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Abstract: The weighted Monte Carlo method is an elegant technique to calibrate asset pricing models
to market prices. Unfortunately, the accuracy can drop quite quickly for out-of-sample options as
one moves away from the strike range and maturity range of the benchmark options. To improve the
accuracy, we propose a generalized version of the weighted Monte Carlo calibration method with
two distinguishing features. First, we use a probability distortion scheme to produce a non-uniform
prior distribution for the simulated paths. Second, we assign multiple weights per path to fit with
the different maturities present in the set of benchmark options. Our tests on S&P500 options data
show that the new calibration method proposed here produces a significantly better out-of-sample fit
than the original method for two commonly used asset pricing models.

Keywords: option pricing; model calibration; weighted Monte Carlo

1. Introduction

One key metric used to gauge the success of an arbitrage option pricing model is how
well it can reproduce the observed prices of liquid options in the market. In the context
of the Black–Scholes framework of Black and Scholes [1], an equivalent question is how
closely the implied volatility surface of the model can be made to resemble the volatility
surface implied by the liquid options in the market.

Given the well-known limitations [2] of the Black–Scholes model, such as the assump-
tion of constant volatility in the geometric Brownian motion, numerous generalizations
of the model have been introduced with the aim of generating a better fit to stylized mar-
ket features. Well-known modifications include everything from making the volatility a
stochastic process [3] and/or a function of the underlying [4,5] to adding jump components
to the underlying and volatility [6–8].

The downside of working with these advanced models includes a higher compu-
tational burden for pricing and an increased number of parameters that need to be esti-
mated [9,10]. In particular, if an option pricing model implies market incompleteness, e.g.,
by including unobservable sources of randomness, such as jumps or stochastic volatility,
more than one combination of parameter values can produce the prices we see, which can
further complicate the calibration process. In addition, to use the model to price deriva-
tives, we must make parametric assumptions on the market price of risk, i.e., implicitly
make assumptions about the preferences of the market participants [11] (pp. 209–229).
Preferences can also be viewed as being implicit in the calibration of option pricing models
to financial data in general; without a perfect model, the calibration process is inherently a
decision-theoretic problem, as different loss functions can lead to different economic conse-
quences for the model user. We refer to the work of Friedman et al. [12] for an in-depth
discussion of this point.

Instead of working with advanced models, Avellaneda et al. [13] proposed to “correct”
a simple model in such a way that it reproduces the prices of the derivatives used in the
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model calibration. Their weighted Monte Carlo (WMC) method consists of simulating
a set of price paths using the arbitrage model that is to be calibrated and calculating a
new (risk neutral) probability measure for this set of paths that reproduces the observed
market prices of benchmark options exactly, or almost exactly, as in the case of a least
squares approach.

As we tend to have more paths than benchmark options in a simulation, such a
measure is not uniquely defined in general. This problem is solved in the original WMC
method by selecting the measure closest to the (uniform) prior measure in terms of relative
entropy, also referred to as Kullback–Leibler divergence [14]. As Kullback and Leibler [14]
pointed out, relative entropy is a justified choice of a statistical divergence due to its mathe-
matical tractability and the fact that it is invariant under change of variables. Furthermore,
when we are faced with the problem of picking the “best” probability distribution from a
set of distributions that all fit with a given set of observed data, the most parsimonious
choice from an information-theoretic perspective is the one that exhibits minimal relative
entropy [15,16].

While relative entropy is a well established concept within information theory, it
does not by itself offer any particular economic intuition in the context of the WMC
method. The implication of this is that there is no obvious way to discriminate between
relative entropy and any other kind of divergence when choosing how to weight the
sample paths in a manner that is economically justified. However, as we discuss in
greater detail in the following sections, the entropy minimization problem of the WMC
method is mathematically equivalent to a portfolio choice problem for an investor with
expected exponential utility. By considering the utility version of the WMC, we open up
the possibility of exploiting the theoretically and empirically mature field of consumption
based asset pricing [17,18] to develop refinements of the WMC method.

As we explain in greater detail in the following sections, the WMC calibration method
can in theory reweight the paths simulated from the model to be calibrated in such a
way that they can reproduce the market prices of the benchmark options used in the
calibration procedure exactly. However, as we observe in our numerical tests for two
popular option pricing models (the Black–Scholes model [1] and the stochastic volatility
model of Heston [3]), the accuracy drops quite quickly for out-of-sample options as we
move away from the strike range and maturity range of the benchmark options.

The contribution of this paper consists of formulating a more general version of the
WMC which in our numerical tests produces a far better fit to the whole range of options
available on the underlying asset than the original WMC. It achieves this by first splitting
the paths into segments by the maturities present in the set of benchmark options, and then
applying a probability distortion transformation to the prior distribution associated with
these path segments.

This probability distortion transformation is inspired by the work of Tversky and
Kahneman [19] on Cumulative Prospect Theory (CPT). On a theoretical level, CPT has been
shown to produce potential resolutions to a wide array of empirical puzzles in finance
and economics [20–25]. As compared to expected utility, two features characterize CPT
preferences. The first feature is a utility function over deterministic outcomes that is
concave over gains and convex over losses with respect to a given reference point of wealth.
The second feature is a distortion function that is applied to the cumulative distribution
function of the physical measure. Although the probability distortion generally leads to a
non-additive expectation operator, the formulation we propose in this paper maintains the
additivity of the expectation operator.

The remainder of this paper is as follows. In Section 2, we give a general formulation
of the weighted Monte Carlo method. In Section 3, we discuss the relationship between
entropy minimization and utility maximization and give an alternative formulation of the
entropy minimization problem as a portfolio choice problem. In Section 4, we propose a
weighted Monte Carlo method that incorporates multiple weights per path and rare event
probability distortion. In Section 5, we give the numerical results for the different methods.
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2. An Overview of the Weighted Monte Carlo Method

We begin by briefly describing the weighted Monte Carlo method in general terms.
Our discussion follows the same reasoning as was presented in a more comprehensive
format by Avellaneda et al. [13], with the exception that we do not assume that the prior
distribution is uniform. Thus, the original WMC method is a special case of what is
presented in this section.

Given a filtered probability space (Ω,F , F,P), a finite time horizon T, and an adapted
price process S = {St}t∈[0,T], we can view the set of N paths produced by a Monte Carlo
simulation of St as a discrete approximation to the distribution of S at time t. The general
idea behind the weighted Monte Carlo approach is to reweight the sampled paths in
such a way that the new distribution is as statistically close as possible to the original
one, while at the same time reproducing the observed market prices at time 0 for a set of
contingent claims on S. Here, the notion of statistical distance is taken to be the Kullback–
Leibler divergence. However, other types of divergences have been studied, see [26]. The
Kullback–Leibler divergence for two discrete probability measures, P and Q, is given by

DKL(Q|P) = ∑
i

qi ln
(

qi
pi

)
. (1)

We refer to the no-arbitrage model to be calibrated using the weighted Monte Carlo
method as the initial model. Assume we have a set of K benchmark options on S, which
we want to use to reweight the simulated paths of the model. Any type of option will do as
long as its payoff along a given sample path is completely determined by that path, which
excludes, for example, American style options. Assume further that no option in the set can
be replicated by a portfolio of the other remaining options. We begin by simulating N paths
from S and calculating the stochastic payoffs (G1, . . . , GK). This gives the payoff matrix

G =


g1,1 g1,2 · · · g1,K
g2,1 g2,2 · · · g2,K

...
...

. . .
...

gN,1 gN,2 · · · gN,K

, (2)

where gik is the payoff from option k when path i is realized.
Assuming the simulated paths are initially assigned prior weights given by

p = (p1, . . . , pN), the new weights q = (q1, . . . , qN) in the exact-fit version are calculated
as the solution to

min
q

D(q|p) = min
q

{
N

∑
i=1

qi ln
(

qi
pi

)}

s.t. πk =
N

∑
i=1

qigik, k = 1, . . . , K

(3)

where πk is the price of benchmark option k. Note that throughout our discussion we use Q
and q (and P and p) interchangeably but write the former when we want to emphasize it as
a probability measure and the latter when we want to emphasize it as a set of path weights.

Using the Lagrange multiplier approach, this can be rewritten as the dual problem

min
λ

max
q

{
−D(q|p) +

K

∑
k=1

λk

(
N

∑
i=1

qigik − πk

)}
. (4)

Looking at the first order conditions for the inner problem, we see that a solution is
given by

qi =
pi

Z(λ)
exp

(
K

∑
k=1

gikλk

)
, (5)
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where

Z(λ) =
N

∑
m=1

pm exp

(
K

∑
k=1

gmkλk

)
is a normalization factor to ensure the distribution sums to 1. Using (5), we can simplify (4)
to get

min
λ

{
ln(Z(λ))−

K

∑
k=1

πkλk

}
. (6)

This problem requires numerical methods to solve. Given that the objective function
is smooth and convex, the method of choice is a gradient-based minimization procedure
such as the BFGS algorithm [27] which requires the computation of the partial derivatives
of (6). Defining

W(λ) = ln(Z(λ))−
K

∑
k=1

πkλk (7)

they are given by

∂W
∂λj

=
1

Z(λ)

N

∑
i=1

gij pi exp

(
K

∑
k=1

gikλk

)
− πj

= EQ[Gj]− πj

(8)

for j = 1, . . . , K. Taking second derivatives, we get

∂2W
∂λi∂λj

= Cov
(
Gi, Gj

)
(9)

We recall that a covariance matrix is non-negative definite by definition. Since we
assume that (2) is of full rank (from our earlier assumption that the set of options contains
no redundant options), we have that the covariance matrix is in fact positive definite. This
implies that the function is strictly convex, which in turn implies that any solution to (8)
corresponds to a global minimum.

Finally, although a unique solution should always exist for (3) given an arbitrage
free market, the presence of asynchronous and noisy data can lead to problems for the
optimization procedure, with one instrument being bought or sold in quantities much
larger than the rest. A remedy to this problem is adding a regularization term to the
objective function. The term we use in our tests is a simple quadratic term,

χ2
w =

1
2

K

∑
k=1

wkλ2
k , (10)

where w1, . . . , wK are penalization weights that determine the influence of option k on the
calibration. The resulting optimization problem in (6) is given by

min
λ

{
ln(Z(λ))−

K

∑
k=1

πkλk + χ2
w

}
. (11)

3. The Weighted Monte Carlo Method as a Utility Maximization Problem

Using the observed price information of assets such as stocks and options in a financial
market to derive (or approximate) the stochastic discount factor of that market is a central
task in the field of asset pricing (for a standard reference, see, e.g., [28]). Within the
field of financial economics, this is commonly done in the setting of consumption based
pricing, where the market is treated as a single representative investor with a given utility
function over uncertain future cash flows. The stochastic discount factor in this setting
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is proportional to the marginal utility of the representative investor over her optimal
consumption in each possible future state. Given a set of contingent claims in the market,
this optimal consumption process can be calculated by solving for the optimal portfolio of
the investor.

In more concrete terms, consider the following one period model. Here, ‘one period’
refers to the investor only choosing a portfolio at time 0. This does not restrict the assets
from evolving continuously from time 0 to time T with realized payoffs in between. We
assume the investor maximizes expected utility, with investment horizon T. The assets
available to the investor form an arbitrage-free market of total initial wealth W0 with an
associated probability space (Ω,F ,P). Let the investor’s utility function over deterministic
outcomes realized at time T be given by a continuously differentiable function u : R→ R
such that u′(x) > 0 and u′′(x) < 0 for all x ∈ R, and let A(W0) denote the set of all
contingent claims in the market which can be financed with initial wealth W0. If we denote
with X∗T the optimal solution to the portfolio selection problem

sup
XT∈A(W0)

EP[u(XT)], (12)

there exists β ∈ R+ such that for every contingent claim XT in the market we have that
the market price of XT is given by πX = EP[βu′(X∗T)XT ]. We can write the expectation in
more compact form through a change of measure using the Radon–Nikodym derivative
dQ
dP = u′(X∗T) to obtain πX = EQ[βXT ].

In mathematical terms, the correspondence between this type of utility maximization
and entropy minimization is well known [29]. It is therefore reasonable to ask precisely
how this relationship enters in the weighted Monte Carlo setting. As explained in [13], the
Arrow–Debreu prices that correspond to the measure computed from (3) coincide with
the marginal utilities for consumption obtained by solving (12) when u is the exponential
utility function.

More specifically, solving for the Lagrange multipliers λk in (4) is equivalent to finding
the optimal portfolio weights for a utility maximizer with exponential utility [30], where we
can think of the benchmark instruments as the assets in the market, and the set of sample
paths generated by the initial model as the state space of the market. The relationship
between the two is more precisely as follows: the optimal portfolio weights given by
φ = (φ1, . . . , φK) for an investor with a utility function given by

u(φ) = −
N

∑
i=1

pi exp

(
−

K

∑
k=1

φk(gik − πk)

)
(13)

are related to the optimal Lagrange multipliers λ1, . . . , λK by φk = −λk for k = 1, . . . , K.
Consequently, if we assume that the utility maximizer is a representative investor, then the
path weighting through entropy minimization is mathematically equivalent to deriving
the stochastic discount factor in this market through solving for the optimal portfolio of
the representative investor.

Before elaborating further on how the weighted Monte Carlo method fits with the
standard consumption-based asset pricing approach, we need to introduce some additional
terminology. Given an underlying state space Ω, and a σ-algebra F defined on Ω, we refer
to the probability measure that describes the true probability of the different events in F as
the objective measure. In contrast, we refer to any probability measure that is absolutely
continuous with respect to the objective measure, but absorbs to some extent risk premiums
that exist in the market, as a subjective measure. An example of a subjective measure would
be a risk neutral measure, i.e., a probability measure Q such that the market price of any
contingent claim in the market is the discounted expected value of the claim with respect
to Q. Lastly, we use “pricing measure” and “risk neutral measure” interchangeably.

The standard way to formulate a consumption-based asset pricing model is to as-
sume that the investor observes the objective measure P associated with the state space.
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This means the expected utility is calculated under the P measure. On the other hand,
option pricing models are typically calibrated against existing option contracts, making the
probability measure corresponding to the sample paths of the initial model subjective, as
opposed to objective.

However, this apparent discrepancy is dissolved with the realization that we are
effectively deriving a “decomposed” stochastic discount factor. To clarify, let L be the
subjective probability measure corresponding to the uniform weighting of the Monte Carlo
simulation paths generated by the initial model (i.e., L is the subjective measure under
which the sample path approximation to the initial model is given). Let P denote the
objective probability measure corresponding to these paths. If our model is arbitrage free,
we expect that L� P, i.e., that L is absolutely continuous with respect to P. Next, let Q
be the subjective probability measure corresponding to the weighting of the sample paths
computed by the WMC method. Again, the absence of arbitrage means we must have
Q � L. The Radon–Nikodym derivative dQ

dL is proportional to the stochastic discount
factor u′(X∗T) we obtain from the utility maximization equivalent of the WMC entropy
minimization. Given that Q � L � P, then, by the measure-theoretic chain rule, we
have that

dQ
dP =

dQ
dL

dL
dP - P a.s. (14)

In other words, changing the measure from P to L and then from L to Q is the same
(a.s.) as changing it straight from P to Q. Thus, whether we derive the risk neutral pricing
distribution Q straight from P, as in the standard representative investor pricing approach,
or by first deriving L from P and then Q from L, as in the WMC approach, we end up with
the same results.

With the theoretical justification out of the way, we now give the utility maximization
equivalent of the formulation presented in Section 2. Let u(·) be defined as in (12). The
state space Ω consists of the paths we simulate from the initial model, and P is whatever
weighting we attach to the paths to represent the prior measure. The market consists of the
benchmark instruments we use for the calibration. We denote with π = (π1, . . . , πK) the
vector of prices for the benchmark instruments and with G = (G1, . . . , GK) the vector of
their stochastic payoffs. With this in mind, we formulate the portfolio selection problem
for the investor as

max
φ

EP[u(φᵀG)] s.t. φᵀπ ≤W0, (15)

where φ = (φ1, . . . , φK) is the portfolio choice. Since an unconstrained optimization
problem generally allows more efficient computational methods, and the budget constraint
can be assumed to hold with equality, we can rewrite (15) as

max
φ

N

∑
i=1

piu

(
K

∑
k=2

φk

(
gik − gi1

πk
π1

)
+

gi1W0

π1

)
, (16)

where we substitute

φ1 =
1

π1

(
W0 −

K

∑
k=2

φkπk

)
(17)

into the maximization problem above and gik denotes the payoff from option k when path
i is realized. The first-order conditions are given by

N

∑
i=1

[
pi

(
gih − gi1

πh
π1

)
u′
(

K

∑
k=2

φk

(
gik − gi1

πk
π1

)
+

gi1W0

π1

)]
= 0, (18)

for h = 1, . . . , K. The solution φ∗ = (φ∗1 , . . . , φ∗K) to this problem, which needs to be
computed using numerical methods, is the optimal portfolio choice for the representative
investor with initial wealth W0.
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The pricing kernel is now obtained by plugging (φ∗)ᵀG into u′(·), and the corre-
sponding change of measure gives us the new risk neutral distribution we are after. More
precisely, the new weights qi for i = 1, . . . , N are given by

qi =
piu′

(
∑K

k=2 φ∗k

(
gik − gi1

πk
π1

)
+ gi1W0

π1

)
∑N

i=1 pigi1
π1. (19)

The least squares setup is the following:

max
φ

N

∑
i=1

piu

(
K

∑
k=2

φk

(
gik − gi1

πk
π1

)
+

gi1W0

π1

)
− 1

2

K

∑
k=2

wkφ2
k

− 1
2

(
1

π1

(
W0 −

K

∑
k=2

φkπk

))2

, (20)

with the first-order conditions given by

N

∑
i=1

[
pi

(
gih − gi1

πh
π1

)
u′
(

K

∑
k=2

φk

(
gik − gi1

πk
π1

)
+

gi1W0

π1

)]

− whφh +
πh
π1

(
W0 −

K

∑
k=2

φkπk

)
= 0, (21)

with h = 1, . . . , K and the weights qi for i = 1, . . . , N given by (19) as before.
As previously mentioned, if we set u(x) = −e−x and pi =

1
N for i = 1, . . . , N, the

formulation is mathematically equivalent to the original weighted Monte Carlo method of
Avellaneda et al. [13], where the measure of statistical distance is given by the Kullback–
Leibler divergence and the prior measure is uniform. The initial wealth W0 in this case
does not affect the solution, since u(x) is translation invariant. In the general case, a
straightforward choice for W0 that conforms to the representative investor model is the
“market wealth”, i.e., the value of the underlying assets.

4. Calibration with Probability Distortion
4.1. Introducing Risk Aversion and Probability Distortion

From the numerical results in Section 5, we learn that the accuracy of the original
weighted Monte Carlo method is rather limited for out-of-sample options. For example,
as can be seen in Figure 1, the implied volatility we obtain from the original weighted
Monte Carlo method turns out to be much lower for the far-OTM options than what is
implied by the market prices. From the consumption-based asset pricing perspective, this
could in theory be explained by positing that the preferences represented by (13), and by
extension of duality the relative entropy formulation in (3) are not risk averse enough.
More specifically, (13) trivially includes a coefficient of risk aversion equal to one.

Hence, as a first attempt to improve the accuracy, we add an explicit coefficient of
risk aversion to the formulation in (13). Deriving the corresponding generalized version of
(6) using the Legendre transform then gives us a divergence measurement that contains
a parameter which directly affects the tail thickness of the derived subjective probability
measure represented by q, with higher values for the risk aversion coefficient translating
to thicker tails. Preliminary numerical tests revealed, however, that the risk aversion
coefficient by itself had barely a noticeable effect on the tail thickness for the range of values
which still allowed a decent fit with the benchmark instruments.
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Figure 1. Typical view of the volatility for SPX options implied by market prices and by the WMC calibrated GBM model
(left) or Heston model (right).

From a decision-theoretic perspective, we can, however, accommodate the thick tails
implied by the market prices by positing that the market overweights the probability of
large market movements with respect to the initial model. To implement this idea, we
apply a probability distortion that is partly similar to that introduced by Tversky and
Kahneman [19] in their work on CPT. This generalization turns out to give vastly better
empirical performance than the original method as well as its purely utility function-based
risk aversion modifications in our tests.

The general CPT specification is given by

U(X) =
∫ +∞

0
W+(P(u+(X) > x))dx−

∫ +∞

0
W−(P(u−(X) > x))dx, (22)

where W+, W−, u+ and u− are the probability distortion functions and utility functions over
deterministic outcomes for the gain and loss domains, respectively, and P is a probability
measure. The distortion function we chose to implement for the numerical tests is the
one introduced by Prelec [31], which gave considerably better results than the original
distortion function in [19], and is given by

ν+(P) = exp
{
−γ+(− ln(P))δ+

}
(23)

for the gains domain, and

ν−(P) = exp
{
−γ−(− ln(P))δ−

}
(24)

for the loss domain. Here, δ+ and δ− correspond to the curvature of the distortion, while
γ+ and γ− correspond to the elevation of the distortion, with a value of 1 for all parameters
corresponding to a non-distorted probability measure (see [31] for a comprehensive dis-
cussion on the interpretation of these parameters). Figures 2 and 3 illustrate the distortion
functions used in Section 5.
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Figure 2. Distortion functions for the GBM model with mean probability distortion values γ = 1.051
and δ = 0.97 for the gain domain and γ = 0.316 and δ = 0.611 for the loss domain.
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Figure 3. Distortion functions for the Heston model with mean probability distortion values γ = 0.555
and δ = 0.623 for the gain domain and γ = 0.791 and δ = 0.640 the loss domain.

We can adapt the formulation in (22) to a discrete state space in the following way.
Let Ω = {x−m, . . . , x0, . . . , xn} be the set of possible outcomes, such that x−m ≤ x−m+1 ≤
. . . ≤ xn−1 ≤ xn with x0 = 0 by convention, and let pi be the probability of outcome xi
for i = −m, . . . , n. Furthermore, let u− : Ω− → R be a strictly increasing convex function,
with Ω− = {x−m, . . . , x−1}, and let u+ : Ω+ → R be a strictly increasing concave function,
with Ω+ = {x0, . . . , xn}. Furthermore, let ν− : [0, 1]→ [0, 1] and ν+ : [0, 1]→ [0, 1] be two
strictly increasing functions such that ν−(0) = ν+(0) = 0 and ν−(1) = ν+(1) = 1. If we
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denote by X = (x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn) the prospect X, then the
cumulative prospect value of X is given by

U(X) =
n

∑
i=−m

νiu(xi), (25)

where

u(xi) =

{
u+(xi), if 0 ≤ i ≤ n,
u−(xi), if −m ≤ i < 0,

(26)

and

νi =

{
ν+(pi + . . . + pn)− ν+(pi+1 + . . . + pn), if 0 ≤ i ≤ n,
ν−(p−m + . . . + pi)− ν−(p−m + . . . + pi−1), if −m ≤ i < 0.

(27)

4.2. The Weighted Monte Carlo Method with Probability Distortion

We now turn to the main contribution of this paper, which is a method that combines
probability distortion in style of CPT preferences with the weighted Monte Carlo method.
This allows us to adapt the no-arbitrage model we want to calibrate to the thick tails implied
by far-OTM options while maintaining an exact fit with the benchmark instruments we
use for the calibration.

When the benchmark instruments all have the same maturity, we proceed exactly as
in Section 2 where we solve (6) to obtain the new weights q with the exception that we now
use a prior measure p which incorporates probability distortion that re-weights the tail
events of the initial model. This is in contrast to the original weighted Monte Carlo method
where the prior measure is simply taken to be uniform.

We define the tail events to be large changes in the price of the underlying asset. That
means we need to sort the realized paths according to their value at the time the benchmark
options expire. We then enumerate them in an ascending order as−m,−m+ 1, . . . , n− 1, n1,
where path i = 0 is the closest to realizing no change in value for the underlying among
the sampled paths, and compute the prior measure as

pi =

{
ν+( n−i

N )− ν+( n−i−1
N ), if 0 ≤ i ≤ n,

ν−(m−i
N )− ν−(m−i−1

N ), if −m ≤ i < 0,
(28)

where ν+(·) and ν−(·) are the distortion functions for the gain and loss domains, respectively.
As mentioned in the Introduction, a portfolio choice problem with CPT preferences

generally leads to a non-additive expectation operator, which is not the case in the for-
mulation above. To understand why we avoid a non-additive expectation we recall that
the Choquet integral is additive for comonotonic random variables (see, e.g., [32] for an
in-depth discussion of these concepts). For a portfolio choice problem where the available
instruments consist of an underlying asset and options on that asset the prospect outcomes
can most generally be taken to be the value of the portfolio of the investor, which generally
is not comonotonic with the underlying asset if, for example, the portfolio includes short
positions on that asset. However, in our formulation, the probability distortion does not
depend on λ (or φ in the utility maximization case), so the expectation is trivially contained
within a single comonotonic class.

If the algorithm is implemented in such a way that the portfolio problem is solved for
only one option maturity, the ordering is straightforward, since the value of each realized
path relative to the rest is unambiguous at maturity. If more than one benchmark maturity
is present, the ordering of entire paths is no longer unambiguous, since the simulated paths
can cross each other between maturities. The method proposed here tackles this issue by
splitting the set of benchmark instruments into single-maturity subsets, and solving the
portfolio problem for each subset separately. In other words, if our benchmark instruments
consist of options with M different maturities, we split the options into M groups and
solve the equivalent of M single maturity entropy minimization problems. This results in



Mathematics 2021, 9, 739 11 of 22

each path being assigned a vector of weights. Realized values along the simulated paths at
times that do not coincide with the maturities present in the set of benchmark options are
then assigned weights based on linear interpolation with respect to their relative position.
This is in contrast with the original weighted Monte Carlo method which assigns a single
weight to entire paths.

The full specification of the method we propose is as follows. Let Jb and Js be the two
sets of indices such that Γb =

{
tj|j ∈ Jb

}
is the set of all points in time between 0 and T

that coincide with the maturity of a benchmark option, and Γs =
{

tj|j ∈ Js
}

is the set of all
points in time between 0 and T that do not coincide with a benchmark maturity but for
which we would like to know the state price density implied by the benchmark options.
Furthermore, given j ∈ Jb, let Sj =

{
xj
−m, . . . , xj

−1, xj
0, xj

1, . . . , xj
n

}
denote the ordered set of

realized points in our sample space at time tj, such that xj
i < xj

i′ for i < i′.
We start by computing the prior weights pj using (28). Next, we compute the new

weights qj by first solving either (6) for an exact fit or (8) for an approximate fit and then
plugging the solution λj into (5). Once the weights have been computed for each maturity
tj ∈ Γb, the set of weights for each tj′ ∈ Γs is calculated as follows. Assume that we have

j, j′′ ∈ Jb and j′ ∈ Js such that tj = sup
{

τ ∈ Γb|τ < tj′
}

and tj′′ = inf
{

τ ∈ Γs|τ > tj′
}

.

Then, we calculate the sort index arrays I j, I j′ , and I j′′ (i.e., the index arrays for the sorted
versions of Sj, Sj′ , and Sj′′ ). Denote the weight arrays for Sj and Sj′′ by qj and qj′′ , and for
the sake of visual clarity let us introduce the notation qj(i) ≡ qj

i . If I j′(i) = i′, we compute

qj′(i′) = tj′ − tj

tj′′ − tj
qj
(

I j(i′)−1
)
+

tj′′ − tj′

tj′′ − tj
qj′′
(

I j′′(i′)−1
)

, (29)

for i = 1, . . . , N. Finally, if either tj or tj′′ does not exist, i.e., if the maturity of tj′ falls outside
the range of maturities of the benchmark instruments, then we simply choose whatever
benchmark maturity is closest and put the interpolation weight of that maturity to one.

To summarize, the calibration algorithm proposed above works in its general form
as follows:

1. A set of N paths is generated from the initial model, and the payoff matrix in (2) is
computed.

2. The paths are indexed according to their sort order at each of the M benchmark
maturities, and the set of prior weights pj for j = 1, . . . , M is computed.

3. With these payoffs and prior weights in hand, we solve separately for each tj the
problem given by (6) (or (11) for an approximate fit) using the prior weights pj and
the restriction of the payoff matrix to the set of benchmark instruments which expire
at tj. We then plug the solution λj into (5) to obtain qj which become the weights
attached to the points on the sample paths at time tj.

4. For a maturity tj′ of interest which does not coincide with the maturities present in
the set of benchmark instruments, we use the formula given by (29) to interpolate
between the two weights vectors qj and qj′′ obtained for the two subsets of benchmark
instruments whose maturities tj and tj′′ most narrowly sandwich tj′ . In the event that
the maturity is either longer or shorter than anything that is available in the set of
benchmark instruments, we simply attach to it the weights vector computed for the
set of benchmark instruments with the maturity closest to tj′ .

We see that, if we set the probability distortion function in (28) equal to the identity
function and drop the distinction between benchmark instruments based on their maturity,
then we retrieve the original weighted Monte Carlo method. For the sake of conciseness,
we hereafter refer to the procedure given above as the generalized weighted Monte Carlo
(GWMC) method and to the special case where no partition is performed on the set of
benchmark instruments and where the prior measure is uniform as the original weighted
Monte Carlo (OWMC) method.
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4.3. Path Dependent Option Pricing with GWMC-Calibrated Paths

In the most basic setup of the weighted Monte Carlo method, where a single weight
is assigned to each path, the probabilistic interpretation is clear. The weight qi represents
the subjective probability that path i, in the state space that consists of the sample paths
generated by the initial model, is realized. However, the GWMC method gives us several
weights per path. The question then becomes how we interpret the multiple weights per
path, and how they allow us to compute the expected payoff.

We start by realizing that, when there are M maturities present, we can view the
GWMC model as a sequence of M one period models, where the unconditional subjective
probability distribution qm =

{
qm

1 , . . . , qm
N
}

for maturity τm with m ∈ {1, . . . , M} is what
we would get if we only solved the utility maximization problem, or the equivalent entropy
minimization problem, using only the benchmark options with maturity τm.

What we really need, however, is the distribution q = {q1, . . . , qN} that describes the
probability of observing the entire path i for i = 1, . . . , N. How we get q from

{
q1, . . . , qM}

is revealed by the following theorem.

Theorem 1. Let si =
{

s1
i , . . . , sM

i
}
∈ Ω denote the ith realization of S =

{
Sj}M

j=1 in our sample
of N paths. Furthermore, assume that for each h, i = 1, . . . , N and j, m = 1, . . . , M we have that
sj

i = sm
h if and only if i = h and j = m, i.e., no sample path i in S contains any elements also

contained by another sample path h of S. Then, the probability of path i being realized under the
subjective measure Q is given by

Q({S = si}) =
1
M

M

∑
j=1

qj
i , (30)

where qj
i is the unconditional probability under Q of observing sj

i .

Proof. By the law of total probability, we have that

Q({S = si}) =
M

∑
j=1

Q
({

S = si|s
j
i

})
Q
({

sj
i

})
,

where Q
({

sj
i

})
is the unconditional probability that sj

i is realized at all. We have that

sj
i completely identifies the path si, by our assumption of sample uniqueness. Therefore,

Q
({

S = si|s
j
i

})
= 1, and we can write

Q({S = si}) =
M

∑
j=1

Q
({

sj
i

})
=

M

∑
j=1

1
M

qj
i .

Note that qj
i is the subjective probability of observing sj

i at time tj. However, the

unconditional subjective probability of observing sj
i at all is given by

Q
({

sj
i

})
=

qj
i

M
, (31)

since sj
i can only appear at time tj, and not in any of the other M− 1 maturities, by our

assumption of unique realizations of S.

In other words, the subjective probability of observing a given sample path when
the weights are determined by the GWMC is simply the average of the weights along
that path. Note that our assumption of uniqueness among the values generated by the
simulation of the initial model is a simplifying one, but we would expect it to hold for any
decent random number generator. Assuming uniqueness is well justified in any case. If
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we need to resort to simulation methods to begin with, it is quite safe to assume that the
distribution of the underlying asset has continuous support, which means that repeated
values in a finite sample generated in an unbiased way from the distribution should be a
zero-measure event. In other words, the probability that we draw the same value more
than once from the distribution of the underlying should be zero, almost surely. When we
talk about a “decent” random number generator in this context, we simply mean that it
imitates the underlying (continuous) distribution well enough that repeated values are
not encountered.

We conclude this section by illustrating the application of the GWMC to path depen-
dent options by the way of an example. Consider the Monte Carlo formula for the price of
an arithmetic Asian option with M monitoring points. The standard Monte Carlo price for
this option is given by

πA =
1
N

N

∑
i=1

∣∣∣∣∣ 1
M

M

∑
t=1

sj
i − X

∣∣∣∣∣
+

, (32)

with X being the strike price. Now, let qj
i denote the weight of path i at time tj. If we write

qi =
1
M

M

∑
j=1

qj
i , (33)

the price πA is given by

πA =
N

∑
i=1

qi

∣∣∣∣∣ 1
M

M

∑
j=1

sj
i − X

∣∣∣∣∣
+

. (34)

If all the weights qj
i are identical for a given i, this expression simplifies to the original

weighted Monte Carlo formulation. If we further set qj
i =

1
N for every i and every j, we get

the usual Monte Carlo pricing formula for the arithmetic Asian option.

5. Implementation Details and Numerical Results

Our numerical experiments consisted of two parts:

1. A cross-sectional run where we tested the GWMC method for single maturities only
2. An intertemporal run where we tested the GWMC method for multiple maturities

simultaneously

In Section 5.1, we describe the initial models we used and the pre-calibration we
employed to estimate their parameters, as well as the probability distortion function
we chose to implement. In Sections 5.2 and 5.3, we give the numerical results from the
cross-sectional and intertemporal tests, respectively.

Our numerical tests were performed on SPX options priced during the period from
1 January 2013 to 31 December 2013. This dataset contains a total of 765,952 contracts. We
calculated the risk free rate by linearly interpolating yields from US Treasury bills data
available on the US Federal Reserve website. The dividend payments on the S&P 500 index
were approximated by a continuous dividend yield. In addition to the options, we included
the underlying asset itself as well as a risk-free asset in the set of benchmark instruments.

Throughout our empirical tests, we calculated two types of error measurements: the
mean relative price error (MRPE) and the mean average price error (MAPE). More precisely,

MRPE =
1
K

K

∑
k=1

|πModel
k − πMarket

k |
πMarket

k
, (35)

and

MAPE =
1
K

K

∑
k=1
|πModel

k − πMarket
k |, (36)
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where πModel
k is the model-predicted price of benchmark instrument k and πMarket

k is the
price of that instrument observed in the market.

The data exhibit a significant number of put–call parity violations, which can likely
be attributed to the fact that we used end-of-day prices, which leads to a degree of asyn-
chronicity. For this reason, all of the numerical tests were done on out-of-money puts and
out-of-money calls. As the number of benchmark instruments increases, the entropy mini-
mization/utility maximization part of the calibration procedure can become a challenge in
itself, particularly when an exact solution is sought. We kept the number of benchmark
instruments small for this reason and used the least squares approach in the intertemporal
tests. In addition, we performed each calibration separately for the puts and the calls to
further reduce calibration failures.

For the pre-calibration (i.e., the estimation of the parameters of the Black–Scholes and
Heston models), we used Matlab’s lsqnonlin routine, and, for the calibration runs, we used
the BFGS routine in Python’s Scipy library (see [33] for a discussion on the computational
considerations on the weighted Monte Carlo method).

5.1. Initial Models, Pre-Calibration and Path Generation

We used two no-arbitrage models as a prior for our calibration procedure: the Black–
Scholes [1] model based on geometric Brownian motion (GBM) and the Heston [3] stochastic
volatility model. Sampling with these models was done using the Euler discretization
scheme. More specifically, for the GBM model, we generated the paths using the dis-
cretized dynamics

St+∆t = Ste(r−d− 1
2 σ2)∆t+σ

√
∆tZ, (37)

where r is the risk-free rate, d is the continuous dividend yield, σ is the volatility, and Z are
standard Gaussian innovations, i.e., Z ∼ N(0, 1). For the Heston model, we generated the
paths using

St+∆t = Ste(r−d− 1
2 σ2)∆t+

√
vt∆tZS ,

vt+∆t = vt + κ(θ − vt)∆t + η
√

vt∆tZv,
(38)

where St is the price process of the underlying asset, vt is the variance process, r and δ are
the risk free rate and dividend yield as before, κ is the rate of mean reversion, θ is the long
run volatility, and η is the volatility-of-volatility. Here, the innovations Zv ∼ N(0, 1) and
ZS ∼ N(0, 1) are correlated with correlation coefficient ρ.

The calibration runs for the out-of-sample performance tests were all done using
N = 40, 000 simulated paths with antithetic variance reduction. For the Heston model,
we used a full truncation scheme for the variance process to prevent it from becoming
negative. Here, full truncation means the variance process is given by max{Vt, 0} at every
sample time t. Each path simulated for the Heston model contained 100 points which were
distributed equally between each benchmark maturity present along the path.

The pre-calibration of these models was done using a nonlinear least squares approach.
That is, the parameter values χ∗ for the respective models were found by computing

χ∗ = argmin
χ

{
K−2

∑
k=1

wk

(
πModel

k − πMarket
k

)2
}

, (39)

where the index only reaches K − 2 since we performed the pre-calibration using only
the option data, leaving out the underlying and risk-free assets added for the subsequent
weighted Monte Carlo calibration tests.

The weights wk, k = 1, . . . , K− 2 were calculated as the inverse of the bid–ask spread
for the corresponding option, i.e.,

wk =
1

πMarket,ask
k − πMarket,bid

k

. (40)
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For the geometric Brownian model, the decision variable is χ = σ, whereas for the
Heston model we have χ = (v0, θ, η, κ, ρ). In terms of European option pricing, both the
geometric Brownian motion model and the Heston model have closed form solutions,
although in the latter case we make use of the characteristic function, which contains an
integral which must be evaluated numerically.

A pre-calibration was done for each open market day over the period of 1 January
2013 to 31 December 2013. For each such day, the set of options used in the pre-calibration
procedure consisted of the 14 most traded out-of-money puts, together with the 14 most
traded out-of-money calls for each maturity. For maturities where fewer than 14 puts
(calls) were traded that day, we simply included all put (call) options with nonzero trading
volume. The summary of the parameter estimates obtained from this pre-calibration
procedure is given in Table 1.

Table 1. Pre-calibration summary for initial models.

σ v0 θ η ρ κ

mean 0.1313 0.0166 0.0422 0.3981 −0.9337 1.9219
std 0.0063 0.0030 0.0039 0.0313 0.0207 0.4448

max 0.1435 0.0232 0.0477 0.4655 −0.8979 2.8056
min 0.1237 0.0127 0.0341 0.3514 −0.9715 1.3233

5.2. Cross-Sectional Calibration Results

Our goal for this part of the numerical tests was to include as much of the strike
range of the out-of-money puts and calls for each maturity as possible, to see the full
effect of the over-and-underweighting of probabilities of extreme events on the pricing
measure. However, at the extreme ends of option moneyness, the data become noticeably
less reliable, with instances of duplicate prices for options with different strikes, bid prices
of zero, and so on. For these reasons, we removed the following:

• Any option with bid price zero
• Any option with price lower than 0.5
• Any set of options with different strikes but the same price, same option type, and

same maturity quoted on the same day
• Any option of which the open interest count fell below 2000 for short and medium

maturities and 1000 for long maturities
• Any set of options of the same maturity quoted on a given trading day with fewer

than 10 options satisfying the above criteria

Here, short maturities are defined to be between 1 and 90 days, medium maturities
between 91 and 250 days, and long maturities anything longer than 250 days. We used
open interest as our measure of liquidity, instead of trading volume, since trading volume
gave a much thinner support for options at the far ends of the moneyness spectrum, as
well as for options with long maturities.

After the aforementioned contracts had been removed, we were left with a set of
24,263 contracts, consisting solely of out-of-money puts and calls. For this set of contracts,
we performed an out-of-sample test for three different calibration methods for two different
initial models:

1. The unweighted geometric Brownian motion model
2. The unweighted Heston model
3. The geometric Brownian motion model calibrated with the OWMC
4. The Heston model calibrated with the OWMC
5. The geometric Brownian motion model calibrated with the GWMC
6. The Heston model calibrated with the GWMC

For each model–method pair, we calculated the out-of-sample performance for each
maturity and option type (i.e., puts or calls) separately, as well as their aggregate perfor-
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mance over these categories. These results are given in Tables 2 and 3, while Table 4 gives
the aggregate result for each model–method pair. The first entry in each number pair in
these tables is the mean relative pricing error, and the second entry is the mean absolute
pricing error, as explained in Section 5.1. For each option type (i.e., put or call), we used
as benchmark instruments the five options with strikes closest to the forward price of the
underlying, so a total of 10 benchmark options per maturity. The remainder of the options
in the dataset, obtained from the data cleaning procedure described above, were used as
out-of-sample instruments.

Table 2. Cross-sectional results for the unweighted version, the OWMC method, and the GWMC
method using geometric Brownian motion as an initial model, for OTM puts (K <F) and OTM calls
(K >F). The first and second numbers in each column are the MRPE and MAPE, respectively.

Method Moneyness Short Medium Long All

Unweighted
K <F 0.624, 3.216 0.818, 9.492 0.853, 24.520 0.748, 11.286
K >F 0.855, 3.515 0.530, 3.429 0.345, 3.630 0.690, 3.513
All 0.684, 3.294 0.768, 8.442 0.789, 21.901 0.736, 9.727

OWMC
K <F 0.439, 1.071 0.506, 2.444 0.444, 5.625 0.457, 3.042
K >F 0.121, 0.275 0.089, 0.295 0.076, 0.438 0.101, 0.331
All 0.355, 0.860 0.435, 2.078 0.369, 4.567 0.378, 2.439

GWMC
K <F 0.186, 0.331 0.224, 0.567 0.208, 1.343 0.203, 0.755
K >F 0.072, 0.155 0.079, 0.264 0.068, 0.391 0.072, 0.249
All 0.155, 0.284 0.198, 0.514 0.180, 1.154 0.174, 0.643

Table 3. Cross-sectional results for the unweighted version, the OWMC method, and the GWMC
method using the Heston model as an initial model, for OTM puts (K <F) and OTM calls (K >F). The
first and second numbers in each column are the MRPE and MAPE, respectively.

Method Moneyness Short Medium Long All

Unweighted
K <F 0.234, 0.798 0.362, 2.861 0.391, 8.284 0.317, 3.592
K >F 0.292, 1.569 0.314, 2.356 0.297, 4.283 0.298, 2.215
All 0.249, 1.001 0.353, 2.773 0.379, 7.782 0.313, 3.316

OWMC
K <F 0.271, 0.544 0.222, 0.780 0.152, 1.138 0.216, 0.815
K >F 0.216, 0.397 0.270, 0.813 0.239, 1.210 0.232, 0.730
All 0.256, 0.505 0.230, 0.787 0.170, 1.153 0.220, 0.796

GWMC
K <F 0.084, 0.206 0.049, 0.195 0.067, 0.593 0.067, 0.322
K >F 0.075, 0.147 0.044, 0.120 0.042, 0.161 0.060, 0.142
All 0.081, 0.190 0.048, 0.182 0.063, 0.536 0.066, 0.286

Table 4. Aggregate results for the out-of-sample cross-sectional performance for the two different
initial models along with the two different weighted calibration methods, as well as the unweighted
versions for comparison. The first and second number in each column are the average MRPE and
MAPE, respectively, for the entire dataset.

Method GBM Heston

Unweighted 0.736, 9.727 0.313, 3.316
OWMC 0.378, 2.439 0.220, 0.796
GWMC 0.174, 0.643 0.066, 0.286

For the calibration of a given trading day, we used the distortion parameter values,
ξ = {γ+, δ+, γ−, δ−}, which gave the best out-of-sample performance during the calibration
of the previous trading day. As can be seen from comparing the values in Table 5, we expect
these values to be different for different initial models. More specifically, before calibrating
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the model for a given trading day, we solve the following for the trading day immediately
before it:

ξ∗ = argmin
ξ

{
1
K

K

∑
k=1

|πModel
k (ξ)− πMarket

k |
πMarket

k

}
. (41)

This optimization problem was solved using BFGS. While each function evaluation
in this minimax optimization problem is expensive (we are solving the portfolio choice
problem with each function call), the computational times are drastically reduced by reusing
the previous optimal parameter estimate as a starting point, since the optimal values turn
out to change very little between trading days in our data. In addition, since there is no
interaction between the gain domain parameters and the loss domain parameters, they can
be calibrated separately, which effectively halves the time complexity of the calibration
problem, which is given by O(n2) for the BFGS routine, where n is the number of decision
variables. On average, a single cross-sectional run took 0.78 s for the OWMC method and
1.3 s for the GWMC. The calibration of the parameters in ξ took roughly 11 min on average.

Table 5. The averages of the probability distortion parameter values for different maturity clusters
and models, along with their standard deviations in brackets.

Model Horizon γ+ δ+ γ− δ−

GBM

Short 1.137 0.921 0.431 0.577
(0.124) (0.132) (0.129) (0.178)

Medium 1.051 0.975 0.316 0.611
(0.138) (0.166) (0.111) (0.142)

Long 1.100 1.022 0.332 0.580
(0.083) (0.090) (0.105) (0.107)

Heston

Short 0.614 0.588 0.630 0.547
(0.149) (0.168) (0.153) (0.177)

Medium 0.555 0.623 0.791 0.640
(0.157) (0.182) (0.139) (0.210)

Long 0.451 0.601 0.788 0.754
(0.112) (0.124) (0.116) (0.118)

Figures 4 and 5 give an idea of how the GWMC improves upon the original weighted
Monte Carlo method in terms of the empirical fit. They show a cross-section of the implied
volatility calculated from market prices of options traded on 21 May 2013 with maturity of
30 days, plotted together with the OWMC and GWMC implied volatilities for those same
options. The benchmark options for the OWMC and GWMC consisted of five close to the
money puts and five close to the money calls. The figures demonstrate a typical difference
between the OWMC and the GWMC as pricing models; the former tends to underprice
far-out-of-money options to a much greater degree than the latter, with the exception of
call options for geometric Brownian motion as the initial model.

When comparing the performance of a given model across the three maturity cat-
egories, it should be kept in mind that the presence of options of extreme moneyness
tended to be significantly more prevalent in the medium range of our data than in the other
two maturity groups, in addition to the fact that the liquidity requirements were not the
same across the maturity groups. With that said, the Heston model outperforms the GBM
model overall as expected in the unweighted case. Interestingly, though, the OWMC for
GBM appears to achieve very good performance for the call options, which highlights the
fact that a poor empirical fit of the initial model does not necessitate a poor fit once the
paths have been reweighted. Overall, however, the GWMC method produces significant
improvements, both for the geometric Brownian motion and the Heston model compared
to the OWMC. It should also be noted here that one reason the weighted GBM models
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underperform, particularly for the put options, is that the Monte Carlo simulation often
did not produce any paths that reached the extreme levels necessary for the most far-out
options to become exercised, while the Heston model did. The distortion function does not
take effect for zero-measure events.
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Figure 4. The volatility for SPX options with maturity 30 days implied by market prices, the OWMC
calibrated GBM model, and the GWMC calibrated GBM model.
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Figure 5. The volatility for SPX options with maturity 30 days implied by market prices, the OWMC
calibrated Heston model, and the GWMC calibrated Heston model.
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5.3. Intertemporal Calibration Results

The numerical tests presented in this section consisted of calibrating the initial
models of Section 5.1 to benchmark options spanning more than one maturity. For each
benchmark option maturity present during a given trading day, we chose the 10 out-of-
money put options and the 10 out-of-money call options with the highest trading volume.
Out of these, we used the five out-of-money put options and the five out-of-money call
options that had strikes closest to the forward value as benchmark options. The remainder
of the options served as out-of-sample options. We used the same probability distortion
values as are given in Table 5 in Section 5.2.

For the purpose of demonstration, let Ud, with d = 1, . . . , D denote the set of all
options for trading day d, where D is the final day (i.e., 31 December 2013), in our sample
with nonzero trading volume. Furthermore, for each Ud, let Md,j ⊆ Ud denote the set
of the 10 puts and 10 calls with the highest trading volume with maturity mj, where the
maturities are indexed here by j = 1, . . . , J in such a way that if j′ < j′′ then mj′ < mj′′ . In
addition, let Kd,j ⊆ Md,j be the set of five puts and five calls in Md,j that are closest to being

at-the-money. Lastly, define the Cartesian product Hd := ⊗J
j=1Md,j and let Dim(Hd) := J

be the number of different maturities present in Hd. The intertemporal test can then be
described in the following way. For a given trading day d:

1. If Dim(Hd) ≤ 3, the trading day was dropped from the sample.
2. If Dim(Hd) = 4, the in-sample instruments consisted of Kd,1 and Kd,3 and the out-of-

sample instruments consisted of Md,1 \ Kd,1, Md,2, Md,3 \ Kd,3, and Md,4.
3. If Dim(Hd) = 5, the in-sample instruments consisted of Kd,2 and Kd,4 and the out-of

sample instruments consisted of Md,1, Md,2 \ Kd,2, Md,3, Md,4 \ Kd,4, and Md,5.
4. If Dim(Hd) ≥ 6, the in-sample instruments consisted of Kd,2+ι and Kd,5+ι and the out-

of-sample instruments consisted of Md,1+ι, Md,3+ι \ Kd,3+ι, Md,3+ι, Md,4+ι, Md,5+ι \
Kd,5+ι, and Md,6+ι, with ι = 0, . . . , Dim(Hd)− 6.

To elaborate on Part 4, for Hd with Dim(Hd) = J > 6, we begin by setting ι = 0 and
calibrate. Once the calibration is done and we have calculated the out-of-sample prices, if
Dim(Hd) > 6, we set ι = 1, which shifts the maturity index by one to the right to perform
the calibration and out-of-sample calculation again, and so on, until Md,6+ι = Md,J . This test
scheme resulted in the calculation of 135,792 option prices. Most trading days fell under the
fourth case, meaning most options were priced several times using different benchmarks,
and the number reflects every such calculation. On average, a single intertemporal run
took 0.38 s for the OWMC method and 1.1 s for the GWMC.

The design of the intertemporal test was made with the aim of avoiding biases in the
selection of the benchmark options by including an approximately even mix of “outside”
and “in between” options, and by rolling over every maturity as in Step 4 for each trading
day. As the results in Tables 6 and 7 show, the Heston model gives better results overall
than the geometric Brownian motion, and the GWMC likewise improves upon the OWMC
in all categories. The only break from this pattern of improvement is the MRPE for the
OTM call category for the GWMC, which is smaller for the GBM model than the Heston
model which we can trace back to the excess volatility on the upside of the underlying for
the geometric Brownian motion, which counters the exponential decay of the tails that we
get from using the Kullback–Leibler divergence more aggressively.
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Table 6. Intertemporal run results for the OWMC method and the GWMC method using geometric
Brownian motion as an initial model for OTM puts (K <F) and OTM calls (K >F).

Method Moneyness MRPE MAPE

OWMC
K <F 0.313 1.859
K >F 0.267 1.163
All 0.303 1.716

GWMC
K <F 0.151 0.899
K >F 0.089 0.490
All 0.136 0.816

Table 7. Intertemporal run results for the OWMC method and the GWMC method using the Heston
model as an initial model for OTM puts (K <F) and OTM calls (K >F).

Method Moneyness MRPE MAPE

OWMC
K <F 0.164 0.692
K >F 0.202 0.696
All 0.172 0.693

GWMC
K <F 0.074 0.401
K >F 0.103 0.357
All 0.080 0.392

6. Conclusions

We present a generalization of the weighted Monte Carlo calibration method for
derivative pricing introduced by Avellaneda et al. [13]. The generalized WMC method
is centered around relative entropy minimization similar to the original WMC method,
but, instead of assuming a uniform prior measure for the sample paths, we compute a
measure which distorts the probability of tail events. Furthermore, the proposed method
partitions the set of benchmark instruments by maturity and assigns multiple weights per
path, as opposed to the original method which assigns only one weight per path. Due to
the specific nature of this twofold generalization, the original WMC naturally arises as a
special case.

Through extensive numerical testing using S&P 500 options data, we show that
the generalized method vastly outperforms the original WMC calibration method. The
probability distortion and the increased flexibility yield a significant improvement in
empirical fit to the whole range of options available on the underlying asset. This allows
us to overcome the consistent implied volatility gap between the market data and what the
original WMC method produces.

We also provide a detailed discussion on the utility maximization problem which is
known to be dual to the relative entropy minimization formulation. The utility maximiza-
tion formulation presented in this paper is technically speaking more general than the
relative entropy minimization formulation, and it fits with any type of preferences which
are of expected utility type. In future research, it would be worthwhile to study refinements
of the weighted Monte Carlo method not only through more general probability distortion
schemes but also through more general types of utility, such as recursive utility.
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