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Abstract: Fixed and moving boundary problems for the one-dimensional heat equation are con-
sidered. A unified approach to solving such problems is proposed by embedding a given initial-
boundary value problem into an appropriate initial value problem on the real line with arbitrary but
given functions, whose solution is known. These arbitrary functions are determined by imposing
that the solution of the initial value problem satisfies the given boundary conditions. Exact analytical
solutions of some moving boundary problems that have not been previously obtained are provided.
Moreover, examples of fixed boundary problems over semi-infinite and bounded intervals are given,
thus providing an alternative approach to the usual methods of solution.
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1. Introduction

Moving boundary problems occur in numerous important areas of science and en-
gineering [1–3]. Recent applications of such problems include modelling biological and
tumour invasions [4–7], drug delivery [8] and melting of crystal dendrite [9]. The classical
one-dimensional Stefan problem is the canonical moving boundary problem which was
introduced by J. Stefan, a Slovenian physicist, in a series of four papers to model the melting
of ice and to calculate the moving boundary where the phase transition from water to ice
occurs; see Vuik [10] for some historical notes. Since Stefan’s seminal work, there has been
extensive research on moving boundary problems in a wide variety of areas. We refer the
reader to the books by Gupta [11], Hill [12] and Crank [1], as well as to the comprehensive
references therein.

There are many numerical and approximate analytical methods which can be em-
ployed to solve moving boundary problems. A comparison of different numerical methods
for moving boundary problems was done by Furzeland [13]. One approximate analyt-
ical method for one-dimensional Stefan problems is the so-called heat balance integral
method (HBIM). This method was first introduced by Goodman [14,15], and which in turn
was adapted from the Kármán–Pohlhausen integral method for the study of boundary lay-
ers. Schlichting and Gersten’s book [16] contains a translation of Kármán and Pohlhausen’s
work. Other approximate analytical methods for one-dimensional Stefan problems include
the refined integral method (RIM) [12,17] and the combined integral method (CIM) [18].

Exact analytical solutions for some one-dimensional Stefan problems are reviewed
in [1,12], for example. These are typically similarity solutions where the moving boundary
varies as the square root of time. However, in general, such solutions have remained
stubbornly difficult to obtain mainly because the moving boundary makes the problem
nonlinear even if the underlying system is linear. This means that the standard methods
for constructing exact analytical solutions via Green’s functions or integral transforms
such as those by Fourier or Laplace, amongst others, are usually not applicable to moving
boundary problems. It should be noted that exact analytical solutions, while difficult to
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obtain, are also useful beyond the simple problem they solve since they are key to the
validation of numerical or other approximate analytical methods [18–20].

On the other hand, the solution of an initial-boundary value problem (IBVP) for the
one-dimensional heat equation with fixed boundaries can in many cases be done using
(i) separation of variables when the domain is bounded or (ii) integral transforms when the
domain is unbounded. However, with non-homogeneous boundary conditions (BCs), the
above two methods are generally not applicable directly.

The goal of this article is to propose a unified approach to the solution of the one-
dimensional heat equation with either a fixed boundary or a moving boundary. The main
idea is to embed the partial differential equation (PDE) and the initial condition of the
original IBVP into a new initial value problem (IVP) whose spatial domain is all of R but
with arbitrary unknown functions. For this new problem, the well-known formula for the
IVP of a non-homogeneous heat equation in R is used. Then, the BCs of the original IBVP
are imposed to determine the unknown functions. It should be noted that well-posedness
of the moving boundary problem is an important issue but is outside the scope of this
work. Instead, here we focus on deriving the formal solution of such a problem and give
several interesting applications.

This article is organised as follows. In Section 2, we explain the proposed method as
outlined above. Then, in Section 3, we illustrate the method with four examples of IBVPs
with fixed boundaries on semi-infinite and bounded domains. Section 4 illustrates the
method with two examples of Stefan problems. A brief discussion and conclusion are given
in Section 5.

2. Analytical Method

Consider the IBVP

ut = κuxx, x−(t) < x < x+(t), t > 0,

u(x, 0) = u0(x), x−(0) ≤ x ≤ x+(0),

au(x−(t), t) + bux(x−(t), t) = g−(t), t > 0,

cu(x+(t), t) + dux(x+(t), t) = g+(t), t > 0.

(1)

The parameter κ > 0 is the diffusion coefficient and a, b, c and d are constants such that

|a|+ |b| > 0, |c|+ |d| > 0.

The functions x± and g± depend on t in general while the initial distribution u0 is a function
of x.

We can embed the PDE and initial condition of (1) into the IVP

vt = κvxx + f (x, t), −∞ < x < ∞, t > 0,

v(x, 0) = v0(x), −∞ < x < ∞,
(2)

where f (x, t) = 0 for all x−(t) < x < x+(t) and t > 0. More specifically, let

f (x, t) = f−(x, t)H(x−(t)− x) + f+(x, t)H(x− x+(t)), (3)

where H is the usual Heaviside function (i.e., H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0)
and f± are functions to be determined so as to satisfy the BCs in (1). Moreover, v0 is an
extension of u0 in the sense that v0(x)|x−(0)≤x≤x+(0) = u0(x).

It is well known [21] that the formal solution of the IVP (2) can be expressed as

v(x, t) =
∞∫
−∞

1√
κ

G
( x− y√

κ
, t
)

v0(y)dy +

t∫
0

∞∫
−∞

1√
κ

G
( x− y√

κ
, t− τ

)
f (y, τ)dy dτ, (4)
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where G is the heat kernel (or Green’s function)

G(x, t) =
e−

x2

4t
√

4πt
.

Using (3), and assuming for simplicity that f± depend on t but not on x, we obtain

v(x, t) =
∞∫
−∞

1√
κ

G
( x− y√

κ
, t
)

v0(y)dy +

t∫
0

f−(τ)

x−(τ)∫
−∞

1√
κ

G
( x− y√

κ
, t− τ

)
dy dτ

+

t∫
0

f+(τ)
∞∫

x+(τ)

1√
κ

G
( x− y√

κ
, t− τ

)
dy dτ.

(5)

Direct calculations yield

x−(τ)∫
−∞

1√
κ

G
( x− y√

κ
, t− τ

)
dy =

x−(τ)∫
−∞

e−
(x−y)2

4κ(t−τ)√
4πκ(t− τ)

dy =

x−(τ)∫
−∞

e
−[ x−y

2
√

κ(t−τ)
]2√

4πκ(t− τ)
dy

and

∞∫
x+(τ)

1√
κ

G
( x− y√

κ
, t− τ

)
dy =

∞∫
x+(τ)

e−
(x−y)2

4κ(t−τ)√
4πκ(t− τ)

dy =

∞∫
x+(τ)

e
−[ x−y

2
√

κ(t−τ)
]2√

4πκ(t− τ)
dy.

Letting

z =
x− y

2
√

κ(t− τ)
, dz = − dy

2
√

κ(t− τ)
,

we have

x−(τ)∫
−∞

1√
κ

G
( x− y√

κ
, t− τ

)
dy =

∞∫
x−x−(τ)

2
√

κ(t−τ)

1√
π

e−z2
dz =

1
2

erfc
( x− x−(τ)

2
√

κ(t− τ)

)

and

∞∫
x+(τ)

1√
κ

G
( x− y√

κ
, t− τ

)
dy =

x−x+(τ)

2
√

κ(t−τ)∫
−∞

1√
π

e−z2
dz =

1
2

erfc
( x+(τ)− x

2
√

κ(t− τ)

)
,

where erfc is the complementary error function with properties

erfc(x) =
2√
π

∞∫
x

e−z2
dz, erfc(−x) =

2√
π

x∫
−∞

e−z2
dz, erfc′(x) = − 2√

π
e−x2

. (6)

Note also that erfc(0) = 1 and erfc(∞) = 0. Thus, (5) becomes
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v(x, t) =
∞∫
−∞

1√
κ

G
( x− y√

κ
, t
)

v0(y)dy +
1
2

t∫
0

erfc
( x− x−(τ)

2
√

κ(t− τ)

)
f−(τ)dτ

+
1
2

t∫
0

erfc
( x+(τ)− x

2
√

κ(t− τ)

)
f+(τ)dτ.

Hence, a function u that satisfies the PDE and initial condition of the IBVP (1) is

u(x, t) =
∞∫
−∞

e−
(x−y)2

4κt
√

4πκt
v0(y)dy +

1
2

t∫
0

erfc
( x− x−(τ)

2
√

κ(t− τ)

)
f−(τ)dτ

+
1
2

t∫
0

erfc
( x+(τ)− x

2
√

κ(t− τ)

)
f+(τ)dτ,

(7)

where v0 is a function such that v0(x)|x−(0)≤x≤x+(0) = u0(x). Note that f± have yet to be
determined. This is where the third and fourth equations in (1) will be needed.

Next, we consider the BCs in (1). It is straightforward using (6) that

∂

∂x
erfc

( x− x−(τ)
2
√

κ(t− τ)

)
= − 2√

π
e−

[x−x−(τ)]2

4κ(t−τ)
1

2
√

κ(t− τ)
= − e−

[x−x−(τ)]2

4κ(t−τ)√
πκ(t− τ)

,

∂

∂x
erfc

( x+(τ)− x
2
√

κ(t− τ)

)
= − 2√

π
e−

[x+(τ)−x]2

4κ(t−τ)
−1

2
√

κ(t− τ)
=

e−
[x+(τ)−x]2

4κ(t−τ)√
πκ(t− τ)

,

∂

∂x
1√
κ

G
( x− y√

κ
, t
)
=

∂

∂x
e−

(x−y)2
4κt

√
4πκt

= − (x− y)e−
(x−y)2

4κt

4
√

π(κt)
3
2

.

Differentiating (7) with respect to x gives

ux(x, t) = −
∞∫
−∞

(x− y)e−
(x−y)2

4κt

4
√

π(κt)
3
2

v0(y)dy− 1
2

t∫
0

e−
[x−x−(τ)]2

4κ(t−τ)√
πκ(t− τ)

f−(τ)dτ

+
1
2

t∫
0

e−
[x+(τ)−x]2

4κ(t−τ)√
πκ(t− τ)

f+(τ)dτ.

Substituting the expressions for u(x, t) and ux(x, t) into the BCs in (1), we have

t∫
0

[
a
2

erfc
( x−(t)− x−(τ)

2
√

κ(t− τ)

)
− b

2
e−

[x−(t)−x−(τ)]2

4κ(t−τ)√
πκ(t− τ)

dτ

]
f−(τ)dτ

+

t∫
0

[
a
2

erfc
( x+(τ)− x−(t)

2
√

κ(t− τ)

)
+

b
2

e−
[x+(τ)−x−(t)]2

4κ(t−τ)√
πκ(t− τ)

]
f+(τ)dτ

= g−(t)−
∞∫
−∞

{
ae−

[x−(t)−y]2

4κt
√

4πκt
− b[x−(t)− y]e−

[x−(t)−y]2

4κt

4
√

π(κt)
3
2

}
v0(y)dy

(8)

and
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t∫
0

[
c
2

erfc
( x+(t)− x−(τ)

2
√

κ(t− τ)

)
− d

2
e−

[x+(t)−x−(τ)]2

4κ(t−τ)√
πκ(t− τ)

dτ

]
f−(τ)dτ

+

t∫
0

[
c
2

erfc
( x+(τ)− x+(t)

2
√

κ(t− τ)

)
+

d
2

e−
[x+(τ)−x+(t)]2

4κ(t−τ)√
πκ(t− τ)

]
f+(τ)dτ

= g+(t)−
∞∫
−∞

{
ce−

[x+(t)−y]2

4κt
√

4πκt
− d[x+(t)− y]e−

[x+(t)−y]2

4κt

4
√

π(κt)
3
2

}
v0(y)dy.

(9)

Equations (8) and (9) form a pair of coupled linear Volterra integral equations for the
time-dependent functions f±, which cannot be solved analytically in general. Hence, the
formal solution of the IBVP (1) is given by (7)–(9).

Remark 1. Although the extension of u0 to v0 is not unique, the formulas for f± in (8) and (9) get
adjusted, according to the choice of v0, in such a way that the BCs in (1) are always met.

Remark 2. A particular case of (1) is a fixed boundary problem when x−(t) = x− and x+(t) = x+
are both constants. Then, (8) and (9) simplify to

t∫
0

[
a
2
− b

2
√

πκ(t− τ)

]
f−(τ)dτ

+

t∫
0

[
a
2

erfc
( x+ − x−

2
√

κ(t− τ)

)
+

b
2

e−
(x+−x−)2

4κ(t−τ)√
πκ(t− τ)

]
f+(τ)dτ = h−(t)

(10)

and

t∫
0

[
c
2

erfc
( x+ − x−

2
√

κ(t− τ)

)
− d

2
e−

(x+−x−)2

4κ(t−τ)√
πκ(t− τ)

dτ

]
f−(τ)dτ

+

t∫
0

[
c
2
+

d
2
√

πκ(t− τ)

]
f+(τ)dτ = h+(t),

(11)

respectively, where

h−(t) = g−(t)−
∞∫
−∞

{
ae−

(x−−y)2

4κt
√

4πκt
− b(x− − y)e−

(x−−y)2

4κt

4
√

π(κt)
3
2

}
v0(y)dy,

h+(t) = g+(t)−
∞∫
−∞

{
ce−

(x+−y)2

4κt
√

4πκt
− d(x+ − y)e−

(x+−y)2

4κt

4
√

π(κt)
3
2

}
v0(y)dy.

(12)

If we take the Laplace transforms of (10) and (11), and use the convolution property and the
properties in (A1) (note that in the following, the formulas (A1), (A2) and (A3) can be found in
Appendix A), we obtain

( a
2s
− b

2
√

κ
√

s

)
f̂−(s) +

( a
2s

+
b

2
√

κ
√

s

)
e−

(x+−x−)
√

s√
κ f̂+(s) = ĥ−(s),( c

2s
− d

2
√

κ
√

s

)
e−

(x+−x−)
√

s√
κ f̂−(s) +

( c
2s

+
d

2
√

κ
√

s

)
f̂+(s) = ĥ+(s),

(13)
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respectively, where f̂±(s) and ĥ±(s) denote the Laplace transforms of f±(t) and h±(t), respectively.
This is a linear algebraic system for f̂±(s), which can be solved explicitly. However, the analytical
Laplace inversion to get f±(t) is not going to be straightforward in the general case. Nevertheless,
in the next section, we shall illustrate how this can be done in some cases.

3. Examples: Fixed Boundary Problems

Here, we give illustrative examples of fixed boundary problems for semi-infinite and
finite intervals. We remark that these examples are meant to give an alternative derivation
of the solutions and, more importantly, to show how fixed and moving boundary problems
can both be treated as special cases of our embedding method.

Example 1. Consider the IBVP

ut = κuxx, 0 < x < ∞, t > 0,

u(x, 0) = 0, 0 ≤ x < ∞,

u(0, t) = 1, u(∞, t) = 0, t > 0.

(14)

We identify
x−(t) = x− = 0, x+(t) = x+ = ∞, u0(x) = 0

and
a = 1, b = 0, g−(t) = 1, c = 1, d = 0, g+(t) = 0.

Let v0(x) = 0 for all −∞ < x < ∞. It is clear that v0(x)|0≤x<∞ = u0(x). Equation (7) gives

u(x, t) =
1
2

t∫
0

erfc
( x

2
√

κ(t− τ)

)
f−(τ)dτ. (15)

Because this is in convolution form, its Laplace transform from (A1) is

û(x, s) =
1
2

e−
x
√

s√
κ

s
f̂−(s). (16)

Note that h−(t) = 1 and h+(t) = 0 from (12). Then, (13) simplifies to

1
2s

f̂−(s) =
1
s

,
1
2s

f̂+(s) = 0 or f̂−(s) = 2, f̂+(s) = 0.

Hence, f−(t) = 2δ(t), where δ is the Dirac delta function, and f+(t) = 0. Therefore, (15) yields

u(x, t) =
t∫
0

erfc
( x

2
√

κ(t− τ)

)
δ(τ)dτ = erfc

( x
2
√

κt

)
(17)

as the solution of the IBVP (14).

Example 2. Next, we look at the IBVP

ut = κuxx, 0 < x < ∞, t > 0,

u(x, 0) = 0, 0 ≤ x < ∞,

ux(0, t) = −1, u(∞, t) = 0, t > 0.

(18)

This is an example of a fixed boundary problem with a constant flux BC. In this case, we have

x−(t) = x− = 0, x+(t) = x+ = ∞, u0(x) = 0
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and
a = 0, b = 1, g−(t) = −1, c = 1, d = 0, g+(t) = 0.

Take v0(x) = 0 for all −∞ < x < ∞; hence v0(x)|0≤x<∞ = u0(x). As in Example 1, Equation (7)
implies (15) and (16). Here, h−(t) = −1 and h+(t) = 0 from (12). Then, (13) becomes

− 1
2
√

κ
√

s
f̂−(s) = −

1
s

,
1
2s

f̂+(s) = 0 or f̂−(s) =
2
√

κ√
s

=
2
√

κ√
π

√
π

s
, f̂+(s) = 0.

Hence, using (A1), we deduce that

f−(t) =
2
√

κ√
π

1√
t
= 2

√
κ

πt
, f+(t) = 0.

Equation (16) can be rewritten as

û(x, s) =
√

κ√
s

e−
x
√

s√
κ

s
=

√
κe−

x
√

s√
κ

s
√

s
.

However,

2

√
t
π

e−
x2
4κt =

2te−
x2
4κt

√
πt

,

so that (A1) implies

L
{

2

√
t
π

e−
x2
4κt ; s

}
= 2L

t
e−

x2
4κt

√
πt

; s

 = −2
d
ds

e−
x
√

s√
κ

√
s

=
xe−

x
√

s√
κ

√
κs

+
e−

x
√

s√
κ

s
√

s
.

Since

L
{

x√
κ

erfc
( x

2
√

κt

)
; s
}

=
xe−

x
√

s√
κ

√
κs

from (A1), we see that

L
{

2

√
t
π

e−
x2
4κt ; s

}
= L

{
x√
κ

erfc
( x

2
√

κt

)
; s
}
+

1√
κ

û(x, s).

Taking the inverse Laplace transform of both sides finally gives

u(x, t) =
t∫
0

erfc
( x

2
√

κ(t− τ)

)√ κ

πτ
dτ = 2

√
κt
π

e−
x2
4κt − x erfc

( x
2
√

κt

)
(19)

as the solution of the IBVP (18). With a slight modification of the BC from u(∞, t) = 0 to
u(∞, t) = −1, we can recover the exact solution given in [22] (p. 130) for the temperature during
the pre-ablation stage for one-dimensional ablation; see also Example 6 below.

Example 3. Suppose that we have the IBVP

ut = κuxx, 0 < x < ∞, t > 0,

u(x, 0) = 0, 0 ≤ x < ∞,

u(0, t)− ux(0, t) = 1, u(∞, t) = 0, t > 0.

(20)

This is an example of a fixed boundary problem with a Newton cooling-type BC. We identify

x−(t) = x− = 0, x+(t) = x+ = ∞, u0(x) = 0
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and
a = 1, b = −1, g−(t) = 1, c = 1, d = 0, g+(t) = 0.

Let v0(x) = 0 for all −∞ < x < ∞. We see that v0(x)|0≤x<∞ = u0(x). Similar to Examples 1
and 2, Equation (7) implies (15) and (16). We have that h−(t) = 1 and h+(t) = 0 from (12).
Then, (13) simplifies to( 1

2s
+

1
2
√

κ
√

s

)
f̂−(s) =

1
s

,
1
2s

f̂+(s) = 0 or f̂−(s) =
2
√

κ√
s +
√

κ
, f̂+(s) = 0.

It is clear that f+(t) = 0. Taking a = 0 and b =
√

κ in (A2), we have

L
{

1√
πt
−
√

κeκt erfc(
√

κt); s
}

=
1√

s +
√

κ
.

Hence,

f−(t) = 2
√

κ

[
1√
πt
−
√

κeκt erfc(
√

κt)
]
= 2

√
κ

πt
− 2κeκt erfc(

√
κt).

Having determined f̂±(s), Equation (16) can be rewritten as

û(x, s) =
√

κe−
x
√

s√
κ

s(
√

s +
√

κ)
.

Now, take a = x√
κ

and b =
√

κ in (A3) to obtain

L
{

ex+κt erfc
( x + 2κt

2
√

κt

)
; s
}

=
e−

x
√

s√
κ

√
s(
√

s +
√

κ)
.

However,
1√

s(
√

s +
√

κ)
=

1
s
−

√
κ

s(
√

s +
√

κ)
,

which gives

L
{

ex+κt erfc
( x + 2κt

2
√

κt

)
; s
}

=
e−

x
√

s√
κ

s
−
√

κe−
x
√

s√
κ

s(
√

s +
√

κ)
= L

{
erfc

( x
2
√

κt

)
; s
}
− û(x, s).

Therefore, the solution of the IBVP (20) is

u(x, t) =
t∫
0

erfc
( x

2
√

κ(t− τ)

)[√ κ

πτ
− κeκτ erfc(

√
κτ)

]
dτ

= erfc
( x

2
√

κt

)
− ex+κt erfc

( x + 2κt
2
√

κt

)
.

(21)

Example 4. In the previous examples, we considered semi-infinite domains. Here, we look at a
finite domain. Consider the IBVP

ut = κuxx, 0 < x < L, t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ L,

u(0, t) = 0 u(L, t) = 0, t > 0,

(22)

where we have homogeneous Dirichlet BCs. Homogeneous Neumann BCs are treated similarly.
We identify

x−(t) = x− = 0, x+(t) = x+ = L
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and
a = 1, b = 0, g−(t) = 0, c = 1, d = 0, g+(t) = 0.

Let v0 be such that v0(x)|0≤x≤L = u0(x) and v0(x) = 0 otherwise. Equation (7) gives

u(x, t) =
L∫
0

e−
(x−y)2

4κt
√

4πκt
u0(y)dy +

1
2

t∫
0

erfc
( x

2
√

κ(t− τ)

)
f−(τ)dτ

+
1
2

t∫
0

erfc
( L− x

2
√

κ(t− τ)

)
f+(τ)dτ.

(23)

Equation (12) yields

h−(t) = −
L∫
0

e−
y2
4κt

√
4πκt

u0(y)dy, h+(t) = −
L∫
0

e−
(L−y)2

4κt
√

4πκt
u0(y)dy

with corresponding Laplace transforms

ĥ−(s) = −
L∫
0

e−
y
√

s√
κ

2
√

κ
√

s
u0(y)dy, ĥ+(s) = −

L∫
0

e−
(L−y)

√
s√

κ

2
√

κ
√

s
u0(y)dy

with the help of (A1). The linear algebraic system (13) for this problem is

1
2s

f̂−(s) +
1
2s

e−
L
√

s√
κ f̂+(s) = ĥ−(s),

1
2s

e−
L
√

s√
κ f̂−(s) +

1
2s

f̂+(s) = ĥ+(s),

whose solution is

f̂−(s) =
2sĥ−(s)− 2se−

L
√

s√
κ ĥ+(s)

1− e−
2L
√

s√
κ

, f̂+(s) =
2sĥ+(s)− 2se−

L
√

s√
κ ĥ−(s)

1− e−
2L
√

s√
κ

.

Using (A1), the Laplace transform of (23) is therefore

û(x, s) =
L∫
0

e−
|x−y|

√
s√

κ

2
√

κ
√

s
u0(y)dy +

1
2

e−
x
√

s√
κ

s
f̂−(s) +

1
2

e−
(L−x)

√
s√

κ

s
f̂+(s). (24)

The following lemma is a useful calculation; see Appendix B for the proof.

Lemma 1. Equation (24) is equivalent to û(x, s) = v̂(x, s), where

v̂(x, s) =
x∫
0

sinh(
√

s√
κ

y) sinh(
√

s√
κ
(L− x))

√
κ
√

s sinh(
√

s√
κ

L)
u0(y)dy

+

L∫
x

sinh(
√

s√
κ

x) sinh(
√

s√
κ
(L− y))

√
κ
√

s sinh(
√

s√
κ

L)
u0(y)dy.

(25)

It was shown by Rodrigo and Worthy [23] that the inverse Laplace transform of (25) is

v(x, t) =
∞

∑
n=1

[
2
L

L∫
0

u0(y) sin
(nπy

L

)
dy

]
e−

n2π2κt
L2 sin

(nπx
L

)
.
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Thus, from Lemma 1, we deduce that u(x, t) = v(x, t), i.e.,

u(x, t) =
∞

∑
n=1

[
2
L

L∫
0

u0(y) sin
(nπy

L

)
dy

]
e−

n2π2κt
L2 sin

(nπx
L

)
(26)

and we recover the well-known solution of the IBVP (22) using separation of variables and the
theory of Fourier series. Equation (26) is useful for large times since the series can be truncated to a
small number of terms because of the exponentially decaying factors, whereas (23) can be useful for
small times and does not require any truncation since it is not in series form.

4. Examples: Moving Boundary Problems

In this section, we investigate some moving boundary problems using the same
methodology as for fixed boundary problems. Note, however, that, in these problems, the
boundary function s = s(t) (not to be confused with the Laplace transform parameter) is
to be determined together with u = u(x, t).

Example 5. Consider the Stefan problem

ut = κuxx, 0 < x < s(t), t > 0,

u(x, 0) = u0(x), 0 ≤ x < ∞,

u(0, t) = g−(t), u(s(t), t) = g+(t), t > 0,

(27)

where g± = g±(t) and u0 = u0(x) are given. We wish to determine u = u(x, t) and s = s(t)
that satisfy (27) and also the interface condition

s′(t) = F(ux(s(t), t)), t > 0 (28)

for some suitable univariate function F for instance. Following our previous notation, we have

x−(t) = 0, x+(t) = s(t), a = 1, b = 0, c = 1, d = 0.

Then, (7) yields

u(x, t) =
∞∫
−∞

e−
(x−y)2

4κt
√

4πκt
v0(y)dy +

1
2

t∫
0

erfc
( x

2
√

κ(t− τ)

)
f−(τ)dτ

+
1
2

t∫
0

erfc
( s(τ)− x

2
√

κ(t− τ)

)
f+(τ)dτ.

(29)

As u0 is unspecified, we choose v0 such that v0(x)|0≤x<∞ = u0(x). The left BC (8) is

1
2

t∫
0

f−(τ)dτ +
1
2

t∫
0

erfc
( s(τ)

2
√

κ(t− τ)

)
f+(τ)dτ

= g−(t)−
∞∫
−∞

e−
y2
4κt

√
4πκt

v0(y)dy,

(30)

while the right BC (9) is
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1
2

t∫
0

erfc
( s(t)

2
√

κ(t− τ)

)
f−(τ)dτ +

1
2

t∫
0

erfc
( s(τ)− s(t)

2
√

κ(t− τ)

)
f+(τ)dτ

= g+(t)−
∞∫
−∞

e−
[s(t)−y]2

4κt
√

4πκt
v0(y)dy.

(31)

Moreover, from (29), we have

ux(x, t) = −
∞∫
−∞

(x− y)e−
(x−y)2

4κt

4
√

π(κt)
3
2

v0(y)dy− 1
2

t∫
0

e−
x2

4κ(t−τ)√
πκ(t− τ)

f−(τ)dτ

+
1
2

t∫
0

e−
[s(τ)−x]2

4κ(t−τ)√
πκ(t− τ)

f+(τ)dτ.

The interface condition s′(t) = F(ux(s(t), t)) is such that

ux(s(t), t) = −
∞∫
−∞

[s(t)− y]e−
[s(t)−y]2

4κt

4
√

π(κt)
3
2

v0(y)dy− 1
2

t∫
0

e−
s(t)2

4κ(t−τ)√
πκ(t− τ)

f−(τ)dτ

+
1
2

t∫
0

e−
[s(τ)−s(t)]2

4κ(t−τ)√
πκ(t− τ)

f+(τ)dτ.

(32)

Hence, (28), (30) and (31) provide the determining equations for the time-varying functions f±
and s. Once f± and s have been determined, u can be calculated from (29), thus obtaining the
(formal) exact analytical solution of the Stefan problem (27) and (28).

In general, Equations (28), (30) and (31) have to be solved numerically. However, we can solve
these integral equations analytically for a well-known special case, as we now show. In the classical
one-phase Stefan problem (27) and (28), let κ = 1, g−(t) = 1, g+(t) = 0 and

F(z) = −1
r

z, r > 0.

Suppose that u0(x) = u0, a constant. Take v0(x) = u0 for all −∞ < x < ∞, which
satisfies v0(x)|0≤x<∞ = u0(x). Furthermore, take f−(t) = αδ(t), where α is some constant to be
determined and δ is the Dirac delta function, and f+(t) = 0. From (29), we obtain

u(x, t) = u0 +
α

2

t∫
0

erfc
( x

2
√

t− τ

)
δ(τ)dτ = u0 +

α

2
erfc

( x
2
√

t

)
.

Equation (30) simplifies to α = 2(1− u0), while (28) and (31) yield

α

2
erfc

( s(t)
2
√

t

)
= −u0, −rs′(t) = −α

2
e−

s(t)2
4t

√
πt

, (33)

respectively. Differentiating the first equation in (33) with respect to t gives

− 2√
π

e−
s(t)2

4t

[
2
√

ts′(t)− s(t) 1√
t

4t

]
= 0 or

s′(t)
s(t)

=
1
2t

.

A solution to this latter ordinary differential equation is s(t) = 2β
√

t for some positive constant β.
Substituting this into the equations in (33), we see that β satisfies the relations
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erfc(β) =
u0

u0 − 1
, r
√

πβeβ2
= 1− u0.

Thus, β must satisfy the transcendental equation

r
√

πβeβ2
erf(β) = 1. (34)

Finally, the solution of (27), (28) is given by

u(x, t) = u0 +
α

2
erfc

( x
2
√

t

)
= 1−

erf( x
2
√

t
)

erf(β)
, s(t) = 2β

√
t,

where erf is the error function erf(z) = 1− erfc(z) for z ∈ R and β satisfies the relation (34).
This recovers the well-known solution of this special Stefan problem [1,12], typically obtained by a
similarity analysis.

Example 6. Consider a Stefan problem involving a single-phase, semi-infinite, subcooled material.
An application arises when determining whether ice melts or water freezes when hot water is thrown
over cold ice [24]. This can be formulated as a Stefan problem involving a constant heat source term
in the condition at the moving boundary [25]. A related industrial process is known as ablation,
where a mass is removed from an object by vapourisation or other similar erosive processes [22,26].
The dimensionless model [20] is given by

ut = uxx, s(t) < x < ∞, t > 0,

u(x, 0) = −1, 0 ≤ x < ∞,

u(s(t), t) = 0, u(∞, t) = −1, t > 0.

(35)

We want to find u = u(x, t) and s = s(t) that solve (35) and satisfy the interface condition

s′(t) =
1
r
[1 + ux(s(t), t)], t > 0, (36)

where r is a given positive constant. To our knowledge, the exact analytical solution to this Stefan
problem is not known. We identify

x−(t) = s(t), x+(t) = ∞, u0(x) = −1

and
a = 1, b = 0, g−(t) = 0, c = 1, d = 0, g+(t) = −1.

Choose v0(x) = −1 for −∞ < x < ∞, so that v0(x)|s(0)≤x<∞ = u0(x). Equation (7) yields

u(x, t) = −
∞∫
−∞

e−
(x−y)2

4t
√

4πt
dy +

1
2

t∫
0

erfc
( x− s(τ)

2
√

t− τ

)
f−(τ)dτ

= −1 +
1
2

t∫
0

erfc
( x− s(τ)

2
√

t− τ

)
f−(τ)dτ.

(37)

The left BC (8) is

1
2

t∫
0

erfc
( s(t)− s(τ)

2
√

t− τ

)
f−(τ)dτ =

∞∫
−∞

e−
[s(t)−y]2

4t
√

4πt
dy
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or
t∫
0

erfc
( s(t)− s(τ)

2
√

t− τ

)
f−(τ)dτ = 2.

On the other hand, the right BC (9) simplifies to

1
2

t∫
0

f+(τ)dτ = −1 or f+(τ)dτ = −2δ(t).

Note, however, that f+(τ) does not appear in (37). Differentiating (37), we see that

ux(x, t) =
1
2

t∫
0

−2e−
[x−s(τ)]2

4(t−τ)

√
π

1
2
√

t− τ
f−(τ)dτ = −

t∫
0

e−
[x−s(τ)]2

4(t−τ)√
4π(t− τ)

f−(τ)dτ.

Hence, using the interface condition (36) and the left BC (8), we deduce that s = s(t) and
f− = f−(t) satisfy the coupled equations

rs′(t) = 1−
t∫
0

e−
[s(t)−s(τ)]2

4(t−τ)√
4π(t− τ)

f−(τ)dτ,
t∫
0

erfc
( s(t)− s(τ)

2
√

t− τ

)
f−(τ)dτ = 2,

and the (formal) exact analytical solution of the Stefan problem (35), (36) is given by (37).

5. Discussion and Conclusions

In this article, we proposed a unified approach to solving IBVPs with fixed or moving
boundaries. For fixed boundaries, we showed through four examples how the same
method is able to handle semi-infinite and bounded intervals. By comparison, IBVPs
over semi-infinite and finite intervals are usually solved using separation of variables
and integral transforms, respectively. We also derived exact analytical solutions to two
examples of physically motivated moving boundary problems. The solutions involved
time-varying functions that satisfy exact integral equations which in principle can be
evaluated numerically, if not analytically. One possible numerical implementation is to
adapt the procedure proposed by Guardasoni, Rodrigo and Sanfelici [27] for solving a
Volterra integral equation of the first kind to systems of such integral equations. For
instance, in current work by the authors of the present article, we consider the dynamics of
outgrowth in a continuum model of neurite elongation and compare the exact analytical
solution obtained from the embedding approach and the numerical solution obtained by
solving the associated integral equations. As mentioned previously, the exact solution is
“formal” in the sense that we assume that the moving boundary problem is well-posed. For
example, sufficient hypotheses on the functions g±, u0 and F have to be given to ensure
that (28), (30) and (31) have a unique (possibly weak) solution.

The embedding approach was introduced by Rodrigo [28] in the context of pricing
American put and call options, which leads to a moving boundary problem. It was later
applied to fixed boundary problems by Guardasoni, Rodrigo and Sanfelici [27], i.e., for
pricing single and double barrier options. In both cases, the underlying equation is the
Black–Scholes PDE. A follow-up to the current article is a unified approach to fixed and
moving boundary problems for the Black–Scholes PDE. This would yield, in one go, pricing
formulas for a variety of financial derivatives, not only American and barrier options.
Although the Black–Scholes PDE can be transformed to the heat equation, the transformed
initial condition and BCs are usually complicated. Hence, it is more convenient to embed
into a final value problem of a non-homogeneous Black–Scholes PDE (instead of an IVP for
a non-homogeneous heat equation) and use the Mellin transform techniques developed
in [27–32].
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Two-phase Stefan problems can also be handled with the embedding approach. For
example, with a straightforward generalisation of the notation in Example 5, consider the
moving boundary value problem where

u(1)
t = κ1u(1)

xx , 0 < x < s(t), t > 0,

u(1)(x, 0) = u(1)
0 (x), 0 < x < ∞,

u(1)(0, t) = g(1)− (t), u(1)(s(t), t) = g(1)+ (t), t > 0

(38)

describes the evolution of u(1) = u(1)(x, t), while

u(2)
t = κ2u(2)

xx , s(t) < x < ∞, t > 0,

u(2)(x, 0) = u(2)
0 (x), 0 < x < ∞,

u(2)(s(t), t) = g(2)− (t), u(2)(∞, t) = g(2)+ (t), t > 0

(39)

describes the evolution of u(2) = u(2)(x, t). Suppose that g(2)− (t) = g(1)+ (t) for continuity at
the interface s(t). Moreover, the interface condition has the form

s′(t) = F(u(1)
x (s(t), t), u(2)

x (s(t), t)), t > 0 (40)

for some suitable bivariate function F. For example, let u(1)(x, t) and u(2)(x, t) represent
the temperatures for ice and water at position x and at time t, respectively. Then, x = s(t)
is the location of the unknown boundary between the two phases. A typical choice for F is

F(z1, z2) =
1
r
(z1 − z2), r > 0,

where 1
r is the latent heat of fusion times the density divided by the coefficient of heat

conduction [33]. For an arbitrary function s = s(t), we can use (7)–(9) to write down
expressions for u(1)(x, t) and u(2)(x, t) that depend on the unknown function s. These
expressions for u(1)(x, t) and u(2)(x, t) are then substituted into (40) to obtain an integro-
differential equation involving only s(t). This would complete the specification of the
(formal) exact analytical solution of the two-phase Stefan problem (38)–(40).

Our method can be adapted to other PDEs as well. For instance, suppose that we
modify the PDE in (1) by including advection and reaction terms of the form

ut = κuxx + αux + βu, x−(t) < x < x+(t), t > 0,

where α, β ∈ R are constants and the same initial and boundary conditions in (1) are
specified. Then, with the change of variable

u(x, t) = e−
α
2κ x+(β− α2

4κ )tw(x, t),

we obtain the heat (or diffusion) equation

wt = κwxx, x−(t) < x < x+(t), t > 0.

Similar initial and boundary conditions for w can also be deduced from the other equations
in (1), with adjustments to the functions g± and u0. The results of this article can then be
used directly.

The embedding approach given here can also be applied to IBVPs for the
wave equation

utt = c2uxx, x−(t) < x < x+(t), t > 0,
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where c is a nonzero constant and (two) initial conditions and BCs analogous to those in (1)
are given. We can embed the IBVP into an IVP for a non-homogeneous wave equation
defined on R but with arbitrary time-dependent functions. Then, d’Alembert’s solution
together with Duhamel’s principle can be used to solve the IVP. As before, the arbitrary
functions are then determined by imposing the BCs.

A multilayer diffusion problem was studied in [23] by reformulating it as a sequence of
one-layer diffusion problems with arbitrary time-dependent functions. Hence, the crucial
step is to solve a one-layer diffusion problem, which is of the form (1). Thus, instead of
the more involved Laplace transform approach used for (1) in [23], the solution of the
one-layer problem given in (7)–(9) is much easier to derive compared to that given in [23]
(Equation (3.22)). In Example 4, we showed the equivalence of the two formulas in the case
of homogeneous Dirichlet BCs through (25).

It was mentioned in the Introduction that there are several approximate analytical
techniques for one-dimensional Stefan problems (e.g., HBIM, RIM and CIM), all of which
are based on the Kármán–Pohlhausen integral method for boundary layers. The basic
idea of these approximate analytical methods is to assume in Example 5 that u is some
convenient function of s (e.g., u(x, t) is a quadratic expression in x with time-dependent co-
efficients that depend on s(t)) and that it satisfies a weak form of the IVBP. It is conceivable
that the above approximate analytical techniques could be combined with the embedding
approach. Indeed, u in (29) already identically satisfies the PDE (and not just its weak
form) and initial condition in (5) exactly for any f± and s. Hence, instead of “guessing” the
forms of u and s as in the HBIM, RIM and CIM, we may instead attempt to “guess” the
approximate functional forms of s and the auxiliary functions f± in (28), (30) and (31).

Finally, our embedding approach should also work for IBVPs for the higher dimen-
sional heat (or diffusion) equation

ut = κ∆u, x ∈ Ω(t), t > 0,

u(x, 0) = u0(x), x ∈ Ω(t), t > 0,

where Ω(t) is some domain in Rn with a sufficiently smooth boundary with conditions
specified there. The analogous IVP to (2) is

vt = κ∆v + f (x, t), x ∈ Rn, t > 0,

v(x, 0) = v0(x), x ∈ Rn,

where v0 is an extension of u0 (i.e., v0(x) = u0(x) for x ∈ Ω(0)) and f = f (x, t) is an
arbitrary function such that f (x, t) = 0 for x ∈ Ω(t) and t > 0. The solution v of the above
IVP is of course well known and is the higher dimensional analogue of (4). Then, f is
determined in such a way that the boundary conditions for u are satisfied. Multilayer
diffusion problems in higher dimensions can also be considered. The embedding approach
is more straightforwardly adapted compared to the Laplace transform approach followed
in [23], which was specific to a one-dimensional diffusion equation.

As can be seen in the discussion here, there are many potential extensions and appli-
cations of the embedding method proposed in this article. These are currently works in
progress by the first author.

In summary, there are very limited known analytical solutions to Stefan problems
and existing closed-form solutions strongly depend on prescribed initial and boundary
conditions. As such, numerical simulations are mainly used for the study of moving
boundary problems, both for linear and nonlinear equations [4–9,34–36]. However, a recent
study adopted a deep neural network approach to solve Stefan problems [37]. The present
article aims to provide a new method to solve one-dimensional Stefan problems for the
linear heat equation analytically. This also includes the case where there are advection
and reaction terms. Through our embedding method, we obtained a new exact solution
to a Stefan problem involving a single-phase, semi-infinite, subcooled material. The exact
solution (29) of the Stefan problem considered in Example 5 has also not been obtained
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previously with this generality. Exact solutions of two-phase Stefan problems can also be
found with our approach. This theoretical progress for Stefan problems is a critical step
to benchmark numerical results and to further our understanding of the mechanics of
melting problems.
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Appendix A. Useful Laplace Transform Formulas

We recall here for the convenience of the reader some useful formulas for Laplace
transforms found in [38] (Appendix B). Let a, b ∈ R. Then,

L
{

1√
t
; s
}
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π

s
, L
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2
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Appendix B. Proof of Lemma 1

Proof. We can rewrite (24) as
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x∫
0

e
(−x+y)

√
s√

κ

2
√

κ
√

s
u0(y)dy +

L∫
x

e
(x−y)

√
s√

κ

2
√

κ
√

s
u0(y)dy

+
e−

x
√

s√
κ

1− e−
2L
√

s√
κ
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Straightforward calculations yield
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κ ĥ+(s)] = −

L∫
0

e
(−x−y)

√
s√

κ

2
√

κ
√

s
u0(y)dy +

L∫
0

e
(−x+y−2L)

√
s√

κ

2
√

κ
√

s
u0(y)dy

and

e−
(L−x)

√
s√
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Thus,
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Breaking up the integrals gives

û(x, s) =
x∫
0

e
(−x+y)

√
s√

κ

2
√

κ
√

s
u0(y)dy +

L∫
x

e
(x−y)

√
s√

κ

2
√

κ
√

s
u0(y)dy

−
L∫
0

e
(−x−y)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy−
L∫
0

e
(x+y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy

+

x∫
0

e
(−x+y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy +

L∫
x

e
(−x+y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy

+

x∫
0

e
(x−y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy +

L∫
x

e
(x−y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy.

However,

x∫
0

e
(−x+y)

√
s√

κ

2
√

κ
√

s
u0(y)dy+

x∫
0

e
(−x+y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy =

x∫
0

e
(−x+y)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy

and

L∫
x

e
(x−y)

√
s√

κ

2
√

κ
√

s
u0(y)dy +

L∫
x

e
(x−y−2L)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy =

L∫
x

e
(x−y)

√
s√

κ

2
√

κ
√

s(1− e−
2L
√

s√
κ )

u0(y)dy.

Therefore,
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On the other hand, using the identity
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where a, b, c 6= 0, we see from (25) that
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Hence, we conclude that û(x, s) = v̂(x, s) and this completes the proof of the lemma.
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