRef]

34. Kundakci, N.; Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput.
Ind. Eng. 2016, 96, 31–51. [CrossRef]

35. Li, X.Y.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ.
2016, 174, 93–110. [CrossRef]

36. Ding, H.J.; Gu, X.S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible
job shop scheduling problem. Comput. Oper. Res. 2020, 121, 15. [CrossRef]

37. Malega, P.; Rudy, V.; Kanasz, R.; Gazda, V. Decentralized optimization of the flexible production lines. Adv. Prod. Eng. Manag.
2020, 15, 267–276. [CrossRef]

38. Bai, D.Y.; Zhang, Z.H.; Zhang, Q. Flexible open shop scheduling problem to minimize makespan. Comput. Oper. Res. 2016, 67,
207–215. [CrossRef]

39. Ciro, G.C.; Dugardin, F.; Yalaoui, F.; Kelly, R. Open shop scheduling problem with a multi-skills resource constraint: A genetic
algorithm and an ant colony optimisation approach. Int. J. Prod. Res. 2016, 54, 4854–4881. [CrossRef]

40. Hosseinabadi, A.A.R.; Vahidi, J.; Saemi, B.; Sangaiah, A.K.; Elhoseny, M. Extended Genetic Algorithm for solving open-shop
scheduling problem. Soft Comput. 2019, 23, 5099–5116. [CrossRef]

41. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
42. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing

Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
43. Lin, D.Y.; Xie, C. The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate

Objectives. Netw Spat. Econ. 2011, 11, 727–751. [CrossRef]

http://doi.org/10.1016/j.ejor.2005.12.009
http://doi.org/10.1007/s10845-011-0571-z
http://doi.org/10.1080/00207543.2015.1035815
http://doi.org/10.1007/s10845-015-1049-1
http://doi.org/10.1109/ACCESS.2017.2732738
http://doi.org/10.1016/j.cie.2016.03.011
http://doi.org/10.1016/j.ijpe.2016.01.016
http://doi.org/10.1016/j.cor.2020.104951
http://doi.org/10.14743/apem2020.3.364
http://doi.org/10.1016/j.cor.2015.10.012
http://doi.org/10.1080/00207543.2015.1126371
http://doi.org/10.1007/s00500-018-3177-y
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1063/1.1699114
http://doi.org/10.1007/s11067-010-9146-3

	Introduction
	Literature Review
	Single Operation
	Single Machine Scheduling
	Parallel Machine Scheduling

	Multiple Operation
	Flow Shop scheduling Problem
	Job Shop Scheduling Problem
	Open Shop Scheduling Problem

	Summary

	Mathematical Formulation
	Solution Approach
	Initial Solution
	Algorithm Steps
	Initialization
	Neighborhood Search
	Incumbent Solution Updating
	Termination

	Summary

	Solution Approach
	Parameter Calibration
	Validation
	Practical Application Scenarios

	Concluding Remarks
	References

