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Abstract: Optimal control problems governed by stochastic partial differential equations have
become an important field in applied mathematics. In this article, we investigate one such important
optimization problem, that is, the stochastic Stokes control problem with forcing term perturbed by
noise. A multigrid scheme with three-factor coarsening to solve the corresponding discretized control
problem is presented. On staggered grids, a three-factor coarsening strategy helps in simplifying the
inter-grid transfer operators and reduction in computation (CPU time). For smoothing, a distributive
Gauss–Seidel scheme with a line search strategy is employed. To validate the proposed multigrid
staggered grid framework, numerical results are presented with white noise at the end.

Keywords: stochastic stokes equations; optimal control problem; white noise; multigrid

1. Introduction

Optimal control problems governed by partial differential equations (PDEs) have
been studied extensively for the last three decades [1,2]. Particularly, control problem
constrined by Stokes and/or Navier–Stokes equations play an important role in many
real-world applications such as data assimilation for ocean flows, weather models, and
flow problems. Recently, there has been a growing interest in mathematical analysis and
simulations of stochastic PDEs (e.g., see [3–8]). The motivation of our work is the stochastic
optimal control problem with PDEs as constraints (with random inputs) (see [8–11] and
the references therein).

Multigrid methods are the well known efficient schemes to solve the elliptic boundary
value problems [12–14]. However, to solve the saddle point problems such as the Stokes
equations (after discretization with finite differences or finite element), the multigrid
methods are more involved [15,16]. The multigrid methods have also been investigated for
the flow problems [17–24]. Moreover, there has already been a lot of work on the multigrid
solvers for the optimal control problems governed by PDEs in literature (e.g., see [25]).

This paper investigates a multigrid algorithm that solves the (finite difference) dis-
cretized optimality system corresponding to the control problem governed by stochastic
Stokes equations (with force driven by additive white noise). In particular, we propose
a full multigrid method with three-factor coarsening strategy to solve numerically the
distributed optimal control problem constrained by stochastic Stokes equations (driven by
the white noise perturbed forcing term). The scope of this paper is to develop an efficient
multigrid algorithm without the need of any preconditioner [26], which results in fewer
computations (CPU time) for the control problems with stochastic models, such as the
one in [8]. For this, we take advantage of our previous works on multigrid methods for
distributed optimal control problem governed by Stokes equations [27,28].

The objective of the proposed control formulation is to seek a state and a control that
minimize the expectation of the distances between the approximate and desired state. In
particular, the target state and the control are deterministic. The main difference between
the present study and earlier research is the additive white noise in the forcing term
that derives the stochastic Stokes equations. Therefore, we need to discretize the noise
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and modify the whole multigrid scheme for the optimization problem (stochastic model
optimization) accordingly, which is explained in this article.

The paper is organized as follows. In next section. the control problem constrained
by the stochastic Stokes equations is presented and first-order optimality conditions are
discussed. On staggered grids, finite difference approximations are used to discretize the
optimality system in Section 3. In Section 4, the proposed full multigrid method with
smoothing and intergrid transfer operators (prolongation and restriction) is explained. In
Section 5, numerical experiments for the control problem and stochastic Stokes equations
with additive white noise are presented. In the end, the conclusions are given.

2. The Control Problem

We consider the following control problem in a convex polygon domain Ω ⊂ R2

with boundary Γ = ∂Ω: Given a white noise Ẇ and a target function U, find an optimal
stochastic state u ∈ H1(Ω) and a control f ∈ L2(Ω) while the deterministic cost functional
is minimized, i.e.,

Min J(u, f) := E
[

1
2

∫
Ω
|u−U|2dx

]
+

α

2

∫
Ω
|f|2dx (1)

subject to stochastic Stokes equations:

−ν4u +∇p = f + σẆ, in Ω (2)

−∇ · u = 0, in Ω (3)

u = 0, on Γ. (4)

We denote p ∈ L2(Ω) a pressure, f a control, and U ∈ L2(Ω) the desired velocity.
Moreover, ν is a viscous constant, σ is a positive continuous function in Ω, α > 0 is the
weight of the cost of control, Ẇ = (Ẇ1, Ẇ2) is the white noise, and

E[Ẇ j(x)Ẇ j(x′)] = δ(x− x′), x, x′ ∈ Ω.

We additionally assume that
∫

Ω p dx = 0, that is, p satisfies the zero mean con-

straint. Furthermore, we denote u = (u1, . . . , un)T ∈ Rn, |u| =
√

u2
1, . . . , u2

n, unless
otherwise stated.

We denote the inner product associated with Lebesque space L2(Ω) by (·, ·) and

L2
0(Ω) =

{
φ ∈ L2(Ω) :

∫
Ω

φ dx = 0
}

,

H1
0(Ω) =

{
ψ ∈ H1(Ω) : ψ = 0 on ∂Ω

}
.

The weak solution (u, p) ∈ H1
0(Ω)× L2

0(Ω) of (2)–(4) is the solution of

ν a(u, w) + b(w, p) = (f, w) + (σẆ, w) ∀w ∈ H1
0(Ω)

b(u, ψ) = 0 ∀ψ ∈ L2
0(Ω),

where we denote a : H1
0(Ω)×H1

0(Ω) → R and b : H1
0(Ω)× L2

0(Ω) as the bilinear forms,
i.e.,

a(u, w) =
2

∑
j=1

∫
Ω
∇uj · ∇wj

b(w, p) = −
∫

Ω
p∇ ·w
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The existence and uniqueness of the control problem can easily be proven by following
the standard arguments (see [1,29]). We define the set of admissible controls

Fad = {(u, p, f) ∈ H1
0(Ω)× L2

0(Ω)× L2(Ω) : Ĵ(f) = J(u, p, f) < ∞; (u, p, f) satisfies (2)− (3)}

The optimal solution (u∗, p∗, f∗) ∈ F is such that if there exists a ε > 0 such that

J(u∗, p∗, f∗) ≤ J(u, p, f) ∀(u, p, f) ∈ Fad

and
‖u∗ − u‖2 + ‖p∗ − p‖−1 + ‖f∗ − f‖2 ≤ ε

Now, we can formulate the optimal control problem that seeks (u, p, f) that minimize
the cost functional (1) subject to (2)–(3), i.e.,

min J(u, p, f) (5)

as a constrained optimization problem with (2)–(3) in Hilbert space such that (u, p, f) ∈ Fad.
In the following, we present the first-order optimality conditions for completeness:

Theorem 1. The optimization problem (5) has a unique solution (u∗, p∗, f∗) ∈ Fad.

Proof. Since Fad is not empty, for example, (u, p, 0) ∈ Fad.
Let fn be a minimizing sequence and set the linear dependency of control to state

variables as un = u(fn) and pn = p(un). Moreover,

limn→∞ J(un, pn, fn) = inf J(u, p, f)

By definition of Fad, the sequence fn is uniformly bounded in L2(Ω). From the weak
solutions to state system, we conclude that the sequence (un, pn) is uniformly bounded in
L2(Ω)× H1

0(Ω) almost surely. Thus, we have a subsequence (ul , pl , fl) such that

fl ⇀ f∗, pl ⇀ p∗, ul ⇀ u∗

for some (u∗, p∗, f∗) ∈ L2(Ω)× H1
0(Ω)× L2(Ω).

Next, by the weak lower semi-continuity of the cost functional J, we have

inf J(un, pn, fn) = limn→∞ J(un, pn, fn) = J(u∗, p∗, f∗)

Hence, we see that the optimal solution (in the set Fad) exists. Next, to prove that
this optimal solution is unique, we use the fact that the constraints are linear and the cost
functional is convex. This completes the proof.

Next, the solution to the control problem (1)–(4) is characterized by the Lagrangian [1,30].
That is, the first-order optimality conditions for the (stochastic Stokes equations) optimization
problem is obtained by taking the Gâteaux (Fréchet) derivative of the following Lagrangian
functional

L(u, f, p, λ, q) = J(u, f) + (−∆u +∇p− f− σẆ, λ)− (∇ · u, q),
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where we denote the Lagrange multipliers λ ∈ H1
0(Ω), q ∈ L2

0(Ω). Thus, we have the
optimality system given by [8]:

−ν∆u +∇p = f + σẆ in Ω,

−∇ · u = 0 in Ω (state system) (6)

u = 0 on Γ,

−∆λ +∇q = U− u in Ω

−∇ · λ = 0 in Ω (adjoint system) (7)

λ = 0 on Γ,

αf−E[λ] = 0 in Ω, (optimality conditions) (8)

where ∇ · u = div u,∇p = grad p, u = (u, v), λ = (λ, µ), etc.
From the optimality conditions, we have that f = E[λ]

α . Therefore, we can write the
above optimality system into a reduced optimality system as follows, i.e., we find (u, p, λ, q)
while satisfying the following system:

−∆u +∇p =
E[λ]

α
+ Ẇ in Ω, −∇ · u = 0 in Ω, u = 0 on Γ,

−∆λ +∇q = U− u in Ω, −∇ · λ = 0 in Ω, λ = 0 on Γ,

αf−E[λ] = 0 in Ω. (9)

3. Discretization

In the following, we discretize the optimality system using finite differences on
staggered grids. For this, we first discretize the white noise Ẇ. Let {Rh} be a family
of rectangles Ω, where h is the mesh size. Define

ξ
j
R =

1√
|R|

∫
R

1 dW j, j = 1, 2 (10)

for each rectangle R ∈ Rh, and |R| is the area of R. Here and in what follows, ξ
j
R∈R denotes

an independent distributed normal random variables family, i.e., with the mean 0 and
variance 1. The piecewise constant approximation to Ẇ j(x) is defined as follows

Ẇ j
h(x) = ∑

R∈Rh

1√
|R|

ξ
j
RχR(x), (11)

where χR is the characteristic function of R. Moreover, Ẇ = (Ẇ1
h , Ẇ2

h ) ∈ (L2(Ω))2 but
‖Ẇh‖ is unbounded as h→ 0 (see Lemma 1.2 [8]).

Next, we consider the approximation problem (2)–(4) with the discrete white noise
forcing term:

−ν4uh +∇ph = fh + σẆh, in Ω (12)

−∇ · uh = 0, in Ω (13)

uh = 0, on Γ. (14)

Then, by Choi and Lee [8], we have the following estimates (for uh and ph, where h is
the mesh size):

Proposition 1. E
[
‖uh‖2

2 + ‖ph‖2
1
]
≤ Ch−2

and for errors u− uh and p− ph:
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Proposition 2. E
[
‖u− uh‖2 + ‖p− ph‖2

−1
]
≤ C|ln h|h2.

Next, we consider a sequence of grids {Ωh}h>0 for a rectangular domain Ω given by

Ωh = {x ∈ R2 : xi = i hx, yj = j hy, i, j ∈ Z} ∩Ω,

Here and in what follows, we take the mesh size (hx = hy = h) and choose h in such a
way that the boundaries of Ω lie on the grid lines.

Note that, on the staggered grids, the state (respectively, adjoint) variables are placed
on cell edges (vertical or horizontal) and on cell centers. We denote these sets of grid points
with Ωs

h, s ∈ {ev, eh, c}. For example, Ωev
h denotes the grid points defined on center of cell

edge-vertical. Moreover, the discrete L2-scalar product is given by

(uh, vh)L2
h(Ω

s
h)
= hx hy ∑

x∈Ωs
h

uh(x) vh(x),

and the associated norm is given by ‖uh‖L2
h(Ω

s
h)

= (uh, uh)1/2
L2

h(Ω
s
h)

. Let L2
h(Ω

s
h) be the grid

of grid functions uh defined on Ωs
h. Moreover, we denote Uh, Vh and Ph the spaces for the

state (respectively, adjoint) grid functions variables uh, vh, and ph, respectively.
In the following, the discretization of stochastic Stokes equations (state equation) is

presented. Note that, on staggered grids, the variables u, v, p are defined on Ωev
h , Ωeh

h , and
Ωc

h, respectively (see Figure 1). Thus, by finite differences, we have

−∆huh
j + ∂h

j ph = fh
j + σẆj

h, at centers of j-faces
2

∑
j=1

∂h
j uh

j = 0, at cell centers

where ∆h denotes the discrete Laplace operator, i.e., the five-point approximation. We
approximate the first-order partial derivative by (second-order) central differences. For
example, to discretize the pressure variable p at the cell center (hx/2, hy/2), we have ∂h

x
and ∂h

y as follows:

∂h
x p(x, y) =

u(x + hx/2, y + hy/2)− u(x− hx/2, y + hy/2)
hx

,

∂h
y p(x, y) =

u(x + hx/2, y + hy/2)− u(x + hx/2, y− hy/2)
hy

.

Note that, for a point near a boundary, ∆h uh
j (x) may involve an exterior value, and,

to find these exterior values, quadratic extrapolation is used (cf. [17,27]).
Next, to have a more insight about the discretization using finite differences on

staggered grid, we proceed as follows: set xi = (i− 1)h and yj = (j− 1)h. By pi+1/2,j+1/2,
we mean the discrete counterpart to p(xi + h/2, yj + h/2). and we consider the grid indices
in lexicographic order. In this way, we come up with the state system given by

−∆huh +
pi−1/2,j+1/2 − pi−3/2,j+1/2

hx
= fi,j+1/2 + σW1

h , on Ωev
h (15)

−∆hvh +
pi+1/2,j−1/2 − pi+1/2,j−3/2

hy
= gi+1/2,j + σW2

h , on Ωeh
h (16)

ui+1,j+1/2 − ui,j+1/2

hx
+

vi+1/2,j+1 − vi+1/2,j

hy
= 0, on Ωc

h (17)

where (15) and (16) are defined on Ωev
h and Ωeh

h , respectively. Moreover, the continuity
Equation (17) is defined on Ωc

h.
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The optimality conditions α f − λ = 0 and α g− µ = 0 illuminate that, for the adjoint
equation, the variables u and λ, f are defined on Ωev

h and the variables v, g, and µ are
defined on Ωeh

h . Moreover, in the continuity equation for state (respectively, adjoint), the
variable p and q appears on mesh cell centers Ωc

h. Thus, in this way, we obtain the following
discretized adjoint equation:

−∆hλh +
qi−1/2,j+1/2 − qi−3/2,j+1/2

hx
= (U − u)i,j+1/2, on Ωev

h (18)

−∆hµh +
qi+1/2,j−1/2 − qi+1/2,j−3/2

hy
= (V − v)i+1/2,j, on Ωeh

h (19)

λi+1,j+1/2 − λi,j+1/2

hx
+

µi+1/2,j+1 − µi+1/2,j

hy
= 0 on Ωc

h. (20)

Here, we remark that, with our approach, a direct coupling among the state, adjoint,
and control variables has e been implemented with the help of optimality conditions (on
staggered grids) and thus requires no additional computations (interpolation).

Summarizing, the discretize optimality system consists of Equations (15)–(20) with
the optimality conditions given by

α fi,j+1/2 − λi,j+1/2 = 0, on Ωev
h

α gi+1/2,j − µi+1/2,j = 0, on Ωeh
h (21)

with boundary conditions given by

ui,j+1/2 = 0,

vi+1/2,j = 0,

λi,j+1/2 = 0,

µi+1/2,j = 0. (22)

p p p

p p, p p

p p p

u u u u

u,u u u u,u

u u u u

v

v

v

v

v,v

v

v

v,v

v

v

v

v

Figure 1. Three-factor coarsening on staggered grids.
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4. Multigrid

The multigrid framework to solve the optimality system is presented in this section.
In the development of multigrid solver, we face some difficulties due to the coupled nature
of the state and adjoint equations on the staggered grid structure.

It is a well known fact that multigrid methods involves discretization grids. For exam-
ple, we obtain such grids by halving the mesh size starting from the coarsest grid [13,14].
In the context of staggered grid multigrid approach and in our previous works [27,28,31],
multigrid schemes for the optimal control problems constrained by Stokes equations and/or
PDEs, we note that, by tripling the mesh size, starting from the coarsest staggered grid,
gives a nested hierarchy of grid that helps in simplifying the intergrid transfer operators.
The details are as follows:

In the following, we define a sequence of grids Ωk of mesh size hk = h1/3(k−1),
k = 1, . . . , L, where k = L is the finest level and h1 = 1/2 is the mesh sizes of the coarsest
grid. We denote the index k to define the functions (operators) on Ωk. Moreover, with
three-factor coarsening, setting a variable Xk−1

I J on the coarse grid Ωk−1 has the same
location as the variable Xk

ij on the fine grid Ωk. Figure 1presents an example.

• uk−1
I,J+1/2 ←→ uk

ij, for i = 3I − 2, j = 3J − 1.

• vk−1
I+1/2,J ←→ vk

ij, for i = 3I − 1, j = 3J − 2.

• pk−1
I+1/2,J+1/2 ←→ pk

ij, for i = 3I − 1, j = 3J − 1.

4.1. Smoothing Scheme

In this section, we present the smoothing scheme to relax the state (respectively,
adjoint) momentum equations and the state (respectively, adjoint) continuity equation by a
distributive relaxation [17]. A line search is used to update the control variable.

We denote (uh, vh, ph, λh, µh, qh, f h, gh) as the discrete counterpart to the numerical
approximation to our optimization problem. Then, we update this approximation step by
step iteratively, which is explained as follows. First, we update the control variable by the
gradient update step (line search) with gradient of the so-called reduced cost functional, i.e„
∇ f Ĵ( fh, gh) = α fh − λh, ∇g Ĵ( fh, gh) = αgh − µh as follows

fh ← fh − t∇ f Ĵ,

gh ← gh − t∇g Ĵ, (23)

where the step size for the control update is t ∈ (0, 1].
Then, we consider the sate equation and let (uh, vh, ph) be its approximation. We

smooth the residuals of the state system (15)–(16) by the classical Gauss–Seidel (pointwise)
relaxation . Next, we use distributive relaxation (cf. [17,27]) to relax the variable ph

corresponding to the continuity Equation (17).
Next, we relax the adjoint equation as done for the discretized state equation. That

is, the residuals of the adjoint system (18)–(19) are smoothed by the classical pointwise
Gauss–Seidel scheme at all the interior points. Moreover, the (adjoint) continuity Equation
(20) is relaxed by a distributive relaxation (cf. [27,28]).

In the following, we discuss the intergrid transfer operators for the proposed multigrid
framework. We use bilinear interpolation to interpolate the (state and adjoint) variables and
residual functions. For example, for the variable u, consider the space Uk of uk : Ωev

k → R,
k = 1, . . . , L. Between the two grids, the fine grid Ωk and the coarser grid Ωk−1, we
define a prolongation operator, i.e., Ik

k−1 : Uk−1 → Uk. Here, we assume that (for the
discretization) this prolongation operator is consistent with the bilinear finite elements on
each rectangular partition.

We use a straight injection operator as our restriction operator in the proposed multi-
grid solver. Note that, in the three-factor coarsening strategy, the location or position of the
state (respectively, adjoint) variables on the coarse-grid and the fine-grid are the same (see



Mathematics 2021, 9, 738 8 of 13

Figure 1). Therefore, we use straight injection operator Ik−1
k : Uk → Uk−1 to transfer the

residuals (solution) functions from fine to coarse grids. We also remark here that one can
use the other operators such as half weighting or full weighting but this may increase the
computations without any gain (efficiency). We employ straight injection because it is the
advantage of the three-factor coarsening strategy on staggered grid and therefore a natural
choice in this case.

4.2. Algorithms

Here, we present the algorithms for a full multigrid method (FMG) (see [14]). Since we
know that the FMG method improves the computational complexity of a full approximation
scheme (FAS), we use the full multigrid method to solve the discretized optimality system
and hence the optimization problem.

To develop a multigrid algorithm, we consider the optimality system (15)–(22) cor-
responding to the stochastic Stokes control problem, at the discretization level k. Let the
unknown variable be Xk = (uk, vk, pk, λk, µk, qk, fk, gk). Then, we can write the optimality
system given by

Ak(Xk) = Fk. (24)

Let X(l)
k = Sk (X(l−1)

k , Fk) be the smoothing result as given in Section 4.1. Then, starting

with X(0)
k , we obtain the approximate solution, e.g. X̃k = X(m1)

k , after m1-times (iterations).
For completeness, we present the full approximation scheme (FAS) in Algorithm 1:

Algorithm 1: FAS(m1, m2) for solving Ak(Xk) = Fk.

1. If k = 1 solve Ak(Xk) = Fk exactly.

2. Pre-smoothing steps on the fine grid: X(l)
k = Sk(X(l−1)

k , Fk), l = 1, . . . , m1;

3. Computation of the residual: rk = Fk − Ak(X(m1)
k );

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set Xk−1 = Ik−1
k X(m1)

k ;
6. Set Fk−1 = rk−1 + Ak−1(Xk−1)
7. Call m times MG(m1, m2) to solve Ak−1(Xk−1) = Fk−1;

8. Coarse-grid correction: X(m1+1)
k = X(m1)

k + Ik
k−1(Xk−1 − Ik−1

k X(m1)
k );

9. Post-smoothing steps on the fine grid: X(l)
k = Sk(X(l−1)

k , Fk),
l = m1 + 2, . . . , m1 + m2 + 1;

In this algorithm, we can perform m two-grid iterations at each working level. For
m = 1, we have a V-cycle, and, for m = 2, we have a W-cycle [14].

As is known, with a better initial guess, we can use fewer iterations [14]. Moreover,
the FAS is implemented as a subroutine that improves the nonlinearity issues (if required
in the problem). Therefore, a full multigrid (FMG) method (see Figure 2) is employed in
this article and in Algorithm 2 form it is given as follows:

Algorithm 2: FMG for solving AL(XL) = FL.

1. For l = K < L, set initial approximation ul .
2. If l < L, then interpolate to the next finer working level: X̃l+1 = Il+1

l Xl ;
3. Apply FAS to solve Al+1(Xl+1) = Fl+1, starting with X̃l+1;
4. Set l := l + 1; If l < L go to step 2; else stop.
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0 1 2 3

Figure 2. Full multigrid (FMG) method on three levels. The red circles denotes the initial guess after prolongation ↗
(interpolation) and↘ shows the restriction.

5. Numerical Experiments

We considered the following optimization problem constrained by the stochastic
Stokes equations to show the numerical results:

Min J(u, f) =
1
2

∫
Ω
|u−U|2dx +

α

2

∫
Ω
|f|2dx,

subject to

−ν4u +∇p = f + σẆ, in Ω

−∇ · u = 0, in Ω

u = 0, on Γ. (25)

We set σ = 0.1 and ν = 1 and solved the control problem on various meshes and
regularization parameter α > 0, in the numerical experiments. We took a rectangular
domain Ω = [0, 1]2 with uniform mesh size and used MATLAB(2020b) to develop a code
for solving the control problem numerically, on a laptop i7 with 1.3 GHz, 16 GB RAM.

For our control problem, we do not need an exact solution. Therefore, we took the
desired velocity [8] U = (U(x, y), V(x, y)) given by

U(x, y) = 10
d

dy
ψ(x)ψ(y) and V(x, y) = −10

d
dx

ψ(x)ψ(y)

where
ψ(z) = (1− z)2(1− cos(0.8π z)).

In Figure 3, a vector field of random velocities with the white noise is presented.
Moreover, we depict the target velocity in vector form in Figure 3.

For the numerical solution of this control problem, we used the proposed FMG
Algorithm 2. A W-cycle with 4− pre and 4− post smoothing steps was employed, that is,
we took m1 = m2 = 4 in Algorithm 2). One can also use the V − cycles, but we did not find
any improvement during our investigation. Furthermore, we chose t = 1 as the step length
in the control update step. For the stopping criteria, we used the discrete L2-norm of all the
variables (uh, vh, ph, λh, µh, qh), that is, we stopped the iterations when

max
{
‖rjh‖L2(Ωh)

}
< 10−6.
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Figure 3. The realization of the white noise Ẇh (left) and the target velocity field (right) on 182 mesh
(h = 1/18).

As expected, we have a better tracking for the desired (target) velocity field as α→ 0
(see Table 1). This fact is illustrated in Figure 4, that is, as α → 0 the optimal velocities
match the desired vector filed (see Table 2, Figure 3).

Table 1. Tracking errors on 182 mesh.

α ‖uh−Uh‖L2(Ωh)
Ĵ(fh)

10−1 4.3742 × 10−1 1.9203 × 10−1

10−2 4.2916 × 10−1 1.9080 × 10−1

10−3 3.0231 × 10−1 1.2330 × 10−1

10−4 9.7101 × 10−2 3.8977 × 10−2

10−5 2.3830 × 10−2 6.0480 × 10−3

Table 2. Iteration counts and CPU time for stochastic Stokes control problem.

Nx× Ny 62 182 542

α = 10−1 14 10 09
CPU(sec) (0.43) (0.63) (1.09)

α = 10−2 146 100 80
CPU(sec) (0.90) (1.87) (4.99)

α = 10−3 1383 999 741
CPU(sec) (4.04) (12.88) (35.13)

α = 10−4 8566 8606 6740
CPU(sec) (20.86) (73.80) (522.20)
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Figure 4. Optimal solution (velocity vector field): (top left) α = 10−1; (top right) α = 10−2; (bottom left) α = 10−3; and
(bottom right) α = 10−4 on 182 mesh.

6. Conclusions

A multigrid scheme to solve the stochastic Stokes control problem with additive white
noise is presented. On staggered grids, a three-factor coarsening strategy is employed,
which results in nested hierarchy of staggered-grids. To solve the discretized optimality
system with finite differences and noise, a line search strategy to update the control and a
distributive relaxation scheme to relax the state (respectively, adjoint) variables is employed.
Moreover, to discretize the additive white noise, we simply consider the Gaussian noise
at the discretized level in our numerical investigation. Numerical results illuminate the
efficiency and the ability of the proposed multigrid solver to track the desired target
(velocity vector field) while the Stokes equations were driven by force term with additive
white noise.

In comparison to the recent work [8] on the numerical solution of stochastic Stokes con-
trol problems with additive white noise, we note that our multigrid solver provides better
iteration counts due to three-factor coarsening strategy, i.e., fewer levels, less computational
cost, and less CPU time.

The proposed multigrid method can be extended to the three-dimensional case, i.e.,
stochastic Stokes control problem with noise in 3D staggered-grid multigrid framework.
Moreover, one can investigate the Navier–Stokes control problems with noise, which is a
natural extension of our present work.
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