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Abstract: The current article presents the design, implementation, validation, and use of a Computer-
Aided Control System Design (CACSD) toolbox for nonlinear and hybrid system uncertainty mod-
eling, simulation, and control using µ synthesis. Remarkable features include generalization of
classical system interconnection operations to nonlinear and hybrid systems, automatic computation
of equilibrium points for nonlinear systems, and optimization of least conservative uncertainty
bounds, with direct applicability for µ synthesis. A unified approach is presented for the step-down
(buck), step-up (boost), and single-ended primary-inductor (SEPIC) converters to showcase the use
and flexibility of the toolbox. Robust controllers were computed by minimization of theH∞ norm of
the augmented performance systems, encompassing a wide range of uncertainty types, and have
been designed using the well-known mixed-sensitivity closed loop shaping µ synthesis method.

Keywords: CACSD toolbox; operating point linearization; automatic uncertainty bound computation;
Model-in-the-Loop simulation; hybrid simulation; robust control;H∞ control; µ synthesis; DC-to-DC
power converters; buck; boost; SEPIC

1. Introduction

Robust Control represents a massive point of interest when it comes to Control Theory,
which has been heavily studied over the past decades. However, albeit Robust Control
brings many benefits, it is still an open field in research which gathers increasingly more
approaches over time. Basically, the goal of a robust controller is to accomplish a specified
set of performances for bounded model uncertainties which can occur in practice due to
various reasons. In other words, closed loop stability and performance are maintained
even for model parameter variations and unmodeled dynamics alike.

Over the years, multiple and various approaches for designing robust controllers
have been presented, some of them being implemented into dedicated toolboxes, such
as MATLAB’s Robust Control Toolbox [1]. This toolbox gathers the most efficient ones
based on H2, H∞, and µ synthesis methods, and it is often considered a reference in
research. However, while using these types of toolboxes leads to controllers which are
optimal for their prescribed criterion, they are not necessarily best in terms of conventional
performances. Additionally, of great use for defining and optimizing difficult robust control
problems is the Global Optimization Toolbox from in [2], providing ready-to-use solvers
using various state-of-the-art algorithms, such as Particle Swarm Optimization (PSO) and
Genetic Algorithms (GA). An important work in this direction, for computing optimal
weighting functions for the generalized plant model, is presented in [3].

Even though there is a large variety of CACSD toolboxes in the field, their number
is still expanding due to the necessity of overcoming drawbacks that the already existing
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ones have. At this point, the purpose of new toolboxes is not only to determine robust
controllers for a specific process class, but to use a unified approach that would make
them work for more types of systems, even multiple interconnected systems, in various
configurations. User experience is also more accentuated, which is why some of them
incorporate graphical user interfaces (GUIs), for improved usability.

An example is Multivar, which is a MATLAB-based application used for multiple-
input and multiple-output (MIMO) control design, presented in [4]. This toolbox supports
two working modes. It allows the user to work both in function and GUI mode (which
represents a configuration wizard for determining the controller). Multivar can be used
for LTI systems with or without time delay and it allows creating a model; converting,
approximating, and analyzing it; input–output pairing and decoupling; and controller
design and evaluation. Besides this, the user is able to export the control design and
compare it with other saved designs. Another GUI-based robust controller design tool,
which was created in LabVIEW, is presented in [5], based on theH∞ loop shaping method.
However, the goal was to provide a simple, user-friendly interface to make it easier to use,
especially for educational purposes. Therefore, as mentioned by the authors, it does not
provide the same flexibility as other design tools on the market.

LCToolbox, as presented in [6], is another MATLAB software package which is used
for robust controller design. One of the advantages of using this toolbox instead of classic
MATLAB routines is the fact that it gathers all necessary steps for controller design in
one place, while cutting the need of preprocessing steps such as separate construction of
the plant, and postprocessing steps, such as closed loop simulation. LCToolbox can be
used for both linear time-invariant (LTI) and linear parameter-varying (LPV) models, and
it also incorporates system identification methods. The controller is obtained by using
the H∞ loop shaping method. Other H∞-based CACSD toolboxes have been presented
over the past years. One example is represented in [7], which is based on linearizing or
convexifying the conventional non-convex constraints on the classical robustness margins
ofH∞ constraints. The controller parameters are then computed by using an optimization
solver. This toolbox was created for MATLAB, and some of its main features are represented
by the large variety of control problems in which it could be used, such as multi-model
systems; the toolbox is designed to work with the output data of MATLAB’s System
Identification Toolbox [8]. The output of the toolbox is represented by a PID controller,
which can be easily implemented. Another example of a H∞-based CACSD toolbox is
shown in [9], in which the main advantage is the reduced conservatism of almost all types
of model uncertainties which are defined.

Controller order is an important factor when implementing it on real systems. There-
fore, this might be an issue in some cases. However, methods that are determining a
fixed structure controller are already presented, such as in [10], which is based on theH2
controller design method, but can be cumbersome to compute. In order to deal with the
high order controller problem, other toolboxes include controller simplification steps to
avoid the necessity of postprocessing, as presented in [11].

Currently acknowledged problems in this domain regard closed loop simulation,
where performance validation is generally treated ad hoc, from one control problem to
another. Another difficulty encountered is when the test cases were done only on the
linearized system for which the controller is designed, without checking if the initially
proposed performance values are additionally verified for the nonlinear plant model, and,
also, uncertainty modeling is a very cumbersome operation. The purpose of the paper is to
provide means for treating the previously stated problems in a unified manner, such as
implementing automated testing, performance validation, and report generation.

In this current iteration of the toolbox, robust controllers were designed using the well-
established routines from in [1]. The interface is scalable and the control logic and validation
can be replaced with other user-defined methods, or the current robust control approach
can be replaced with open source alternatives for theH2 andH∞ optimization problems,
such as presented in the thesis [12], with the possibility to refine the necessary solutions
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of the Algebraic Riccati Equations (AREs) using the algorithms from [13], while for the µ
synthesis problem, the thesis [14] provides a flexible, open-source implementation using
linear matrix inequalities (LMIs). A clear advantage over the ARE approach is that LMIs are
capable of solving singular and close to singular problems. Alternatively, a mixedH2/H∞
approach for stabilization and optimization using fixed-order controllers can be found
in [15]. As such, the current iteration of the proposed toolbox is MATLAB-dependent for
certain key functionalities, especially with regards to numerical simulation, robust control,
and optimization, although the exposed ideas and mathematical framework can be directly
implemented in other software environments, such as Python, Scilab, or LabVIEW.

The remainder of the paper is structured in the following manner. Section 2 describes
the software structure and features of the proposed toolbox; Section 3 describes a proposed
end-to-end workflow exemplified using modeling, control, validation, and simulation of
several DC-to-DC converter topologies; and Section 4 illustrates comparative discussions,
proposed improvements, and completions for future work and conclusions.

2. Toolbox Structure and Functionalities

The proposed toolbox has been designed with the target of end-to-end design and im-
plementation of closed loop control systems, starting from the definition of the uncertainty
set of plants to be controlled, their required operating point, along with control perfor-
mance specifications and controller synthesis, and ending with the controller validation for
the initial desired plant set.

2.1. Toolbox Features

Proposed features and advantages over existing toolboxes available in the literature:

• specify finite-dimensional dynamical systems with the general framework from
Equation (1) to be used with the MATLAB ode framework; ability to interconnect such
systems in series, parallel, and linear-fractional transformations; this functionality is
described in Sections 2.2.1 and 2.2.2;

• specify hybrid dynamical systems in the framework from in [16] as in Equation (4),
with the ability to interconnect such systems in series, parallel, and linear-fractional
transformations, upper and lower; this feature is described in Section 2.2.3;

• automatically compute equilibrium points numerically, with the possibility to impose
certain states, inputs, and/or outputs, while the remaining ones are deduced through
numerical optimization; this feature is presented in Section 2.4;

• automatically compute the uncertainty model as requested alongside a nominal
plant: additive, inverse additive, input and output multiplicative, etc. using a global
optimization algorithm, such as particle swarm optimization, to be directly used as
necessary for robust synthesis methods; removes the burden for the control engineer
to manually do this process for each plant; this feature is presented in Section 2.5;

• flexible and scalable, all features are implemented through MATLAB code and does
not need the use of Simulink, which can become cumbersome when treating families
of plants and not a single, specific, plant at a time; also, to account for the operat-
ing point in the case of linearized, nonlinear, and hybrid systems, alike, the same
interface for Model-in-the-Loop simulation is provided in the toolbox, as shown in
Sections 2.2 and 2.3;

• besides the automatic validation of the frequency response for the desired operating
point of the linearized plant family, the toolbox runs tests accounting for the uncer-
tainty behavior of the desired nonlinear plant, not only on the linearization which the
controller has been designed for. Every specification imposed in the designed phase
will be automatically tested for the entire nonlinear system family, as illustrated in the
case studies from Section 3.
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2.2. Systems Specification

The scope of software classes implemented and described in this section aims to
provide a flexible framework for simulation by using the ordinary-differential equation
ode solver exclusively, with the low-level requirement of integrating a differential state
equation. As such, exogenous signals would be reference signals and disturbances, known
a priori in a simulation context. The intrinsic signals, i.e., commands and corresponding
measurements, are passed to their corresponding subsystems by means of ode. Figure 1
encompasses an overview of the toolbox classes described in Sections 2.2–2.4. When
the relationship between two classes is of type inheritance, the inherited class will not
redundantly recall all previous properties and methods from the base class in the diagram,
unless they overload the methods and is explicitly noted.

Figure 1. Class diagram for general-purpose nonlinear, LTI, linearized, and hybrid system imple-
mentations, along with the uncertain plant factory class, interconnections, and main functionalities.

2.2.1. Nonlinear Systems

For the purpose of this paper, we will focus on finite-dimensional systems: determin-
istic and stochastic. The so-called explicit or standard system form is obtained by writing
the plant model in the following canonical form, using a set of differential equations and a
set of output equations: {

ẋ(t) = F(x(t), u(t), t);

y(t) = h(x(t), u(t), t),

(1a)

(1b)

with the vector maps F and h being Lipschitz functions. The input signal u(t) has dimension
m, state signal x(t) with dimension n, and output signal y(t) with dimension p, with t ≥ 0.
The initial conditions of the system are x(0) = x0 ∈ Rn.

Dynamical systems of the form (1) are implemented in class System. This will be the
baseline interface for all systems the toolbox works with. Its most important methods
are sim, findEqPoint, and linearize, which will be briefly described. The method sim
simulates the dynamical system described by Equation (1a) from the initial condition x0,
using the exogenous signal u(t), which is a predetermined anonymous function with
at least the input argument time. tfin can be a scalar time value representing the final
simulation time, a simulation interval, or a vector of predetermined time values. The solver
options and type are based on MATLAB’s ode framework options and are sent directly to
it. The solver type can be selected from any of the supported functions: ode113, ode15s,
ode15i, ode23, ode23t, ode23s, ode23tb, or ode45. After integrating the state equation,
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the output signal y(t) can be directly computed using the memoryless function h from
(1b). A useful particularization is also the method simInitCond, with the only difference
being that it replaces the time-varying input signal u(t) with a constant value u0, thus
obtaining an impulse response. The method findEqPoint deduces an equilibrium point
for the system given a set of specifications on the input, state, or output vectors and is
described in detail in Section 2.4. After obtaining a valid equilibrium point, a linearized
system can be obtained using the method linearize, also described there.

2.2.2. Linear Systems

Of particular interest for the framework and for control systems in general are linear
time-invariant systems, which inherit the software interface from the System class, are
implemented in the class LTISystem and are defined by{

ẋ(t) = Ax(t) + Bu(t);

y(t) = Cx(t) + Du(t).

(2a)

(2b)

Separately, a nonlinear system can be linearized in the vicinity of an operating point,
which is an equilibrium point for said system. The operating point (u0, x0, y0, t0) can
be provided by the user or can be computed using the functionality from Section 2.4.
The linearized system will work with variations of the initial variables and have the
following model:

{
∆ẋ(t) = A · ∆x(t) + B · ∆u(t);
∆y(t) = C · ∆x(t) + D · ∆u(t);

⇔
{

ẋ(t) = A(x(t)− x0) + B(u(t)− u0);
y(t) = C(x(t)− x0) + D(u(t)− u0) + y0.

(3)

This latter structure is useful for MiL simulations and is implemented in the auxiliary
class LTIEqSystem, seen as an affine nonlinear system. The great advantage of having
the system from Equation (3) readily available is that it is interchangeable with the initial
nonlinear interface in a closed loop context without making further adaptations in the
source code and can be used to study the performance degradation obtained by replacing
the controller from the linearized system to the nonlinear plant.

2.2.3. Hybrid Systems

A useful extension of framework (1) for hybrid systems, to account for system discon-
tinuities, is with structures described in [16,17]:

ẋ(t) = F(x(t), u(t), t), (x, u, t) ∈ C;

x+(t) = G(x(t), u(t), t), (x, u, t) ∈ D;

y(t) = h(x(t), u(t), t),

(4a)

(4b)

(4c)

with F : Rn+m+1 → Rn as the flow function, G : Rn+m+1 → Rn the jump function, and
h : Rn+m+1 → Rp the output function, while C ⊂ Rn+m+1 represents the flow set and
D ⊂ Rn+m+1 is the jump set. When executing an ode simulation, a jump condition trigger
is permanently verified and, based on the selected configuration, it allows prioritizing the
flow logic, the jump logic, or a stochastic behavior which includes randomly selecting any
of them. This jump condition will also be needed for hybrid system interconnections.

We propose a separate class in the toolbox, called HybridSystem, which inherits the
previously described class System, includes the ode event-based mechanism from HyEQ
Toolbox [16], and is extended to support time-varying differential equation systems and
exogenous input signals. Besides the base interface from System, it also provides methods
for functions G, C, and D. It also provides a wrapper function to promote any System
object to the type HybridSystem, by adding dummy G, C, and D methods, in order to
be compatible for use in hybrid system interconnections. The flexibility added by this
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class in the toolbox allows model-in-the-Loop simulations using physical processes with
hybrid dynamics, such as switching systems, i.e., electrical machines and power converters,
or simulations of the closed loop control system, seen as hybrid system through the
interconnection of a continuous-time process and a discrete-time controller, allowing the
user to assess several performance analysis steps.

2.3. System Interconnections

After defining individual or atomic systems as in previous sections, the necessity
for composing system interconnections readily appears. The classical interconnection
operations are the series, parallel, lower, and upper linear-fractional transformations (LLFT
and ULFT). Moreover, two separate approaches have been considered, i.e., to interconnect
general-purpose nonlinear systems modeled by the class System and hybrid systems
modeled by the class HybridSystem separately. The first case is useful for linearization
near an operating point, studying its system theoretical properties, and designing control
techniques, while the latter becomes useful in a model-in-the-Loop simulation context
and for closed loop system property analysis. All provided system interconnections are
implemented in classes which inherit the base class System.

The software classes presented in this section extend the series, parallel, feedback,
and lft functions from MATLAB for nonlinear and hybrid systems, based on the interfaces
from Equations (1) and (4). For hybrid system interconnections, the continuous and
discrete dynamics sets C and D, respectively, are obtained using union and intersection
set operations.

Moreover, the next discrete state for each subsystem is triggered by its own logic, pre-
defined in the jump function G and only when necessary; otherwise, it remains unchanged.
For specifying this next discrete state x+ logic, as in the interface from Equation (4c), we
will use the notation IF(CONDITION, THEN, ELSE), where CONDITION will be true when
the point in the state-space is in the jump set, i.e., (x, u, t) ∈ D or (x, u, t) 6∈ C; THEN gives
the next state if a jump needs to be performed; and ELSE gives the next discrete state
otherwise.

The state, output, and hybrid domain equations for nonlinear and hybrid system
series connection, with the notations used in Figure 2, upper row, implemented in classes
SeriesConnectionSystem and HybridSeriesConnectionSystem, are as follows:

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)

F2(x2, h1(x1, u, t), t)

]
;

y = h2(x2, h1(x1, u, t), t).

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)

F2(x2, h1(x1, u, t), t)

]
;[

x+1
x+2

]
=

[
if(jump1, G1(x1, u, t), x1)

if(jump2, G2(x2, h1(x1, u, t), t), x2)

]
;

C(x, u, t) = C1(x1, u, t) ∩ C2(x2, h1(x1, u, t), t);

D(x, u, t) = D1(x1, u, t) ∪D2(x2, h1(x1, u, t), t);

y = h2(x2, h1(x1, u, t), t).

(5)

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting series connection system will have dimensions (m = m1, n =
n1 + n2, p = p2).
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Figure 2. Series and parallel interconnections for general-purpose and hybrid systems.

The state, output, and hybrid domain equations for nonlinear and hybrid system
parallel connection, with the notations used in Figure 2, bottom row, implemented in the
classes named ParallelConnectionSystem and HybridParallelConnectionSystem, are
as follows:

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)
F2(x2, u, t)

]
;

y = h1(x1, u, t) + h2(x2, u, t).

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)
F2(x2, u, t)

]
;[

x+1
x+2

]
=

[
if(jump1, G1(x1, u, t), x1)
if(jump2, G2(x2, u, t), x2)

]
;

C(x, u, t) = C1(x1, u, t) ∩ C2(x2, u, t);

D(x, u, t) = D1(x1, u, t) ∪D2(x2, u, t);

y = h1(x1, u, t) + h2(x2, u, t).

(6)

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting parallel connection system will have dimensions (m = m1 =
m2, n = n1 + n2, p = p1 = p2).

The state, output, and hybrid domain equations for nonlinear and hybrid system lower
linear fractional trasformation (LLFT) connection, with the notations used in Figure 3, upper
row, implemented in classes LLFTConnectionSystem and HybridLLFTConnectionSystem,
are as follows:

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uLLFT

1 , t
)

F2
(
x2, uLLFT

2 , t
)];

y =

[
h1
(
x1, uLLFT

1 , t
)

h2
(
x2, uLLFT

2 , t
)].

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uLLFT

1 , t
)

F2
(
x2, uLLFT

2 , t
)];[

x+1
x+2

]
=

[
if
(
jump1, G1

(
x1, uLLFT

1 , t
)
, x1
)

if
(
jump2, G2

(
x2, uLLFT

2 , t
)
, x2
)];

C(x, u, t) = C1
(
x1, uLLFT

1 , t
)
∩ C2

(
x2, uLLFT

2 , t
)
;

D(x, u, t) = D1
(
x1, uLLFT

1 , t
)
∪D2

(
x2, uLLFT

2 , t
)
;

y =

[
h1
(
x1, uLLFT

1 , t
)

h2
(
x2, uLLFT

2 , t
)],

(7)

with the predefined notations:

u =

[
u1
u2

]
=


u11

ure f
12

ure f
21

u22

, uLLFT
1 =

[
u11

ure f
12 + y−21

]
≡
[

u11
u12

]
, uLLFT

2 =

[
ure f

21 + y−12
u22

]
≡
[

u21
u22

]
. (8)
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The common convention in the literature is to consider the last NCON values from the
input vector u1, i.e., u12, as control input signals, while the last NMEAS values from the
output vector y1, i.e., y12, as measurements signals. Only the vector u will be an exogenous
signal, as the feedback components y−12 and y−21 are local and private feedback components
computed implicitly at the previous time step, dictated by the selected ode solver. The
exogenous signals u11 and u22 are seen as disturbance signals, while the signals ure f

12 and

ure f
21 are seen as reference signals.

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting LLFT connection system will have dimensions (m = m1 +
m2, n = n1 + n2, p = p1 + p2). The subsystem Sys1 is usually seen as the controlled
plant, while Sys2 is seen as the controller. In order to assure compatibility between the
two, several assertions must be made: NMEAS = length(y12) = length(u21) and NCON
= length(y21) = length(u12).

The state, output, and hybrid domain equations for nonlinear and hybrid system upper
linear fractional trasformation (ULFT) connection, with the notations used in Figure 3, bottom
row, implemented in classes ULFTConnectionSystem and HybridULFTConnectionSystem,
are as follows:

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uULFT

1 , t
)

F2
(
x2, uULFT

2 , t
)];

y =

[
h1
(
x1, uULFT

1 , t
)

h2
(
x2, uULFT

2 , t
)].

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uULFT

1 , t
)

F2
(
x2, uULFT

2 , t
)];[

x+1
x+2

]
=

[
if
(
jump1, G1

(
x1, uULFT

1 , t
)
, x1
)

if
(
jump2, G2

(
x2, uULFT

2 , t
)
, x2
)];

C(x, u, t) = C1
(
x1, uULFT

1 , t
)
∩ C2

(
x2, uULFT

2 , t
)
;

D(x, u, t) = D1
(
x1, uULFT

1 , t
)
∪D2

(
x2, uULFT

2 , t
)
;

y =

[
h1
(
x1, uULFT

1 , t
)

h2
(
x2, uULFT

2 , t
)],

(9)

with the predefined notations:

u = u12, uULFT
1 =

[
y−2
u12

]
, uULFT

2 = y−11. (10)

The common convention in the literature is to consider the first NU values from the
input vector of the plant subsystem, i.e., u11, as input uncertainty signals, while the first
NY values from the output vector of the plant, i.e., y11, as output uncertainty signals. Only
the vector u ≡ u12 will be an exogenous signal, as the feedback components y−11 and y−2
are local and private feedback components computed implicitly at the previous time step,
dictated by the selected ode solver. The exogenous signal u12 is seen as set of performance
and control signals for the plant, without any reference signals recalled explicitly compared
to the LLFT case.

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting ULFT connection system will have dimensions (m = m1 +
m2, n = n1 + n2, p = p1 + p2). The subsystem Sys1 is usually seen as the augmented
controlled plant, while Sys2 is seen as the unstructured uncertainty block. In order to
assure compatibility between the two, several assertions must be made: NY = length(y11)
= length(u2) and NU = length(y2) = length(u11).
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Figure 3. Upper (ULFT) and lower (LLFT) linear fractional transformation interconnections for
general-purpose nonlinear and hybrid systems, with the ability to impose external reference signals.

2.4. Automatic Equilibrium Point Computation

Given a nonlinear system as in Equation (1), which may also include interconnections
of systems, an operating point is desired with some of the input, state, and output variables
imposed, such as a water level in a tank yh(t) controlled through two pumps u f low(t),
one with variable flow and one with a fixed flow, or a mechanical transportation system
having a desired velocity yω(t) with respect to input forces and loads u(t). As such, a
mechanism to automatically compute a partially imposed equilibrium point for an entire
family of uncertain plants, relative to one which is considered nominal at the design phase,
is proposed in this paragraph.

Starting from the system definition with dimensions m, n, and p, consider the sets
of indexes, denoted by I , and prescribed values, denoted by V , for the input, state, and
output variables, respectively:

Iu :=
{

iu
1 , iu

2 , . . . , iu
mu

}
, Vu :=

{
u(iu

1 ), u(iu
2 ), . . . , u

(
iu
mu

)}
, 0 ≤ mu ≤ m;

Ix :=
{

ix
1 , ix

2 , . . . , ix
nx

}
, Vx :=

{
x(ix

1), x(ix
2), . . . , x

(
ix
nx

)}
, 0 ≤ nx ≤ n;

Iy :=
{

iy
1 , iy

2 , . . . , iy
py

}
, Vy :=

{
y
(

iy
1

)
, y
(

iy
2

)
, . . . , y

(
iy
py

)}
, 0 ≤ py ≤ p,

(11a)

(11b)

(11c)

along with their complementary sets of values for the indexes, denoted by UI , and the
values, denoted UV , to be computed through optimization by solving a system of equations:


UIu :=

{
iu
1 , iu

2 , . . . , iu
m̃u

}
, UVu :=

{
ũ(iu

1 ), ũ(iu
2 ), . . . , ũ

(
iu
m̃u

)}
, 0 ≤ m̃u ≤ m;

UIx :=
{

ix
1 , ix

2 , . . . , ix
ñx

}
, UVx :=

{
x̃(ix

1), x̃(ix
2), . . . , x̃

(
ix
ñx

)}
, 0 ≤ ñx ≤ n;

UIy :=
{

iy
1 , iy

2 , . . . , iy
p̃y

}
, UVy :=

{
ỹ
(

iy
1

)
, ỹ
(

iy
2

)
, . . . , ỹ

(
iy
p̃y

)}
, 0 ≤ p̃y ≤ p,

(12a)

(12b)

(12c)

with 
mu + m̃u = m, Iu ∪ UIu = {1, 2, . . . , m}, Iu ∩ UIu = ∅;

nx + ñx = n, Ix ∪ UIx = {1, 2, . . . , n}, Ix ∩ UIx = ∅;

py + p̃y = p, Iy ∪ UIy = {1, 2, . . . , p}, Iy ∩ UIy = ∅.

(13a)

(13b)

(13c)
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a set of permutation matrices Pu ∈ Rm×m, Px ∈ Rn×n, Py ∈ Rp×p are obtained after sorting
the indexes such as the following system of vector-valued equations needs to be solved:

0 = F
(

Px ·
[

x
x̃

]
, Pu ·

[
u
ũ

]
, t̃
)

;

Py ·
[

y
ỹ

]
= h

(
Px ·

[
x
x̃

]
, Pu ·

[
u
ũ

]
, t̃
)

.

(14a)

(14b)

The system from Equation (14) becomes equivalent to directly solving a system of
equations of the form 0 = F (z) in the vector-valued unknown:

z =
[
x̃T ũT ỹT t̃

]T ∈ Rñx+m̃u+ p̃y+1. (15)

If the dynamical system is time-invariant or if the required time value is known a
priori, then the time variable can be removed from the solver or it can be imposed to a
certain value t in the same manner as the for the other signals. Moreover, the method is
flexible and allows imposing and solving only the subsystem (14a) if the output variables
coincide with the states. The unknown variables from Equation (15) can be initialized to
random values or a rough estimate for the entire family of uncertain plants can be obtained
with the simulation to a step response of the nominal plant at the required amplitudes. All
systems in the uncertain physical plant set will be found in the same mathematical vicinity.
After solving the preferred algebraic system configuration from Equation (14), the desired
equilibrium point

(
u, x, y, t

)
can be reconstructed using the inverse permutation matrices

P−1
u , P−1

x , P−1
y and the notations from Equations (11) and (12). The method findEqPoint

from class System forms and solves the system (14) and computes the desired equilibrium
point for its predefined dynamical system based on the specifications from Equations (11)
and (12) given in the structure eqOpts.

After acquiring the desired equilibrium point, the system linearization can be easily
deduced through numeric differentiation methods. The most straightforward method is to
compute the first-order Jacobian matrices of the functions F and h with respect to the state
and input signals x and u, respectively:

A =
δF
δx

∣∣∣∣
(x0,u0,t0)

; B =
δF
δu

∣∣∣∣
(x0,u0,t0)

; C =
δh
δx

∣∣∣∣
(x0,u0,t0)

; D =
δh
δu

∣∣∣∣
(x0,u0,t0)

. (16)

The method linearize(x0,u0,t0) from class System of Section 1 computes the ma-
trices from Equation (16) with a first-order derivative approximation and also the output
equilibrium value y0 = h(x0, u0, t0):

A1,n,i ≈
F
(
x0 + ∆xi

0, u0, t0
)
− F(x0, u0, t0)

∆x
; B1,m,j ≈

F
(

x0, u0 + ∆uj
0, t0

)
− F(x0, u0, t0)

∆u
,

(17)
following that the output matrices C and D to be computed in a similar manner by replacing F
with h in the above formulas. The shorthand notations are ∆xi

0 =
[
0 · · · 0 ∆x 0 · · · 0

]T

and ∆uj
0 =

[
0 · · · 0 ∆u 0 · · · 0

]T for the disturbance vectors corresponding to the
state with the index i ∈ 1, n or input with index j ∈ 1, m, respectively, while the optimal [18] unit
perturbations are, using double precision, ∆x = tol · (1 + ||x0||) and ∆u = tol · (1 + ||u0||),
tol = 10−5. Obviously, when linearizing the system, the static amplification of the initial
nonlinear system is not accounted in the procedure, but will not be relevant in the actual
control design process and implementation due to the consideration of only Lipschitz
function-based systems and, as such, it will be correctly compensated. The correct simula-
tion of the linearized system near the operating point is done using the class LTIEqSystem.
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2.5. Automatic Least Conservative Uncertainty Bound Computation

Figure 4 encompasses an overview of the toolbox classes described in Sections 2.5
and 2.6, along with showing their relationship with the classes from the previous sections.
Based on any desirable combination of the above system classes, i.e., System, LTISystem,
LTIEqSystem, HybridSystem, and their interconnections, we propose a new functionality
to aid in uncertain system modeling, ready for use in augmenting the plant for µ syn-
thesis, implemented in the classes UncertainPlantFactory, seen in Figure 1, along with
UncertaintyBoundOptimizationProblem, seen in Figure 4.

The common uncertainty model types considered in practice are gathered in Table 1.
Besides the definition of the uncertain plant G(s) starting from a nominal model Gn(s) in
relation to the uncertainty block ∆(s), the mathematical expression of ∆(s) is necessary to
experimentally deduce its frequency response. Left and right coprime factor uncertainties
are described by two blocks: ∆M and ∆N , and one of them can be selected as a free term, i.e.,
one degree of freedom (1-DOF). The class UncertainPlantFactory provides an interface
to define a nominal plant and a random plant from a prespecified set. Besides the methods
getNominalPlant and getRandomPlant, both returning a System object, it implements
each uncertainty type ∆(s) from Table 1, obtained through Monte Carlo simulation using
the magnitude characteristic in the frequency domain.

Figure 4. Closed loop control problem class which encompasses an uncertain plant set with operating
point specification, options for automatically modeling the plant uncertainty, specifying robust
control performances, synthesizing controller, and validating obtained results.
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Table 1. Commonly used classes of perturbation and uncertainty models for multiple-input and multiple-output (MIMO)
systems, implemented in class UncertainPlantFactory.

Uncertainty Type Definition Implementation

Additive G(s) = Gn(s) + ∆(s) ∆(s) = G(s)− Gn(s)

Inverse additive (G(s))−1 = (Gn(s))−1 + ∆(s) ∆(s) = (G(s))−1 − (Gn(s))−1

Input multiplicative G(s) = Gn(s)[I + ∆(s)] ∆(s) = (Gn(s))−1(G(s)− Gn(s))

Output multiplicative G(s) = [I + ∆(s)]Gn(s) ∆(s) = (G(s)− Gn(s))(Gn(s))−1

Inverse input multiplicative (G(s))−1 = [I + ∆(s)](Gn(s))−1 ∆(s) = (G(s))−1(Gn(s))− I

Inverse output multiplicative (G(s))−1 = (Gn(s))
−1[I + ∆(s)] ∆(s) = (Gn(s))(G(s))−1 − I

Left coprime factor G(s) =
(

M̃ + ∆M̃
)−1(Ñ + ∆Ñ

)
∆M̃ =

(
Ñ + ∆Ñ

)
(G(s))−1 − M̃, 1-DOF

Right coprime factor G(s) = (N + ∆N)(M + ∆M)−1 ∆M = (G(s))−1(N + ∆N)−M, 1-DOF

The frequency domain relevant for the studied plant is defined in logarithmic scale as

Ω = {ω = ω1 < ω2 < . . . < ωN−1 < ωN = ω}, (18)

along with the magnitude characteristic values sampled at points from Ω. By convention,
||∆(jω)||∞ ≤ 1, ∀ω ≥ 0; thus, the worst-case uncertainty deduced experimentally through
Monte Carlo simulation is written as ∆(s)Wexp(s). As an example for the additive uncertainty
type, the uncertain plant family will be G(s) = Gn(s) + ∆(s) ·Wexp(s), with ||∆(jω)||∞ ≤
1, ∀ω ≥ 0 and the toolbox returns the worst-case experimental magnitude characteristic of
Wexp(s), sampled at points from jΩ through the high-level method getUncertaintyModel-
Boundary from class UncertainPlantFactory, which wraps over low-level methods such
as getAdditiveUncBoundary, getInverseAdditiveUncBoundary etc.

Due to the fact that the sampled points from the previous paragraph cannot be
directly accounted for in robust control synthesis and, moreover, they may not represent
an actual transfer function, it appears the need to compute a least conservative low-order
transfer function to model the desired uncertainty family. This problem has been solved
by employing a global optimization algorithm, such as PSO, described in [19]. The PSO
algorithm has been considered in favor of other global optimization algorithms, such as
GA, due to its inherent structure of addressing semi-continuous functions, such as our
strongly nonlinear semi-continuous function described in Equation (21) in the variable
from Equation (19).

A particle x :=
[
x1 x2 · · · xn4

]T of the optimization problem is defined as the
transfer function

Wx(s) =
k
sp ·

∏
( ◦

Ts + 1
)

∏
(

s2

◦
ω

2
n

+ 2
◦
ζ
◦
ωn

s + 1
)

∏
(
T̂s + 1

)
∏
(

s2

ω̂2
n
+ 2ζ̂

ω̂n
s + 1

) =
x1

sp ·

n1

∏
2
(xks + 1)

n2

∏
n1+1

(
s2

x2
k
+

2xk+1
xk

s + 1

)
n3

∏
n2+1

(xks + 1)
n4

∏
n3+1

(
s2

x2
k
+

2xk+1
xk

s + 1

) , (19)

with optimization variables

k > 0;
{ ◦

Ti ∈
[

1
ω

,
1
ω

]}
, i ∈ 2 : n1;

{
T̂i ∈

[
1
ω

,
1
ω

]}
, i ∈ n2 + 1 : n3;{(◦

ζ i ∈ (0, 1),
◦
ωn,i+1 ∈ [ω, ω]

)}
, i ∈ n1 + 1 : 2 : n2;{(

ζ̂i ∈ (0, 1), ω̂n,i+1 ∈ [ω, ω]
)}

, i ∈ n3 + 1 : 2 : n4.

(20a)

(20b)

(20c)
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The cost functional found to provide good results for most initial particle swarms is

JΩ,Wexp(Wx) =
N

∑
k=1

∣∣∣|Wexp(jωk)|dB − |Wx(jωk)|dB
∣∣∣ · ϕN(k) + ∑

|Wx(jωk)|<|Wexp(jωk)|
λ, (21)

where ϕN : {1, 2, . . . , N} → R+ from the first sum is a windowing function, based on the
Gaussian window function, meant to amplify the penalization for low- and high-frequency
components, while the second sum adds a high-cost term λ = 109 for each frequency point
jωk for which the candidate function Wx is below the experimental reference uncertainty
weight Wexp. The windowing function considered is defined by

ϕN(k) =
(

3− 2 · wN

(
k− N + 1

2

))2
, (22)

with the Gaussian function wN : R→ R+ and value α = 2.5:

wN(x) = e−
1
2

(
α x
(N−1)/2

)2

= e−
x2

2σ2 ⇔ log wN(x) = −1
2

(
α

x
(N − 1)/2

)2
= − x2

2σ2 . (23)

The cost functional J(Wx) is configurable, such that a different windowing function
may be provided, or that the difference between Wexp and Wx in the integral may be
considered in absolute magnitude values instead of decibels. An alternative formulation
of this minimization problem would be to use a GA, where the optimization variable
x = Wx(s) could mutate in order to obtain different transfer function structures: add or
remove real poles and zeros or, also, complex conjugate pole and zero pairs.

This functionality is implemented in the class UncertaintyBoundOptimizationProblem,
using the methods getTransferFunctionCandidate for Equation (19), computeCandidate-
Fitness and fitnessIntegral for Equation (21) based on the magnitudes of |Wexp(jω)|
and |Wx(jω)| for ω ∈ Ω from Equation (18) and optimize to use the PSO algorithm to com-
pute the best candidate transfer function Wx,optim(s). The plot function has been overloaded
to facilitate seeing the fitness function values in real-time and, moreover, the Bode plot for the
best candidate Wx(s) compared to the experimental data Wexp(s).

2.6. Robust Synthesis and Closed Loop Validation

Classical solutions to theH2/H∞ problems are presented in [20–24] and others. The
control problem is typically formulated for the nominal plant using the generalized frame-
work depicted in Figure 5a.

Figure 5. (a) Generalized plant framework; (b) generalized plant framework with uncertainties.
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This generalized plant is obtained by augmenting the physical process model with
a set of mathematical signals which aid the optimization procedure and has the follow-
ing structure:

(
z(t)
y(t)

)
=

(
P11 P12
P21 P22

)(
w(t)
u(t)

)
, with

(
P11 P12
P21 P22

)
=

 A B1 B2

C1 D11 D12
C2 D21 D22

, (24)

where w ∈ Rnw is the exogenous input vector, u ∈ Rnu is the control input vector, z ∈ Rnz

is the error (output, performance) vector, and y ∈ Rny is the measurement vector. The
closed loop system is given by the LLFT interconnection of P and K:

Pzw = LLFT(P, K) = P11 + P12K(I − P22K)−1P21. (25)

For the nominal plant, the target of the robust control problem is to minimize theH∞
norm using a stabilizing controller K, which can be written as

min
K stab.

‖Pzw‖∞ = min
K stab.

sup
ω∈R+

σ(Pzw(jω)), (26)

obtaining a (sub)optimal value γ by iteration, which minimizes the effects of the input
vector w(t) as seen through the performance output vector z(t).

However, this problem ensures only nominal stability and nominal performance.
However, the plant is a model of a physical process, having uncertainties. There are
two types of uncertainties: unstructured, which illustrates neglected and unmodelled
dynamics and which are represented by a full block ∆ ∈ Rm×m, and parametric, which
are represented by δI, where δ is the maximum bound of the variable parameter. In a
mixed-scenario, the following set is considered:

∆ =
{

∆ = diag
(

δ1 In1 , . . . , δs Ins , ∆1, . . . , ∆ f

)
|δk ∈ R, ∆j ∈ Rmj×mj , k = 1, s, j = 1, f

}
. (27)

In Figure 5b, the closed loop system containing a LLFT connection between plant
P and controller K and an ULFT connection between plant P and uncertainty block ∆
is presented. In this case, the generalized plant contains one extra input vector, i.e.,
disturbance inputs d ∈ Rnd , and one extra output vector, i.e., disturbance outputs v ∈ Rnv ,
giving the following structure:

P∆(s) =

Pvd(s) Pvw(s) Pvu(s)
Pzd(s) Pzw(s) Pzu(s)
Pyd(s) Pyw(s) Pyu(s)

⇔ P∆ :


ẋ(t)

v(t)
z(t)
y(t)

 =


A Bd Bw Bu

Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu




x(t)

d(t)
w(t)
u(t)

. (28)

A mathematical tool used for studying the robustness is the structured singular value,
defined for a square matrix M ∈ CN×N with respect to the set ∆ as

µ∆(M) =
1

min
∆∈∆
{σ(∆)|det(I −M∆) = 0} , (29)

if there exists ∆ ∈ ∆ such that the matrix I −M∆ is rank deficient; otherwise, it is 0. For
the system presented in Figure 5b, the structured singular value of LLFT(P, K), according
to ∆, can be defined as

µ∆(LLFT(P, K)(s)) = sup
ω∈R+

µ∆(LLFT(P, K)(jω)). (30)
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Besides the classicalH2/H∞ techniques, the µ synthesis framework manages to design
a controller that meets the robust stability and robust performance specifications. The
robust stability implies that a certain controller manages to stabilize all processes described
by the upper linear fractional transformation between plant and uncertainty block, while
the robust performance means that the controller is able to impose the desired closed loop
performance in the worst-case scenario. Based on the main loop theorem, a controller K
meets the robust stability and robust performance if and only if the structural singular
value of the lower linear fractional transformation with respect to ∆ is smaller than 1.
Therefore, the minimization problem can be written as

inf
K stab.

sup
ω∈R+

µ∆(LLFT(P, K)(jω)), (31)

which is not a convex problem. Additionally, the structural singular values are difficult
to be explicitly computed. In order to solve this problem, the following upper bound is
used [25]:

µ∆(LLFT(P, K)(jω)) ≤ inf
D∈D

σ(D · LLFT(P, K)(jω) · D−1), (32)

where the set D is defined in relation to the uncertainty set ∆ as

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)∣∣∣Dk = D>k ∈ Rnk×nk , dj > 0, k = 1, s, j = 1, f
}

. (33)

Now, using this bound, the solution of the initial non-convex problem can be practi-
cally approximated by solving the following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (34)

Finally, if the system D is fixed, the problem (34) is nothing but aH∞ control problem,
in this case called the K step. Furthermore, for a fixed controller K, the D scale step can be
obtained by solving a Parrot problem for a desired set of frequencies Ω = {ω1, . . . , ωN}
using a LMI and then obtain a minimum phase system after performing an identification
step. Using these, an iterative algorithm, based on alternative D-K iterations, manages to
solve the µ synthesis problem. This procedure starts with D = I and successively applies a
K step and a D scaling step until a stopping criterion is reached.

Of great use in the controller design phase are the sensitivity, complementary sensitiv-
ity, and control effort functions, respectively, defined by

S := (I + GK)−1;

T := GK(I + GK)−1;

R := K(I + GK)−1 = KS,

(35a)

(35b)

(35c)

where G is the open loop model. The great advantage of considering this approach is that
it allows sculpting the relevant loop functions to impose steady-state and transitory regime
performances, which are specified for different frequency ranges, using adequately selected
weighting functions. Besides the minimization from Equation (34), different constraints
can be added to the optimization problem to obtain a compromise between S, KS, and T at
various frequencies:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

,

such that
∥∥∥(WSS WTT WKSKS

)T
∥∥∥

∞
< 1,

(36a)

(36b)
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also known as the mixed-sensitivity closed loop shaping µ synthesis method. The approach
considered in this first iteration of the toolbox uses closed loop shaping with µ synthesis
for the controller. Using the work in [26] as a starting point, different frequency response
specifications, directly correlated with desired time-response performances, can be im-
posed in the weighting functions. The sensitivity weighting function WS depends on four
parameters as in

WS(s) =

( 1
M1/n s + ωB

s + ωB A1/n

)n

, (37)

where ωB represents the imposed bandwidth of the system; M imposes the H∞ norm
of the sensitivity function, in order to limit the overshoot of the system; n imposes the
slope of the sensitivity function for low frequencies; and A imposes the maximum allowed
steady-state error.

On the other hand, the complementary sensitivity weighting function WT can be
generally defined by the following structure, in a symmetrical manner compared to WS:

WT(s) =

(
s + ωBT

A1/n
T s + ωBT M1/n

T

)n

, (38)

with ωBT being the imposed bandwidth of the system; MT imposes theH∞ norm of T(s);
n imposes the roll-off slope of the closed loop system, which should be directly coupled
with sensor noise characteristics; and AT imposes the least required attenuation for high
frequencies. In practice, the complementary sensitivity bandwidth ωBT can be adapted to
the characteristics of the sensor in order to account for high-frequency noise.

Finally, the control effort weighting function with desired specifications M0 :=
|WKS(0)|, M∞ := |WKS(∞)| and |WKS(j · ωd)| = Md, M0 < Md < M∞ can be synthe-
sized by the following formula:

WKS(s) =
M∞s + M0ωd

√
M2

∞−M2
d

M2
d−M2

0

s + ωd

√
M2

∞−M2
d

M2
d−M2

0

. (39)

A higher-order counterpart can be generalized as for the previous cases, but was not
found necessary for the proposed case studies and other tested benchmark plants.

Class RobustControlSynthesisProblem uses the nominal linearized plant around a
required operating point using the system (14) and options (11)–(13), with a specified uncer-
tainty type from Table 1, modeled through class UncertaintyBoundOptimization-Problem,
allows imposing closed loop performance specifications with frequency weights (37)–(39),
and synthesizes controller solutions for the problem (36) which cover the robust stability
and robust performance problems. Additionally, the class also allows controller postpro-
cessing, using order-reduction methods to compute easily implementable controllers. The
aforementioned controller synthesis problem is illustrated in Figure 6, while the result-
ing LTI controller can be used in a MiL simulation context using the interface from class
LTIEqSystem, encompassing system (3).
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Figure 6. Robust controller synthesis diagram for the plant G, with the uncertainty set ∆ determined
a priori using the functionality from Section 2.5, linearized at the operating point (u0, x0, y0); by
convention, control inputs ∆uc of the linearized plant G are indexed after disturbance inputs ∆ud.

Class ClosedLoopControlProblem gathers all data, options, computations, and results
from the previously presented individual blocks. It is used to define the end-to-end control
problem by aggregating the uncertain plant family with its corresponding least conservative
bound optimization; the robust control synthesis procedure and metadata; and allows
Model-in-the-Loop simulations with the nonlinear, linearized, and hybrid system models,
with automatic validation of imposed performances for the nonlinear plant in the frequency
and time-domain alike.

3. Results

To showcase the ease of use and functionalities of the proposed toolbox, a set of case
studies will be illustrated for DC-to-DC power converter circuits in a unified manner
to encompass modeling, control synthesis and performance validation, considering the
topologies buck, boost, and single-ended primary-inductor converter (SEPIC). DC-to-DC
converters have been considered as a case study due to their ubiquity in various practical
domains and applications, as presented in [27], ranging from renewable energy, hybrid
and electric vehicles, controlled power sources, and many more. They can be seen as a
good benchmark for control systems, due to their switching behavior, nonlinear dynamics,
and different tried and tested control methods, such robust techniques in [28], Lyapunov
methods in [29], passivity theory in [30], or sliding mode control as in [31].

This section will be split in a subsection which presents the converter mathematical
models, a subsection with a suggested workflow for a general purpose control problem,
followed by a subsection with numerical results and simulations for each of the studied
converter topologies. For the SEPIC converter, having the most highly nonlinear behavior,
thus being more difficult to control, we will illustrate and detail all plots generated by the
toolbox, while for the buck and boost circuits, for brevity, we will show only the relevant
figures and maintain the mathematical results and discussions.

3.1. Mathematical Modeling

The nonideal step-down (buck), step-up (boost), and single-ended primary-inductor
converter (SEPIC) circuits are presented in Figure 7, where each component is described
as follows.
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Figure 7. DC-to-DC power converter circuit topologies considered in the case studies: step-down
(buck), step-up (boost), and single-ended primary-inductor (SEPIC).

• S1: switching device, usually a transistor, and S2: switching device, usually a diode
or transistor;

• L, L1, L2: converter inductors;
• C, Cin, C1, C2: converter capacitors;
• R: (variable) output load resistance;
• E: external source voltage;
• rL, rL1 , rL2 : resistances associated with the inductors;
• rC, rCin , rC1 , rC2 : capacitors parasitic resistances;
• rDS1 , rDS2 : resistances associated with the ON state of the switching devices (usually

drain source);
• VF1 , VF2 : constant voltage drops associated with the conducting phase of S1 and S2;
• µ ∈ [0, 1]: normalized duty cycle applied to S1; complementary to the PWM signal

applied to S2.

Each converter has one control switching device S1, while the other one, S2, will be
complementary to the former. Although, typically S2 is a diode, it is preferable to use two
encapsulated transistors for S1 and S2. When working in continuous conduction mode
(CCM), all converters will have an ON state, corresponding to S1 being on and S2 off, along
with an OFF state, for its complementary behavior. The corresponding LTI models, for a
constant load resistance R, for the ON and OFF states will be presented using the following
structure with the external voltage seen as disturbance input u(t) = E(t), the voltage drops
VF1 and VF2 as constant DC inputs, states from the inductor currents and capacitor voltages,
and the load resistor voltage as measured output:(

A B

C D

)
=

(
A B BV

C D DV

)
, (40)

where:{
ẋ = AONx + BON E + BV,ON

[
VF1 VF2

]
;

y = CONx + DON E + DV,ON
[
VF1 VF2

]
,

{
ẋ = AOFFx + BOFFE + BV,OFF

[
VF1 VF2

]
;

y = COFFx + DOFFE + DV,OFF
[
VF1 VF2

]
.

(41)

The control variable is the duty cycle of the switching devices µ(t) ∈ [0, 1]. Using a
convex combination of the ON and OFF equation systems from Equation (41), an averaged
state-space nonlinear model of the process is obtained close to the hybrid model’s behavior
given a sufficiently high PWM frequency:

ẋ(t) = µ(t) · xON(t) + (1− µ(t)) · xOFF(t) ≡ F
(

x(t), [E(t), R(t), µ(t)]T , t
)

. (42)
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As such, an affine nonlinear system, with respect to µ, with the state function F as
above can be implemented by inheriting the class System from the toolbox. The distur-
bances which affect the system are the voltage source E and variable output load R, which
are stochastic in nature, along with uncertainties of its components due to manufacturing
tolerances, relevant on inductors and capacitors. As the toolbox easily allows using the
output capacitor voltage or output load voltage with minor modifications, we used the re-
sistor voltage as measurement variable due to its corresponding practical control use cases.
By inheriting the class UncertainPlantFactory, a set of tolerances can be imposed on all
relevant circuit parameters and, also, an LTI uncertain set can be automatically computed
with the provided mechanisms. The equilibrium point will have only the steady-state
values of E, R, and uR imposed, with the following structure:

(u, x, y) =
([

E, R, µ
]
,
[
iL1 , uC1 , . . .

]
, uR

)
. (43)

After synthesizing a robust controller, model-in-the-loop simulations would be desired
for the averaged state-space models and, also, for a hybrid model description of the
converters. For the hybrid approach, the class UncertainPlantFactory is inherited again,
this time with individual plants of type HybridSystem. For the general approach for
CCM, based on the structure from Equation (4), the input vector is comprised of u =

[E, R, µ]T , the state vector is extended to x :=
[
zT , q, τ

]T , with z =
[
iL1 , uC1 , . . .

]T being
the physical continuous states; q ∈ {0, 1} the discrete state number, i.e., ON and OFF;
and τ ∈ [0, TPWM) the time values for a single PWM period. After each PWM period
completion, the auxiliary time state τ is reinitialized to 0. The model description becomes,
for the state-space description



ż(t)
q̇(t)
τ̇(t)

 =

(1− q) ·
(

AONz(t) + BONu(t)
)
+ q ·

(
AOFFz(t) + BOFFu(t)

)
0
1

, (x, u, t) ∈ C;

z+(t)
q+(t)
τ+(t)

 =


z(t){

1, if q == 0
0, if q == 1{
τ, if q == 0
0, if q == 1

, (x, u, t) ∈ D,

(44a)

(44b)

while the flow, jump, and output functions are
C(x, u, t) = {((q == 0) ∧ (τ ≤ µ(t) · TPWM)) ∨ ((q == 1) ∧ (τ > µ(t) · TPWM))};
D(x, u, t) = {((q == 0) ∧ (τ > µ(t) · TPWM)) ∨ ((q == 1) ∧ (τ > TPWM))};

y(t) = h(x(t), u(t), t).

(45a)

(45b)

(45c)

In order to encompass DCM regimes, the number of discrete states must be extended
with new LTI blocks obtained by adding the mathematical constraint of canceling the diode
S2 voltage and, as such, the corresponding current signal for that branch, along with more
sophisticated jump functions, flow and jump sets. For brevity, we will not insist on these
extensions, although an example described for the boost converter can be found in [32].

3.2. Toolbox Workflow

A suggested end-to-end workflow for the toolbox can be summarized in the following
steps, all of which should be run from intermediary methods of an instance of class
ClosedLoopControlProblem:

• inherit class System to define the nonlinear model of the process as in Equation (1)
and Figure 1;

• define equilibrium point specifications as in (11)–(13);
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• inherit class UncertainPlantFactory and overload method getRandomPlant;
• using the desired operating point, linearize a set of systems using (16) and experimen-

tally determine an uncertainty model Wexp based on Table 1;
• define uncertainty options, including transfer function structure for all particles, and

execute the methods from class UncertaintyBoundOptimizationProblem in order to
minimize the functional JΩ,Wexp(Wx) from Equation (21), obtaining Wx,opt;

• run optimization to compute the uncertainty weight Wunc(s) as in Table 1;
• define robust control specifications WS, WT , and WKS as in Equations (37)–(39);
• synthesize robust µ controller based on Figure 6;
• apply order-reducing methods on the resulting controller;
• validate frequency and time-response performance specifications using the nonlinear

system at operating point through Model-in-the-Loop simulations;
• optionally, inherit the classes HybridSystem and UncertainPlantFactory, respec-

tively, to validate time-response performance specifications using the corresponding
hybrid plant model at operating point; for DC-to-DC converter control, the last step
should be adapted for CCM or DCM operation.

3.3. Numerical Results

We will briefly present the obtained results for the three converters using the ap-
proaches established in Sections 3.1 and 3.2.

3.3.1. SEPIC Converter

The SEPIC converter state-space model for the ON state of switch S1, as structured in
Equation (41), is

− 1
rCin

Cin
0 0 0 0 1

rCin
Cin

0 0
1
L1

− rCin
+rL1+rDS1

L1
0

rDS2
L1

0 0 − 1
L1

0
0 0 0 1

C1
0 0 0 0

0 − rDS1
L2

− 1
L2
− rDS1

+rC1
+rL2

L2
0 0 1

L2
0

0 0 0 0 − 1
(R+rC2 )C2

0 0 0

0 0 0 0 R
R+rC2

0 0 0


, (46)

while for the OFF state of the switch S1 is

− 1
rCin

Cin
0 0 0 0 1

rCin
Cin

0 0
1
L1

− raux
L1

− 1
L1

rDS2+rC2
L1

− 1
L1

0 0 − 1
L1

0 1
C1

0 0 0 0 0 0

0
rDS2+rC2

L2
0 − rDS2+rC2+rL2

L2
1
L2

0 0 1
L2

0 R
(R+rC2 )C2

0 − R
(R+rC2 )C2

− 1
(R+rC2 )C2

0 0 0

0 rC R
R+rC

0 − rC R
R+rC

R
R+rC2

0 0 0


, (47)

with the auxiliary notation raux = rL1 + rC1 + rDS1 + rC2 + rCin .
The nominal SEPIC converter parameters and their tolerances are presented in Table 2.
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Table 2. Single-ended primary-inductor converter (SEPIC) converter parameters, values, and corre-
sponding tolerances.

Param. Val. Tol. Param. Val. Tol.

L1 2.57 [mH] ±20% L2 1.71 [mH] ±20%
rL1 130 [mΩ] ±10% rL2 110 [mΩ] ±10%

rDS1 0.01 [Ω] ±10% rDS2 80 [mΩ] ±10%
C1 4.7 [µF] ±20% C2 3.57 [µF] ±20%
rC1 270 [mΩ] ±10% rC2 350 [mΩ] ±10%
Cin 3.57 [µF] ±20% rCin 270 [mΩ] ±10%
VF1 0.2 [V] ±10% VF2 0.62 [V] ±10%

The desired operating point specifications are output signal y(t) ≡ uR(t) is at 400 [V],
with nominal voltage source and load inputs u1(t) = E = 300 [V], u2(t) = R = 80 [Ω]. The
initial guesses for the state equilibrium values where x̃ = [30, 0.5, 30,−0.5, 30] and u3(t) = µ
= 0.57 for the duty cycle control input. After computation, the actual equilibrium point is
(u, x, y) = ([300, 80, 0.5788], [300, 6.8711, 297.722,−5, 400], 400).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + ∆(s)Wunc(s)],
||∆||∞ ≤ 1, as in Table 1 has been automatically computed from input u3(t) to out-
put y1(t), with tolerances ±10 [V] and ±5 [Ω] for inputs u1(t) = E and u2(t) = R,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 10−2, ω = 108], with 300 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1000, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1], for a transfer function structure as in Equation (19), with a complex pole
pair and a complex zero pair, resulting in

Wunc(s) =
0.67275

(
s2 + 941.1s + 2.222× 105)

s2 + 147.3s + 5.422× 107 . (48)

The linearized SEPIC plant family is comprised of fourth-order stable systems, in
minimal form, with four zeros, three of which are of nonminimum phase. The nominal
model is

Gn(s) = 4.1368
(s + 8.003e+5)(−s + 2.304e+4)(s2 − 717.4s + 5.145e+7)

(s2 + 2673s + 3.749e+7)(s2 + 1339s + 6.493e+7)
. (49)

The entire uncertainty family has the same structure with poles, zeros, and equi-
librium points in the vicinity of the nominal counterparts. The uncertain SEPIC plant
family structure and behavior, along with the PSO conservative bound computation are
illustrated in Figure 8. Figure 8-1 illustrates the pole-zero plot for the linearized uncer-
tain SEPIC converter family, Figure 8-2 shows the best particle frequency-response fit
Wx(s) as in Equation (19) on the right y axis, and, also, the best functional fit on the left y
axis, Figure 8-3 and 8-4 show the frequency response of the plant G(s) family and uncer-
tainty family ∆(s)Wunc(s), respectively, while Figure 8-5 illustrates the system states and
outputs for a 2% step disturbance relative to the equilibrium input value µ0 = 0.5788.
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Figure 8. SEPIC multiplicative uncertainty set computation and open loop responses for the operating
point with E = 300[V], R = 80[Ω], UR = 400[V]: step and frequency response, pole-zero placement;
the step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the preferred loop shaping specifications were selected to
highly penalize the control effort near the system resonance, as the obtained controllers
would be difficult to implement in practice, needing high sampling frequencies, i.e., fe >
20 [kHz]. As such, for the sensitivity function: ωB = 200 [rad/s], A = 10−2, M = 2, n = 1;
for the complementary sensitivity function: ωBT = 2000 [rad/s], AT = 10−4, MT = 2,
n = 2; and for the control effort M0 = 100, M∞ = 105, |WKS(j · 200)| = 250, resulting in

WS(s) =
0.5s + 200

s + 2
, WT(s) =

s2 + 4000s + 4× 106

1× 10−4s2 + 56.57s + 8× 106 , WKS(s) =
105s + 8.729× 106

s + 8.729× 104 . (50)

From the µ synthesis procedure, a controller of order 21 is obtained. After order
reduction, the smallest controller which manages to assure all imposed specifications
for the plant family, with a peak value µ∆(LLFT(P, K)) ≤ 0.8361 < 1, is given by the
third-order system

KSEPIC
red =


−1.997 3.056 3.227 −0.5018
−3.057 −2197 −6118 −0.3838
3.225 6118 −1.016× 104 0.4055

−0.5018 0.3838 0.4055 0

. (51)

The controller design phase, order reduction, and frequency response closed loop
performance of the reduced-order one for the uncertain plant family are illustrated in
Figures 9 and 10. In this case, the control system has very large stability margins, with a
phase margin of ≈ 82.1[◦] and gain margin in the interval [19.4, 20.3] [dB]. Additionally,
as specified by the n = 2 and AT = 10−4 parameters of the complementary sensitivity
weighting function, WT , the closed loop control system mitigates sensor noise signals
with a considered spectrum starting from ωBT > 2000 [rad/s], using an initial roll-off
of −40 [dB/dec], followed by an attenuation of at least four orders of magnitude. In the
actual MiL simulations, the attenuation does not stop at the prescribed value, as the system
manages to maintain at least a −20 [dB/dec] roll-off.
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Figure 9. SEPIC-synthesized (order 21) vs. reduced (order 3) controllers; the peak µ value does not
monotonically decrease with respect to controller order due to the influence of the ≈3750 [rad/s]
notch over the converter resonance, which was not taken into account by the order reduction
mechanism.

Figure 10. SEPIC open loop plant family with S, T, and KS functions using the reduced-order controller, which retains all
imposed performance specifications for all test cases, provides high phase and gain margins, and guarantees closed loop
response practically similar to that of a first-order low-pass filter; a relatively low bandwidth was imposed to compensate
the SEPIC converter resonance and presence of multiple nonminimum phase zeros.

From Figure 11, the closed loop bandwidth can be observed as ωB > 200 [rad/s],
equivalent to a rise time less than ≈5 [ms], a negligible steady-state error of ≈10−2 × (yss −
y0) = 0.2 [V], where yss represents the steady state value of the system, relative to the
desired equilibrium value y0. Moreover, the system has no overshoot, and it behaves like
a first-order low-pass filter by design. The nonlinear MiL simulation options are N = 50
random plants from the uncertainty set, solver is ode15i, due to the difficulty of simulating
the closed loop plant otherwise (it is numerically unstable), with a step on the reference
signal of 5% from its initial equilibrium value of approximately 400 [V] and a simulation
time of 0.05 [s]. Almost the same conditions apply to the hybrid MiL simulation, with the
solver switched to ode113, as ode15i is not supported here, and a PWM period selected
randomly for each experiment from a nominal value TPWM = 17.5 [µs] with a ±20%
fluctuation from one simulation to another. A comparison of the nonlinear and hybrid cases
is presented also in Figure 11, where it can be seen that the transitory regime is practically
identical, but for the hybrid case, a slightly lower command signal is necessary in steady
state. Due to working with uR(t) instead of uC(t) only for the output signal, the current
ripple is propagated into the measured voltage.
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Figure 11. SEPIC-averaged state-space and hybrid model Monte Carlo closed loop simulations;
due to a relatively low bandwidth imposed in order to obtain good stability margins and easily
implementable controllers, all plants respond almost identically, although component tolerances
reach values of ±20%; the initial transients exist due to starting the simulations from the nominal
equilibrium point only.

3.3.2. Buck Converter

The buck converter state-space models for the ON and OFF states of switch S1, respec-
tively, as in Equation (41), are


− rp+rDS1

L − R
(R+rC)L

1
L − 1

L 0
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

;


− rp−rDS2

L − R
(R+rC)L 0 0 − 1

L
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

, (52)

with the auxiliary notation rp = rL +
rC R

R+rC
= rL + rC||R.

The nominal buck converter parameters and their tolerances are presented in Table 3.

Table 3. Buck and boost converter parameters, values, and corresponding tolerances.

Param. Val. Tol. Param. Val. Tol.

L 40 [µH] ±20% rL 10 [mΩ] ±10%
C 600 [µF] ±20% rC 0.2 [Ω] ±10%

rDS1 0.01 [Ω] ±10% rDS2 0.01 [Ω] ±10%
VF1 0.2 [V] ±10% VF2 0.2 [V] ±10%

The desired operating point specifications are as follows: the output signal y(t) ≡
uR(t) is at 5 [V], with nominal voltage source and load inputs u1(t) = E = 12 [V], u2(t)
= R = 15 [Ω]. The initial guesses for the state equilibrium values where x̃ = [1.25, 5] and
u3(t) = µ = 0.5 for the duty cycle control input. After computation, the actual equilibrium
point is (u, x, y) = ([12, 15, 0.4335], [0.333, 4.999], 5).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + ∆(s)Wunc(s)],
||∆||∞ ≤ 1, as in Table 1, has been automatically computed from input u3(t) to output
y1(t), with tolerances ±1 [V] and ±1 [Ω] for inputs u1(t) = E and u2(t) = R, respectively,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 101, ω = 107], with 200 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1000, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1] for a transfer function structure as in Equation (19), with a real pole and a
real zero, resulting in

Wunc(s) =
0.51758(s + 510.5)

s + 2906
. (53)
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The linearized buck plant family is comprised of second-order stable systems, in
minimal form, with one zero. The nominal model is

Gn(s) =
59178(s + 8333)

s2 + 5261s + 4.114× 107 . (54)

The entire uncertainty family has the same structure with poles, zeros, and equilibrium
points in the vicinity of the nominal counterparts. The uncertain buck plant family structure
and behavior, along with the PSO conservative bound computation are illustrated in
Figure 12.

Figure 12. Buck multiplicative uncertainty set computation and open loop responses for the operating
point with E = 12[V], R = 15[Ω], UR = 5[V]: step and frequency response, pole-zero placement; the
step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the weighting function specifications were for the sensitivity
function ωB = 1200 [rad/s], A = 10−4, M = 2, n = 1; for the complementary sensitivity
function ωBT = 12× 103 [rad/s], AT = 10−4, MT = 2, n = 2; and for the control effort
M0 = 0.1, M∞ = 100, |WKS(j · 1200)| = 2, resulting in

WS(s) =
0.5s + 1200

s + 0.12
, WT(s) =

s2 + 24000s + 1.44× 108

1× 10−4s2 + 339.4s + 2.88× 108 , WKS(s) =
100s + 6006

s + 6.006× 104 . (55)

As specified by the n = 2 and AT = 10−4 parameters of the complementary sensitivity
weighting function, WT , the closed loop control system mitigates sensor noise signals
with a considered spectrum starting from ωBT > 12,000 [rad/s], using an initial roll-off
of −40 [dB/dec], followed by an attenuation of at least four orders of magnitude. From
the µ synthesis, a controller of order 17 is obtained. After order reduction, the smallest
controller which manages to assure all imposed specifications for the plant family, with a
peak µ∆(LLFT(P, K)) ≤ 0.97 < 1, is

KBuck
red =


−0.12 −0.003479 −0.4751 12.68

−0.0001768 −2.304 −1.241× 104 −0.1827
−0.4611 1.241× 104 −4.522× 104 25.09

12.68 0.1838 25.09 0

. (56)

The nonlinear MiL simulation options are N = 50 random plants from the uncertainty
set, with the ode23t solver, with a step on the reference signal of 5% from its initial
equilibrium value of approximately 5 [V] and a simulation time of 0.02 [s]. The simulation
conditions for the hybrid MiL case are identical, with an additional PWM period selected
randomly for each experiment from a nominal value TPWM = 17.5 [µs] with a ±20%
fluctuation from one simulation to another. A comparison of the nonlinear and hybrid
cases is presented in Figure 13, where it can be seen that the transitory regime is practically
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identical. Due to working with uR(t) instead of uC(t) only for the output signal, the current
ripple is propagated into the measured voltage.

Figure 13. Buck averaged state-space and hybrid model Monte Carlo closed loop simulations with
a closed loop bandwidth ωB > 1200 [rad/s], equivalent to a rise time of ≈0.83 [ms], negligible
steady-state error, and no overshoot.

3.3.3. Boost Converter

The boost converter state-space models for the ON and OFF states of switch S1,
respectively, as in Equation (41), are


− rL+rDS1

L 0 1
L − 1

L 0
0 − 1

(R+rC)C
0 0 0

0 R
R+rC

0 0 0

;


− raux

L − R
(R+rC)L

1
L 0 − 1

L
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

, (57)

with the auxiliary notation raux = rL + rDS2 +
rC R

R+rC
= rL + rDS2 + rC||R. The nominal boost

converter parameters and their tolerances are presented in Table 3, as they correspond with
the buck converter parameters.

The desired operating point specifications are as follows: the output signal y(t) ≡ uR(t)
is at 24 [V], with nominal voltage source and load inputs u1(t) = E = 12 [V], u2(t) =
R = 15 [Ω]. The initial guesses for the state equilibrium values where x̃ = [3, 24] and
u3(t) = µ = 0.5 for the duty cycle control input. After computation, the actual equilibrium
point is (u, x, y) = ([12, 15, 0.5179], [0.3189, 23.999], 24).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + ∆(s)Wunc(s)],
||∆||∞ ≤ 1, as in Table 1, has been automatically computed from input u3(t) to output
y1(t), with tolerances ±1 [V] and ±1 [Ω] for inputs u1(t) = E and u2(t) = R, respectively,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 101, ω = 107], with 200 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1500, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1] for a transfer function structure as in Equation (19), with two real poles
and two real zeros, resulting in

Wunc(s) =
0.26592(s + 512.5)

(
s + 3.535× 104)

(s + 4016)(s + 1.389× 104)
. (58)

The linearized boost plant family is comprised of second-order stable systems, in
minimal form, with two zeros, one being of nonminimum phase. The nominal model is

Gn(s) =
0.65505(−s + 8.551× 104)(s + 8333)

s2 + 2988s + 9.746× 106 . (59)

The entire uncertainty family has the same structure with poles, zeros, and equilibrium
points in the vicinity of the nominal counterparts. The uncertain boost plant family struc-
ture and behavior, along with the PSO least conservative second-order bound computation
are illustrated in Figure 14.
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Figure 14. Boost multiplicative uncertainty set computation and open loop responses for the operat-
ing point with E = 12[V], R = 15[Ω], UR = 24[V]: step and frequency response, pole-zero placement;
the step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the weighting function specifications were for the sensitivity
function ωB = 650 [rad/s], A = 10−4, M = 2, n = 1; for the complementary sensitivity
function ωBT = 3250 [rad/s], AT = 10−4, MT = 2, n = 1; and for the control effort
M0 = 0.1, M∞ = 100, |WKS(j · 650)| = 2, resulting in

WS(s) =
0.5s + 650
s + 0.065

, WT(s) =
s + 3250

0.0001s + 6500
, WKS(s) =

100s + 3253
s + 3.252× 104 . (60)

An intrinsic limitation for the boost converter is that the bandwidth must not be
imposed more than half of the value of the right-half plane non-minimum phase zero of the
process, i.e., ωB ≤ z

2 ≈ 43,000 [rad/s]. For this problem, this is a sufficiently high margin,
as we also imposed a limitation for the command signal through WKS. As specified by the
n = 2 and AT = 10−4 parameters of the complementary sensitivity weighting function, WT ,
the closed loop control system mitigates sensor noise signals with a considered spectrum
starting from ωBT > 3250 [rad/s], using an initial roll-off of −40 [dB/dec], followed by an
attenuation of at least four orders of magnitude. From the µ synthesis, a controller of order
17 is obtained. After order reduction, the smallest controller which retains all imposed
specifications for the plant family, with a peak value µ∆(LLFT(P, K)) ≤ 0.9547 < 1, is

KBoost
red =


−0.065 0.8025 −0.002966 5.007
0.7116 −9.715× 104 1.066× 104 −30.91

0.002575 −1.065× 104 −1.422 −0.113

5.007 −30.91 0.1142 0

. (61)

With this regulator, the boost converter control system with parameters from Table 3
has very large stability margins, with phase margins between [81, 101] [◦] and gain margins
in the interval [40, 46] [dB]. The obtained sensitivity bandwidths vary between [828, 2510]
[rad/s], all of them better than the prespecified value of 800.

Nonlinear MiL simulation options are N = 50 random plants from the uncertainty set,
with the ode15i solver, with a step on the reference signal of 5% from its initial equilibrium
value of approximately 5 [V] and a simulation time of 0.02 [s]. The simulation conditions
for the hybrid MiL case are almost identical, with the use of the ode113 solver instead, set
to a relative tolerance of 10−8, and with an additional PWM period selected randomly for
each experiment from a nominal value TPWM = 17.5 [µs] with a ±20% fluctuation from
one simulation to another. A comparison of the nonlinear and hybrid cases is presented
in Figure 15, where it can be seen that the transitory regime is practically identical. Due
to working with uR(t) instead of uC(t) only for the output signal, the current ripple is
propagated into the measured voltage.
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Figure 15. Boost averaged state-space and hybrid model Monte Carlo closed loop simulations with a
closed loop bandwidth ωB > 650 [rad/s], equivalent to a rise time less than ≈1.53 [ms], negligible
steady-state error and no overshoot.

4. Conclusions and Future Work

There are several aspects to be discussed with regards to the presented toolbox and,
additionally, including future work to be implemented in upcoming iterations.

The main reason for which the hybrid system framework is considered for the pro-
posed toolbox is that the continuous-time plant needs to be regulated with a numerical con-
troller. The hybrid system context may include LTI or nonlinear systems, switching systems
(which are hybrid by nature), and singular systems, represented using differential-algebraic
equations (DAEs). As such, for a continuous-time plant, a continuous-time controller is
designed using the robust control framework. The controller is required to be numerically
implementable, therefore two interfaces are necessary, which lead to a hybrid system. The
numerical implementation must be easily obtained and automatically validated using rapid
control prototyping (RCP) techniques. However, the properties of the closed loop system
need to be reanalyzed after the discretization of the controller. Differential-algebraic equa-
tions represent a useful framework for modeling dynamical systems in engineering with a
network-based structure of components. They are used in various industry fields such as
mechanics (e.g., multiple-link mobile manipulator model), chemical engineering (modeling
of chemical reactions), electrical engineering, cyber-physical systems, etc. All categories of
processes taken into consideration in the hybrid framework are described using an approx-
imate model that incorporates their relevant behavior. However, these types of systems
have model and structure uncertainties. Moreover, the nonlinear systems that are linearized
around an equilibrium point introduce such uncertainties as well. Therefore, to consider
these uncertainties for the controller design, the robust control framework is mandatory.
The first main applicability of RCP was to derive the necessary C/C++ source code with
drivers for a given target microprocessor, and to simulate in reproducible conditions the
behavior of a complex system. For the latter case, the most relevant simulation types, given
in increasing order of complexity and closeness to reality, are Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL).

Many modeling software programs return circuits or mechanical systems already in
DAE form, and it would be difficult, or sometimes impossible, to reformulate them in
an ODE form without changing variables and losing their intended physical significance.
In the context of the robust control framework used for DAEs, a significant work is the
monograph in [33]. Although the robust control theory was well formulated in the previous
years, this is still an open domain for research and publication, as surveyed and described
in [34]. The difficulty of using methods which work correctly for multiple operating
points is mitigated by using adaptive methods, such as gain scheduling for tracking
problems. Furthermore, other relevant problems are automatic C/C++ code generation
for controller implementation and the commutation between the prescribed operating
points. Considering use cases for modeling, simulation, computer-aided design, and RCP, a
relevant set of examples in the domain of power electronics, hybrid vehicles, and renewable
energy systems is given in [35,36], where, although the main limitation is that analysis,
control, and implementation aspects must be performed individually for the presented
applications, they can be generally included under the same software framework, with
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the important exception of the robust control design and verification, along with the
quantization sensitivity analysis in a unitary manner.

The main hindrance is that the majority of applications involve DAE systems of index
greater than 1, meaning they necessitate more than one derivation step in order to formu-
late the problem, so there is a great need of tools that can also deal with high order DAEs,
i.e., index 2 or 3 [37–39]. Another reason for the proposal of considering DAEs model is that
they are also explicitly related to control issues, regarding both physical and operational
constraints. Two illustrative examples are the case of improper systems, such as an ideal
PID controller, and the elements that realize the decoupling in the MIMO systems case and
when the plant has impulsive dynamics. The robust control techniques’ drawback is that
the closed loopH2/H∞ norm must be minimized using the prescribed weighting functions
that penalize the exogenous outputs and these weighting functions need to be found ad
hoc, which sometimes lead to some intermediary bad controllers and work overhead.
Furthermore, after numerical implementation, the discrete controller loses a part of the im-
posed performances due to an inadequate sampling period or badly selected quantization
levels. Although there are solutions in the literature, there is no unified approach to solve
all these mentioned problems. As an extension to the framework and mindset given by
the two previously mentioned RCP use cases, the current project proposed a highly auto-
mated toolbox for robust control design, which, in the current state-of-the-art is a highly
iterative design process, when taking into consideration plant uncertainties, although the
mathematical background for solving the optimization problems is well established. It
proposes to eliminate design overhead when considering and modifying a specification set,
manually redesigning the weighting functions, the optimization procedure, discretization
of the regulators, quantization analysis, and closed loop analysis for the linearized and
initial hybrid plant. Furthermore, in unison with high-performance numerical toolboxes, a
justified report should automatically result after its use and explicitly state when unrealistic
design specifications were considered.
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Abbreviations
The following abbreviations are used in this manuscript:

CACSD Computer-Aided Control System Design
CCM Continuous Conduction Mode
DAE Differential-Algebraic Equation
DC Direct Current
DCM Discontinuous Conduction Mode
DOF Degree of Freedom
HyEQ Hybrid Equations Toolbox
LLFT Lower Linear Fractional Transformation
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LMI Linear Matrix Inequality
LTI Linear Time-Invariant
MiL Model-in-the-Loop
ODE Ordinary Differential Equation
PSO Particle Swarm Optimization
RCP Rapid Control Prototyping
SEPIC Single-ended primary-inductor converter
ULFT Upper Linear Fractional Transformation
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