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Abstract: Modern access controls employ biometrics as a means of authentication to a great extent.
For example, biometrics is used as an authentication mechanism implemented on commercial devices
such as smartphones and laptops. This paper presents a fingerprint biometric cryptosystem based on
the fuzzy commitment scheme and convolutional neural networks. One of its main contributions
is a novel approach to automatic discretization of fingerprint texture descriptors, entirely based on
a convolutional neural network, and designed to generate fixed-length templates. By converting
templates into the binary domain, we developed the biometric cryptosystem that can be used in
key-release systems or as a template protection mechanism in fingerprint matching biometric systems.
The problem of biometric data variability is marginalized by applying the secure block-level Bose–
Chaudhuri–Hocquenghem error correction codes, resistant to statistical-based attacks. The evaluation
shows significant performance gains when compared to other texture-based fingerprint matching
and biometric cryptosystems.

Keywords: biometric cryptosystem; fuzzy commitment scheme; fingerprint recognition; machine
learning; convolutional neural network

1. Introduction

Fingerprints are one of the most common biometric modalities used for authentication.
There are three fingerprint matching approaches: correlation-based matching (i.e., a direct
comparison of corresponding pixels or small regions of two fingerprints), minutiae-based
matching, and non-minutiae feature-based matching. Non-minutiae matching techniques
are based on the insight that some features of lower distinctiveness, such as local orienta-
tion, frequency, ridge shape, and texture information, can be extracted more reliably than
figureminutiae [1]. Despite this insight, the most popular and commonly used fingerprint
matching technique is the one based on minutiae, while global fingerprint texture informa-
tion is used primarily for fingerprints classification. However, the texture of fingerprints
carries information about different spatial frequencies, orientations, and phases, which
allows for fingerprint discrimination [2]. This line of research is pursued in this paper.

Biometric templates are digital representations of corresponding biometric sample.
Regardless of the feature extraction technique used, the design of biometric templates is
generally driven by the following requirements for increasing the system security: non-
reversibility (i.e., recovering the original sample from a given template must be computa-
tionally very expensive) [3], high-level performance (i.e., employed protection mechanisms
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should not affect the system accuracy), diversity (i.e., cross-matching across databases
should not be feasible), and revocability (i.e., revoking a compromised template and gen-
erating a new one should be easily feasible) [1,4]. However, meeting these requirements
remains a challenging task.

In general, there are three different ways to generate a protected biometric template:
encryption using classical symmetric or public key algorithms, feature transformation, and
biometric cryptosystems [4]. This paper contributes to the last research direction.

We propose a novel fingerprint biometric cryptosystem (BCS) that makes two separate
but related contributions to the state of the art in the field. The first contribution is in
building upon the seminal fingerprint matching method introduced by Jain et al. [2].
Their method is extended by introducing a novel approach to automatic feature extraction
from the fingerprint texture based on convolutional neural networks (CNNs) and transfer
learning. The AlexNet neural network [5] is trained to extract fixed-length features, which
are then binarized using discretization and coding, making them appropriate for applying
the Hamming distance as a matching metric. The second contribution is the introduction
of a biometric cryptosystem intended to increase the security of the biometric templates.
Instead of storing an unprotected biometric template or raw fingerprint image, in the
dedicated authentication scenario, the fixed-length binary representation of a fingerprint is
combined with associated cryptographic keys, hashed passwords, and other secret codes
by applying error correction techniques. It is computationally difficult to retrieve the
associated secret key (cryptographic keys, hashed password, or other secret code used) or
the biometrics from the secured template, and the secret key is recreated only if a matching
biometric is provided on verification. By applying different secret codes to the same
biometrics, the secured templates are revocable and cannot be cross-matched. CNN trained
on a different training set has a unique feature extractor, and it is an additional contribution
to the template revocability and diversity across various system implementations.

The proposed biometric cryptosystem is intended for use in key-release systems or
as a template protection mechanism in fingerprint matching biometric systems. At the
practical level, the proposed system is insensitive to minor print rotations, which are often
present in real-life conditions. On the other hand, it is not intended to work with partial
prints, but rather with prints containing a reference point that is not located too close to the
edge of the image. However, this requirement is not a limitation of the proposed system,
since it is easily achieved in the context of commercial biometric systems.

2. Related Work

The well-known feature extraction technique proposed in [2] determines the region
of interest (ROI) to the fingerprint image reference point. ROI is then tessellated into
the sub-images (sectors) in a certain order. The feature vector contains features that are
extracted from the local information of each sector and the ordered enumeration of the
tessellation captures the invariant global relationships among the local patterns. This
ensures that each sector contains local information individually, while due to a certain
order of sectors, invariable global connections between local textures can be distinguished.
The local discriminatory information of each sector needs to be decomposed into separate
components. A Gabor filter bank is one of the well-known techniques for extracting useful
information in specific bandpass channels, as well as to decompose this information into
biorthogonal components in terms of spatial frequencies. These quantitative measurements
are considered features when comparing. A single fingerprint feature vector, called a Fin-
gerCode [6], is a set of all features obtained from each sector individually. The comparison
of the two prints is based on finding the Euclidean distance between their corresponding
feature vectors.

The first sophisticated approach, combining biometrics and cryptography, was pro-
posed in [7,8]. This approach is based on fingerprints and is the first to become commer-
cially available under the trademark Biometric Encryption™, (later known as Mytec 1 and
Mytec 2). The trademark was abandoned in 2005. The Fourier transform is used to extract
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biometric characteristics, and the majority vote is used to obtain the code. This code is used
to protect the predefined cryptographic key, by combining the key with a biometric input
(key binding). One of the first approaches based on behavioral characteristics (specifically,
keyboard typing dynamics) is a hybrid system intended to increase password security,
proposed by Monrose, Reiter, and Wetzel in [9]. The system generates a short binary code,
which is then combined with a password, which increases its entropy and the total number
of possibilities up to 215 times. A similar methodology was applied for the speech [10],
where a 46-bit key was successfully generated, with a false rejection rate (FRR) of about
12%. In [11], 43 signing characteristics were defined and quantized, and a binary array was
generated by merging. The average key entropy achieved was 40 bits, with an FRR of 28%.

A scheme that enhances identification and authorization in secure applications by
binding a biometric template with authorization information on a token, such as a magnetic
stripe card, was proposed in [12]. The majority coding of sampled biometric features
of an iris is used to derive a key. The obtained error correction code (ECC) and the
hash value of the biometric template are stored in a protected form and used for key
reconstruction. The application of fuzzy logic in biometrics was proposed in [13], where a
fuzzy commitment scheme (FCS) was developed, using the basics of cryptography and
error correction techniques. This scheme represents a generalization and improvement
of the approach proposed in [12], with improved security and shorter ECCs. In [14], a
practical and safe method for the application of iris biometrics in cryptographic systems
was introduced, based on the fuzzy commitment scheme. The iris code is 2048 bits long
and it is obtained by demodulating the image of the iris with complex 2D Gabor wavelets.
When comparing two samples of the same iris, there are differences between them, which
represent an error. These errors can be divided into two groups: random errors and burst
errors. Random errors are caused by sensor noise, iris distortion, etc. Burst errors originate
due to undetected lashes and glare. To overcome this problem, the proposed system
employs a two-layer error correction method of Hadamard and Reed-Solomon codes. Error
correction techniques are applied to a cryptographic key, resulting in a 2048-bits-long iris
pseudo-code. This code is then combined with the iris code by XOR operation, resulting
in a protected code. The protected code and the hash value of the key do not reveal
information about the key itself and form helper data that can be stored in smart cards in
the proposed solution. Recently, advances in machine learning have led to the increased
use of neural networks for classification, recognition, and separation of objects in images.
The initial results of the application of CNNs in biometric matching or feature extraction are
promising. In [15], a biometric verification system based on two CNN modules that extract
features from two fingerprints was presented. The AlexNet network was chosen for feature
extraction. A concatenation of the extracted features is used as input for the fully connected
(FC) layer, which calculates the score of their coincidence. This approach does not use
input processing and image enhancement—the entire system relies on CNN capabilities.

Wu et al. [16] present fingerprint patterns that were classified into six types, and the
accuracy of the recognition were improved to facilitate the research on human personality
characteristics. Based on this idea, a six-category fingerprint database is annotated man-
ually, and CNN is proposed for identifying real fingerprint patterns. Nguyen et al. [17]
show the proposed extractor classifies each pixel of a fingerprint image into a category of
minutiae with a certain orientation or a non-minutia point, thus obtaining location and
orientation information of minutiae simultaneously. In [18], a lightweight CNN structure
based on the singularity region of interest is proposed.

The experimental results show that the accuracy of the testing set of the proposed
structure achieves 93%. The proposed CNN model with fewer neurons can achieve better
suppression of overfitting and robustness to noise. Li et al. in [19] present tap water
fingerprinting using a convolutional neural network built from images of the coffee-ring
effect. These experiments’ results suggest that the unique and reproducible residue patterns
of tap water samples that can be imaged with a cell phone camera and a loupe contain a
wealth of information about the overall composition of the tap water.
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3. Proposed Biometric Cryptosystem

The fingerprint ridges often run smoothly in parallel, but there are one or more regions,
called singular regions, where papillary lines form distinctive shapes are characterized
by high curvature, frequent ridge terminations, etc. These regions can be classified into a
loop, arch, delta, and whorl. The core point of the fingerprint, defined as the point at which
the papillary line has the maximum concave curvature in a given fingerprint image, was
chosen as the reference point for the proposed method. However, determining this point
precisely is a great challenge and still a subject of scientific research interest. The precise
determination of the reference point greatly affects the accuracy of biometric systems based
on the local textures. Determining a reference point is performed by defining an orientation
field O for the fingerprint image, where O(i, j) denotes the local orientation of the papillary
line in the pixel (i, j). Due to the complexity, the local orientation is determined at the
block-level of a certain size, instead of the pixel-level of each, so the input image I is
normalized to have a mean value of 0 and a standard deviation of 1 and is divided into
w x w sized non-overlapping blocks. For each pixel, the gradients ∂x(i, j) and ∂y(i, j) are
calculated using the Sobel operator.

The corresponding operator consists of two 3 × 3 convolutional matrices as depicted
in Figure 1.
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Figure 1. Horizontal and vertical Sobel kernels.

The local orientation field estimation O of each block is calculated at the central pixel
of each block according to the following equations [20]:

Vx(i, j) =
i+w/2

∑
u=i−w/2

j+w/2

∑
v=j−w/2

2∂x(u, v)∂y(u, v), (1)

Vy(i, j) =
i+w/2

∑
u=i−w/2

j+w/2

∑
v=j−w/2

(∂2
x(u, v)− ∂2

y(u, v)), (2)

O(i, j) =
1
2

tan−1
(

Vy(i, j)
Vx(i, j)

)
. (3)

Mathematically speaking, O represents the orthogonal direction in relation to the
dominant direction of the Fourier spectrum of each window. To smooth the orientation
field in a local neighborhood, the estimated orientation field is filtered with a low-pass
filter. The orientation image is previously converted to a continuous vector field:

Φx(i, j) = cos(2O(i, j)), (4)

Φy(i, j) = sin(2O(i, j)), (5)

where Φx and Φy are x and y components of the field vector, respectively. The resulting
vector is then filtered:

Φ′x(i, j) =
wΦ/2

∑
u=−wΦ/2

wΦ/2

∑
v=−wΦ/2

W(u, v)Φx(i− uw, j− vw), (6)
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Φ′y(i, j) =
wΦ/2

∑
u=−wΦ/2

wΦ/2

∑
v=−wΦ/2

W(u, v)Φy(i− uw, j− vw), (7)

where W is a two-dimensional low-pass filter, and a wΦ and wΦ denote dimensions of
the filter. Based on the obtained values, the final smoothed orientation field O′ is then
calculated as:

O′(i, j) =
1
2

tan−1

(
Φ′y(i, j)

Φ′x(i, j)

)
. (8)

A two-step reference point determination has been implemented in the proposed
biometric cryptosystem. In the first step, the method from [21] was applied, modified to
run a couple of iterations with a fixed gradient variance 1, but with different block variance
σ while determining the orientation field from [20,22].

In the first iteration, value σ = 3 is used. If the detection of the reference point does
not occur, then σ = 5 is used, resulting in lower accuracy but a higher detection rate. In
both steps, the following parameters were used: the length of step is set to 7, the number
of starting points sampled along the x and y axes is set to 2, and the threshold is set to
2. In case the reference point is not detected, fixed reference values are used. Fingerprint
image enhancement is performed to eliminate noise originating from the sensor and
intensity variation originating from changeable finger pressure on the sensor. Based on the
orientation field and the ridge frequency, a 2D symmetric Gabor filter is formed, which
convolutes with the normalized input image [20].

Based on the threshold value, the image is converted to monochrome, as shown in
Figure 2.
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Figure 2. Image enhancement—input image (a) and enhanced image (b). The input image is taken
from FVC2000 database, available online at http://bias.csr.unibo.it/fvc2000/databases.asp, (accessed
on 17 February 2021).

3.1. Determining the Region of Interest and Forming a Training Set

Based on the reference point, the size of the region of interest is selected in accordance
with the parameters of the applied neural network. For the AlexNet, the size of the input
image is 227 × 227 pixels. The fingerprint image is cropped to those dimensions, placing
the reference point at the center of ROI. CNNs require as many samples as possible for
a training set. Their most common application is object recognition, where hundreds of
training images are provided for each detection class. With fingerprints, this is not possible,
since one identity class is created with only a few images, which significantly affects the
accuracy of the neural network and represents a challenge for application in biometrics. To
produce a larger training set, for each single input image, we generated multiple instances
by rotating it relative to the reference point in the range of ±24◦ in ±6◦ increments, as
shown in Figure 3. At the same time, we increased the accuracy of the system and its
insensitivity to the usual small rotations during sampling.

http://bias.csr.unibo.it/fvc2000/databases.asp
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In the proposed scheme, which is evaluated on the FVC2000 database, the first five
samples of each identity class are used to make the training set for the convolutional neural
network. Each sample is rotated in eight different angles, so each class is formed with a
total of 45 images. When creating biometric templates, only the original images of the fin-
gerprints are used to generate five independent templates stored in the template database.

3.2. Feature Extraction

CNN is named after the convolution, an operator often used in image processing to
detect the edges or objects in images. Convolutional filters extract features from the images;
based on those features, the network is trained to classify objects. In this scheme, features
extracted by CNN are used in the biometric cryptosystem, in contrast to the traditional
methods of extracting minutiae or information about global and local texture characteristics.
Several different convolutional networks have been tested experimentally, and the best
results, in terms of training speed and accuracy, have been achieved with AlexNet [5].
The network consists of five convolutional layers and three FC layers and was trained
in 200 epochs, with an initial learning rate of 0.001 in series of size 96. The last FC layer
was adapted to generate 1024 features, which forms a biometric template, i.e., a digital
representation of the input fingerprint.

3.3. Discretization of Fingerprint Features

FCS requires a binary representation of fixed-length biometric features. Therefore, it is
necessary to discretize the feature vector, which consists of real numbers. Quantization
based on three limit values is applied to form four quantization ranges, where each element
of the feature vector is coded with two bits:

(Bi)t =


00, i f (Vi)t ≤ (T1)t
01, i f (T1)t < (Vi)t ≤ (T2)t
11, i f (T2)t < (Vi)t ≤ (T3)t
10, i f (Vi)t > (T3)t

, (9)

where Bi denotes the discretized binary template, Vi is input feature value, and T1, T2,
and T3 are determined limit values. A binary representation of the feature vector in a
fixed-length array of 2048 bits is formed. The limit values are experimentally determined
for the selected CNN, where T2 is constant and set to zero, while T1 and T3 are equal
in absolute value but with opposite signs. The choice of the limit values T1 and T3 is in
the direct correlation to the accuracy of the system; precisely the choice has an impact on
the false acceptance rate (FAR) and the false rejection rate (FRR), as depicted in Figure 4:
FAR increases and FRR decreases as the absolute limit value increases. Depending on the
biometric application, different FAR and FRR requirements can be adopted.
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3.4. Forming a Biometric Cryptosystem

Biometric cryptosystems are developed to protect a cryptographic key using bio-
metrics or to generate a key based on biometric features [23]. The problem of biometric
invariance is solved by the application of helper data in biometric cryptosystems. The most
common approach is to apply ECC, a technique for correcting errors in data transmission
in telecommunications.

Two approaches are dominant in biometric key binding cryptosystems: the fuzzy
commitment scheme [13] and the fuzzy vault [24]. The fuzzy commitment scheme is used
if templates can always be represented with a fixed-length binary array. Performing the
XOR operation over the template and error correction code of the same length with XOR
operation produces a value called the difference vector. During authentication, the error
correction code is obtained by performing the XOR operation over the sampled template
and the saved difference vector. If the sampled template and the stored template originate
from the same biometric source, the obtained value is close to the error correction code,
which may be restored through a correction algorithm.

The proposed concept of the biometric cryptosystem is depicted in Figure 5. It is
inspired by a pioneering iris cryptosystem proposed by Hao et al. in [14]. The input
fingerprint image is segmented and enhanced. Based on the detected referential point, the
image is cropped to the ROI. The trained CNN extracts a fixed-length feature array, and
when the quantization is applied, a binary fingerprint code is formed. Error correction
techniques are applied to the cryptographic key K, thus obtaining a pseudo-code θps. The
resulting code is then combined by the XOR operation with a binary fingerprint code of
the same length θic, thus obtaining the protected code θlock:

θlock = θps ⊕ θic. (10)
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This code concurrently protects a cryptographic key and biometric template and can
be stored in a database or another medium for later verification.

When reconstructing the key, the protected code is combined with the fingerprint code
sample by the XOR operation, resulting in a pseudo-code:

θ′ps = θlock ⊕ θ′ic = θps ⊕ ε. (11)

If the fingerprint verification code originates from the same biometric source, the
pseudo-code contains a cryptographic key K with an error due to biometric variability in
sampling. However, by applying the error correction technique, the cryptographic key is
restored. On the other hand, if the fingerprint verification code originates from a different
biometric source, cryptographic key K cannot be restored.

3.5. Selection of Error Correction Technique

Failure of a biometric system generally leads to a breach of security in applications
or facilities that it is designed to protect. Under certain circumstances, with sufficient
resources and available time, any security system can be breached. A detailed analysis
of vulnerabilities and attacks on authentication systems is beyond the scope of this paper.
However, we analyzed some vulnerabilities specific to biometrics. In contrast to other
authentication systems, where the final result is based on a simple comparison of input and
stored data, the final decision of matching two biometrics is score-based, which opens the
possibility for specific attacks at this stage. However, unlike conventional biometrics, BCS
outputs the correct secret key or a failure message, which makes it inherently protected
from attacks on the decision-making stage. However, due to the possibility that the attacker
manages to gain access to the intermediate results, it is necessary to pay attention to known
score-based and statistical attacks on BCS. This makes the selection of ECC important and
crucial for security.

In order to develop a biometric cryptosystem, it is necessary to select an appropriate
technique for error correction. All developed ECCs were designed for communication and
data storage purposes. Errors that occur in a communication channel and data storage
can be divided into burst error and bit-level errors. In [14], a two-layer error correction
method was formed implementing the Hadamard and Reed–Solomon correction codes.
Bit-level errors are corrected using the Hadamard codes, while the Reed–Solomon codes are
used for sequence errors. Cryptographic keys, hashed passwords, and other secret codes
are considered random and statistically independent, but error correction codes are not.
When combined, ECC statistics can be used to attack BCS. The security analysis of ECCs
in [25] discovered the vulnerabilities to statistical-based attacks. The authors discussed
various attacks running an ECC in a soft decoding or erasure mode attack and an ECC
histogram attack. All of these vulnerabilities are caused by the approach of splitting data
into small chunks for encoding. A general conclusion is that all ECCs consisting of small
chunks, such as Reed–Solomon and Hadamard codes, seem to be most vulnerable to the
attacks exploiting the output statistics. Following this insight, in the proposed system we
apply the single-block error correction technique—the Bose–Chaudhuri–Hocquenghem
(BCH) code. In terms of resistance to known score-based attacks: Hill Climbing [26] and
Nearest Imposter [25], if the applied BCH ECC error correction capacity is far less than
n/2 (the length of the block), it is unlikely that the attacker would able to deal with a huge
quantization step.

BCH codes are cyclic error correction techniques that are defined using polynomials
over a Galois finite field. A binary BCH code consists of three parameters, n, k, t, where n is
the length of the block (i.e., the length of the biometric template) and its value is defined as
n = 2m−1, k is the length of the message being encoded (i.e., the secret key length), and
t is the number of bits that can be corrected. Due to parameter n, block length has to be
2047 bits, so the last bit of the biometric template is excluded. Our goal was to create a BCS
with a 128-bit long key, which could later be used in symmetric cryptographic systems.
Since the BCH code does not allow this particular key length as a valid parameter value
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for the template length adopted in our approach, the next possible larger key length of
133 bits is selected. Applying the BCH decoding to the pseudo-code θ′ps removes the
error originating from the difference between two sampled biometrics of the same identity.
The number of bits that can be corrected by the BCH code, for the adopted key length, is
365 bits. Due to the uneven relationship between the key length and the number of bits
that can be corrected, for a key length of 199 bits, it is possible to correct 341 bits, and the
system performance is not significantly changed. Increasing the key length, we lower the
ECC capacity, which leads to lower FAR, but higher FRR.

4. Experimental Evaluation of the System

The proposed approach was evaluated on the FVC2000 DB2-A fingerprint database
produced to conduct the fingerprint vendor competition in 2000 [1]. This database is widely
used for testing fingerprint verification systems, and thus appropriate for comparative
evaluation of the system accuracy. It contains eight images per hundred different fingers.
Each sample is represented by an eight-bit greyscale image of size 256× 364 pixels, captured
by a capacitive sensor with a resolution of 500 dots per inch.

For evaluation of the proposed system, the first five images of each fingerprint class
were used for training and enrolment, while the additional three images of the same class
were used for verification. During the enrolment phase, five secured biometric templates
were generated for each identity, by applying the same randomly generated secret key.
Before the generation of the protected templates, the templates were assessed concerning
their quality. All five templates of a given fingerprint class were compared with each other
using the Hamming distance. Each template that did not match any of the other templates
of the same class was rejected as unreliable and replaced.

The evaluation was conducted as follows. For each identity in the database, five
corresponding protected templates were matched to three genuine fingerprints belonging
to the same class and to all fingerprints belonging to the remaining 99 imposter identities
in the database. In total, 1500 genuine (i.e., intra-class) comparisons and 148,500 imposter
(i.e., inter-class) comparisons were conducted.

Tables 1 and 2 provide evaluation results of the proposed biometric cryptosystem
obtained for the key lengths of 133 and 199 bits, respectively, and varying absolute limit
values. The evaluation results are presented in terms of FAR, FRR, and genuine acceptance
rate (GAR), which represents the inverse of FRR. As expected, FAR increases, and FRR
decreases as the absolute limit value increases. Having the key length of 133 bits, the equal
error rate performance is achieved for the absolute limit value of 11.5 (FAR of 1.25% and
FRR of 1.00%). With a key length of 199 bits, the equal error rate performance is achieved
for the absolute limit value of 11.5 (FAR of 1.15% and FRR of 1.33%).

Table 1. FAR, FRR and genuine acceptance rate (GAR) obtained for the key length of 133 bits and
varying absolute limit values.

Limit
Values 8 9 10 11 11.5 12 13 14

FAR 0.08% 0.22% 0.43% 0.90% 1.25% 1.75% 2.98% 4.45%
FRR 8.67% 4.67% 2.33% 2.00% 1.00% 1.00% 1.00% 1.00%
GAR 91.33% 95.33% 97.67% 98.00% 99.00% 99.00% 99.00% 99.00%

Table 2. FAR, FRR and GAR obtained for the key length of 199 bits and varying absolute limit values.

Limit
Values 8 9 10 11 12 12.5 13 14

FAR 0.05% 0.10% 0.25% 0.47% 0.87% 1.15% 1.54% 2.43%
FRR 10.67% 7.33% 4.33% 2.33% 1.67% 1.33% 1.33% 1.00%
GAR 89.33% 92.33% 95.67% 97.67% 98.33% 98.67% 98.67% 99.00%
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The comparative evaluation of the proposed biometric cryptosystem with respect to
other relevant approaches is summarized in Table 3, in terms of FAR, FRR, equal error rate
(EER), and the key length (where available).

Table 3. Comparative evaluation.

Method FAR FRR EER Key Length Database

Fingercode [2] 4.59% 2.83% / / [2]
Bakhishi and Veisi [15] / / 17.50% / FVC2002

Tuyls et al. [27] 5.2% 5.4% 5.3% 76 FVC2000
Imamverdiyev et al. [28] 0% 4.7% 76 FVC2000
Imamverdiyev et al. [28] 0% 10.67% 140 FVC2000

Proposed BCS 1.25% 1.00% 1.13% 133 FVC2000
Proposed BCS 1.15% 1.33% 1.23% 199 FVC2000

The results may be regarded as satisfactory, especially when keeping in mind that,
apart from removing outlier templates, no further selection of fingerprint samples was per-
formed. We recall that the proposed system is not intended to work with partial prints, i.e.,
prints with no reference point, or with a reference point located too close to the edge of the
image. However, such prints were not removed from the database, to support the validity
of the evaluation. In commercial applications of the proposed biometric cryptosystem, the
requirement that fingerprint samples should contain appropriately located reference points
could be easily meet, which would further improve the performance of the system.

5. Conclusions

In this paper, we proposed a biometric cryptosystem scheme for authentication with
template protection and biometric-dependent cryptographic key-release. One of its main
contributions is a novel approach to automatic discretization of fingerprint texture descrip-
tors, based on CNN. In addition, by applying the appropriate error correction technique
that meets the security requirements, we were able to create an FCS with a key length that
can be used in other state-of-the-art cryptographic systems. The reported experimental
results confirm the prospects of the proposed approach and open the possibility of future
improvements and innovations.

Possible future research directions are related to electrocardiography (ECG) and
electroencephalography (EEG) biometric identification. The method for ECG biometric
identification introduced in [29] is based on cascaded CNN. In addition, a new CNN
with a global spatial and local temporal filter reported in [30] works directly on raw EEG
data, not requiring feature engineering. Due to the ever-increasing computational power,
several CNN-based methods for ECG biometric identification have been recently proposed
to increase identification performance and classification accuracy. In [31], Gurkan and
Hanilci proposed an ECG-based biometric identification method using QRS images and
two-dimensional CNN. These research lines will be pursued in our future work.
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