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Abstract: Supervised learning and pattern recognition is a crucial area of research in information
retrieval, knowledge engineering, image processing, medical imaging, and intrusion detection.
Numerous algorithms have been designed to address such complex application domains. Despite
an enormous array of supervised classifiers, researchers are yet to recognize a robust classification
mechanism that accurately and quickly classifies the target dataset, especially in the field of intrusion
detection systems (IDSs). Most of the existing literature considers the accuracy and false-positive
rate for assessing the performance of classification algorithms. The absence of other performance
measures, such as model build time, misclassification rate, and precision, should be considered the
main limitation for classifier performance evaluation. This paper’s main contribution is to analyze
the current literature status in the field of network intrusion detection, highlighting the number
of classifiers used, dataset size, performance outputs, inferences, and research gaps. Therefore,
fifty-four state-of-the-art classifiers of various different groups, i.e., Bayes, functions, lazy, rule-based,
and decision tree, have been analyzed and explored in detail, considering the sixteen most popular
performance measures. This research work aims to recognize a robust classifier, which is suitable for
consideration as the base learner, while designing a host-based or network-based intrusion detection
system. The NSLKDD, ISCXIDS2012, and CICIDS2017 datasets have been used for training and
testing purposes. Furthermore, a widespread decision-making algorithm, referred to as Techniques
for Order Preference by Similarity to the Ideal Solution (TOPSIS), allocated ranks to the classifiers
based on observed performance reading on the concern datasets. The J48Consolidated provided
the highest accuracy of 99.868%, a misclassification rate of 0.1319%, and a Kappa value of 0.998.
Therefore, this classifier has been proposed as the ideal classifier for designing IDSs.

Keywords: classifiers ranking; class-imbalance learning; IDS; IDS base learner; intrusion detection
systems; network-based IDS

1. Introduction

The footprint of artificial intelligence-enabled Internet of Things (IoT) devices [1] in our
day-to-day life attracts hackers and potential intrusions. In 2017, WannaCry ransomware,
a self-propagating malware, devastatingly impacted computing resources by infecting more
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than 50,000 NHS systems [2]. The network threats such as WannaCry become a nightmare
for the security manager and remain an open research area. Many intrusion detection
schemes have been proposed to counter malicious activities in a computer network [3–6].
All the network anomaly counter mechanisms are either unsupervised, supervised, or a
combination of both. The supervised algorithms are rigorously used to design state-of-
the-art intrusion detectors. This is because the ability to learn from examples makes
the supervised classifiers robust and powerful. In data science, an array of supervised
classifiers exists, and each one of them claims to be the best among others. However, in the
real world of classification processes, the scenario is somewhat different. The supervised
classifiers are susceptible to misclassification if overfit or underfit during the training
process [7]. Another aspect is a class-imbalance issue [8] in the underlying dataset of a
classification model. A supervised classifier always favors the majority class if the training
is incorporated on a high class-imbalance dataset [9,10]. Apart from the class-imbalance
issue, the data purity also decides the performance of the supervised classifiers. The data
are stored and are available in numerous formats and include several outliers such as
missing class information, NULL, and NaN values. The raw data with outliers drastically
limit the performance of the classifiers. The classifiers reveal unrealistic results with the
data of outliers [11,12]. This leads to the development of robust and versatile classifiers for
impure data. In this regard, numerous researchers are concerned about pattern recognition,
and data extraction [13,14], which is the main objective of data mining, and perhaps one
of the motivational aspects for exploring [15–17] supervised machine learning algorithms.
Numerous classification mechanisms are available in the literature to handle impure data,
especially in designing full-bodied network intrusion detection systems (IDS). However,
the central question of the researchers is associated with the selection of the optimum
classifiers to develop a base learner for IDS.

Furthermore, there is a lack of a standard guideline to select the most suitable classifier
for their datasets. Multiple studies have been conducted on the before-mentioned problem.
However, most of the proposed studies available in the literature evaluate the classifiers
using standard performance measures such as classification accuracy and false-positive
rate [18–22]. It is worth mentioning that the quality of a classifier does not depend only
on the classification accuracy. Other performance measures such as misclassification rate,
precision, recall, and F-Score empirically define the classifier’s performance quality. There-
fore, it is necessary to study a comprehensive review that can be used as a guideline to
analyze classifiers using various performance measures in various datasets. Therefore,
the main objective of this paper is to examine several research papers in the field of host-
based and network-based intrusion detection considering multiple aspects. This study
analyzes the type of classification used, the datasets used to consider the sample size, per-
formance measures discussed in evaluating classifier performance, inferences, and research
gaps encountered.

Moreover, the proposed study provides a guideline for designing a host-based or
network-based intrusion detection system. This study’s main contribution is to present
an in-depth analysis of fifty-four widely used classifiers considering six different classifier
groups across thirteen performance measures. These classifiers are comprehensively
analyzed through three well-recognized binary and multiclass NSLKDD, ISCXIDS2012,
and CICIDS2017 datasets. The decision-making algorithm referred to as Techniques for
Order Preference by Similarity to the Ideal Solution (TOPSIS) [23,24] is incorporated as a
reliable feature to allocate weight to these classifiers. These weights are subsequently used
for ranking the performance of the classifiers. Consequently, the best classifier for a dataset
and the best of each group of classifiers is proposed. Moreover, the best classifier across all
the datasets is suggested as the most generic classifier for designing an IDS.

The research of this analysis is structured as follows. In Section 2, the most recent study
of supervised classifiers is delineated; the materials and methods has been mentioned in
Section 3. Furthermore, in Section 4, the results of the analysis has been discussed. Section 5
is dedicated for J48Consolidated classifier, followed by the conclusion in Section 6.
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2. Related Works

Supervised classifiers are extensively used in the field of network security. The most
potential applications of machine learning techniques are in risk assessment after the
deployment of various security apparatus [25], identifying risks associated with various
network attacks and in predicting the extent of damage a network threat can do. Apart from
these, supervised classification techniques have been explored and analyzed by numerous
researchers in a variety of application areas. Most of those studies’ analyses focused on
a detailed exploration to validate a theory or performance evaluation to come across a
versatile classifier [26–28]. The performance of supervised classifiers has been explored in
intrusion detection [29], robotics [18], semantic web [19], human posture recognition [30],
face recognition [20], biomedical data classification [31], handwritten character recogni-
tion [22] and land cover classification [21]. Furthermore, an innovative semi-supervised
heterogeneous ensemble classifier called Multi-train [32] was also proposed, where a justifi-
able comparison was made with other supervised classifiers, such as k-Nearest Neighbour
(kNN), J48, Naïve Bayes, and random tree. Multi-train was also successfully achieved,
and its prediction accuracy of unlabeled data was improved, which, therefore, can reduce
the risk of incorrectly labeling the unlabeled data. A study on this topic, which exclusively
deals with classifiers’ accuracy measures using multiple standard datasets, is proposed
by Labatut et al. [33]. An empirical analysis of supervised classifiers was carried out by
Caruana et al. [34] using eleven datasets with eight performance measures, where the
calibrated boosted trees appeared as the best learning algorithm. Besides, a systematic
analysis of supervised classifiers was carried out by Amancio et al. [35] under varying
classifiers’ settings.

The focus of this paper is to analyze the performance of various supervised classifiers
using IDS datasets. Therefore, the authors have decided to review related articles in the
literature that examined different classifiers using IDS datasets. The classifier analysis
is expected to provide a platform for the researchers to devise state-of-the-art IDSs and
quantitative risk assessment schemes for various cyber defense systems. Numerous studies
and their detailed analytical findings related to supervised classifiers have been outlined in
Table 1.

Table 1 summarizes the taxonomy of analyzed articles. In the last column, an at-
tempt has been made to outline the inferences/limitation or research gaps encountered.
The summarization of these analyses provides scope for meta-analysis about the supervised
classifiers, which ultimately shows direction or justification for further investigation in the
field of supervised classification using intrusion detection datasets. From Table 1, it has
been observed that the decision tree and function-based approaches are mostly explored.
The usage statistics of supervised classifiers are presented in Figure 1.

According to Figure 1, J48 (C4.5) and Random Forest of decision trees and function-
based SVM and Multilayer Perceptron (Neural Network) have been analyzed considerably
by numerous researchers. In this work, the authors have tried to understand the reason
behind decision trees’ popularity and function-based approaches. Therefore, the authors
have summarized the performance metrics results used to explore those classifiers in the
analyzed papers. Most of the researchers focused on accuracy scores; therefore, the authors
used the accuracy score as a base measure to understand the reason behind the use of
decision trees and function-based classifiers.

Therefore, in this study, the authors have calculated the minimum, maximum, and av-
erage accuracy of Bayes, Decision trees, Functions, Lazy, and Rules group of classifiers
concerning the literature outlined in Table 1. The calculated detection accuracy of the re-
search papers surveyed is presented in Figure 2. In Figure 2, almost all groups of classifiers
show a maximum accuracy rate of more than 99%.
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Table 1. Detailed findings and analysis of supervised classifiers.

Inferences/Observations/
Limitations/Research Gaps

With 20 features, BayesNet shows
the highest amount of accuracy of
99.3% for classifying DDoS
attacks, and PART shows 98.9%
for classifying Probe attacks. No
class imbalance issue was found.
Tested on an older dataset, which
is now obsolete. Completely
ignored U2R and R2L attacks.
Hence, classifiers performance
may vary with the inclusion of
U2R and R2L instances

Gaussian classifier seems to be
effective for R2L and Probe
attacks with the highest detection
rate of 0.136 and 0.874,
respectively. Naïve Bayes proved
suitable for U2R attacks with the
highest detection rate of 0.843,
Decision Tree and Random Forest
classified DoS attacks with the
highest detection rate of 0.972.
Considering the highest detection
rate of three training sets is not
convincing. Instead, the average
detection rate could have
highlighted better classifiers for
the given scenario.

A decent number of performance
measures were used to analyze
the classifiers, Other
state-of-the-art classifiers are
missing from the comparison.
Dataset sample size, number of
features considered are not
precise. Although the Naïve
Bayes proved to be a better
classifier in FP Rate, the ID3
performs far ahead than the Naïve
Bayes. Class imbalance issues are
not considered during evaluation.

The accuracy of the induction tree
is promising, with an overall rate
of 99.839/%. Although it is
appreciable that the induction tree
performs well in the class
imbalance KDD’99 dataset, the
size of the training set and the
class-wise breakup of training
stances are not precise. The
reason for considering different
training instances for three
different classifiers is not clear.
Considering the ROC area, it is
evident that the Induction tree
correctly classified Neptune,
Smurf, pod, teardrop, port sweep,
and back attack instances.

C4.5 scores the highest average
accuracy of 64.94% as compared
to 62.7% of SVM.
Considering attacks accuracy,
C4.5 seems to be suitable for
detecting Probe, DoS, and U2R
attacks, whereas SVM classifies
R2L threats better.
Class imbalance issue is not
addressed.

J48 (C4.5) proved to be an
accurate classifier for classifying
test instances.
Data extraction and the
preprocessing procedure is not
clearly defined.
The training set is a high-class
imbalance, so the evaluation of
the classifiers in terms of accuracy
and detection rate is not sufficient.

Performance measures used

Accuracy
Kappa
Mean Absolute Error
Root Mean Squared Error

Detection Rate

Accuracy, Kappa, RMSE,
Precision
Recall, FP Rate
Precision, Recall
FN Rate,
F-Measure

Accuracy, MA Error, RMS Error
RA Error, RRS Error, TP Rate
FP Rate, Precision, Recall,
F-Measure, ROC Area

Accuracy
Detection Rate
FP Rate

Accuracy
Detection Rate
FP Rate

Dataset, Features and
Sample Size

Dataset: KDD’99
FS procedure: Information Gain
Number of Features Selected: 20
Training instances: 492,842
Testing Instances: N/A

Dataset: KDD’99
Features Selected: All features
Training instances: 270,000
Testing Instances: 311,029

Dataset: KDD’99
Features Selected: All features

Dataset: KDD’99
Features Selected: All features
Training instances: N/A
Testing Instances: 19,870

Dataset: KDD’99
Features Selected: All features
Training instances: N/A

Dataset: KDD’99
Features Selected: All features
Training instances: 311,029
Testing Instances: 494,014

Classification Type
Multi Class
Normal
DoS
Probe

Multi Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
Neptune
Smurf
guess_passwd
Pod

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Classifiers Evaluated

J48 (C4.5),
BayesNet,
Naïve Bayes,
Part,
Multilayer Perceptron,
SVM

Gaussian,
Naïve Bayes,
Decision Tree (C4.5),
Random Forest

Naïve Bayes
J48(C4.5)
ID3

Induction Tree
Naïve Bayes
ANN

C4.5
SVM

SVM
J48 (C4.5)
Multilayer Perceptron

Author/Year/Reference Araar et al. (2005) [36] Gharibian et al. (2007) [37] Panda et al. (2008) [38] Srinivasulu et al. (2009) [39] Wu et al. (2009) [40] Jalil et al. (2010) [41]

Inferences/Observations/
Limitations/Research Gaps

Random Forest appears to be
effective for detecting DoS and
Probe attacks.
NB Tree is useful for detecting
R2L and U2R attacks
The classifiers’ performances are
measured in a binary
environment.
Performance many vary in a
multiclass environment with a
very high-class imbalance rate.

C5.0 decision tree shows the
highest detection rate of 98.75%
for the KDD dataset’s testing
samples. Both DoS and Probe
attacks are detected with 99.56%
and 97.25% of the detection rate.
The sample size and the basis of
selecting the sample size in not
defined in the research.

J48 evolved as the best classifier
with 99.13% accuracy.
OneR is very fast in classifying
instances.
The basis of sampling, training,
and testing size is not mentioned.
How the classifiers will behave in
a class imbalance situation is not
defined.

Brilliantly evaluated.
It can be extended to other groups
of classifiers.
NBTree achieves 97.76% highest
accuracy.

Random Forest proves to provide
a high accuracy rate for
classifying threats. Considering
15 features, Random Forest shows
an accuracy rate of 99.8% for
Normal, 99.1% for DoS, 98.9% for
Probe, 98.7% for U2R, and 97.9%
for R2L. Average accuracy of
Random forest achieves 98.88%
for 15 features of NSL-KDD
dataset

kNN proved to be the best
classifier in terms of accuracy.
No benchmark datasets were
used for the evaluation of
classifiers.
Class imbalance issue has not
been explored.

Performance measures used
Accuracy
Detection Rate
FP Rate
Testing time

Detection Rate
Testing time, Accuracy, TP Rate
FP Rate, MA Error, RMS Error, RA
Error, RRS Error

Training time, Accuracy, MAE,
RMSE, Kappa, Recall, Precision,
F-Measure, Precision, FP Rate

Accuracy Accuracy
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Table 1. Cont.

Dataset, Features and Sample
Size

Dataset: KDD’99
Feature Selection Technique: CFS
Features: 7
Training instances: N/A
Testing Instances: N/A

Dataset: KDD’99
Feature Selection Technique: N/A
Training instances: N/A
Testing Instances: N/A

Dataset: NSLKDD
Training instances: N/A
Testing instances: 2747

Dataset: NSL-KDD
Feature election Techniques:
CONS: 12 features, CFS: 3 features
Training instances: 25,192
Testing instances: 11,850

Dataset: NSL-KDD
Feature Selection Techniques: CFS
Features: 15
Training instances: 125,937
Testing instances: 22,544

Dataset: Artificial Dataset
Feature Selection Scheme: CFS
Features: 2 to 10
Training instances: N/A
Testing instances: N/A

Classification Type
Binary Class
Normal
Instances of any one other class.

Multi-Class
Normal
DoS
Probe

N/A

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

N/A

Classifiers Evaluated
J48,
Naïve Bayes,
NB Tree,
Random Forest

SVM,
Ripper Rule,
C5.0 decision tree

Naive Bayes,
J48,
OneR,
PART,
RBF Network

ADTree, C4.5, LADTree, NBTree,
Random Tree, Random Forest,
REP Tree

Random Forest
J48
SVM
CART
Naïve Bayes

Naïve Bayes, Bayes Net, C4.5,
Random Forest, CART, kNN,
Logistic Regression, MLP, SVM

Author/Year/Reference Amudha et al. (2011) [42] Naidu et al. (2012) [43] Kalyani et al. (2012) [44] Thaseen et al. (2013) [45] Revathi et al. (2013) [46] Amancio et al. (2014) [35]

Inferences/Observations/
Limitations/Research Gaps

Random Forest shows the highest
accuracy of 97.75% and 100% for
the LLsDDoS and CAIDA
Conficker dataset. J48 and
Random Forest both show equal
highest accuracy of 99.26% for the
CAIDA DDoS 2007 dataset. Class
imbalance issue has not been
addressed. The type of
classification, whether binary or
multiclass, is not clear.

Random Forest shows the highest
amount of accuracy of 91.52%.
Considering False Positive Rate,
BayesNet seems to be better.
The test could have been
conducted with varying sample
sizes or with the maximum
sample size possible to confirm
the suitable classifier.

Proposed two IDS models for
classifying the different type of
attack instances.
Random Forest and Fuzzy Logic
seem to be ideal classifiers for
classifying various attacks. The
training time of a classifier does
not provide a clear picture of
designing an IDS. Hence, testing
time per instance would provide a
precise result.

PART shows the highest accuracy
of 99.97%
Many other prominent classifiers
are missed from the evaluation.
Tested on an obsolete dataset.
Declaring the best classifier just
based on accuracy may not reveal
the real capabilities of the
classifier.
Other measures, such as ROC and
PRC values, should be considered
for judging the classifiers’
performance in class imbalance
learning.

Random Forest proved to be the
best classifier, among others.
The class imbalance issue found
as NSL-KDD is a class imbalance
dataset. A similar test on other
state-of-the-art classifiers are
required

Random Forest shows the highest
accuracy of 93.77%
Class imbalance issues found
with Normal-U2R and
Normal-R2L instances. Tested on
an obsolete dataset

Performance measures used

Accuracy
FN Rate
FP Rate
Precision
Recall

Training Time, Sensitivity,
Specificity,
Accuracy, FP Rate, Kappa,
F-Measure, Precision, ROC,

TP Rate
FP Rate
Training Time

Accuracy, Recall, Precision,
F-Measure, TP Rate, TN Rate
ROC Area
Kappa

Accuracy
F-Measure
ROC Value
Precision
Recall

Accuracy, FP Rate, FN Rate, TP
Rate,
Precision, ROC value, RMS Error

Dataset, Features and
Sample Size

Datasets: LLsDDoS, CAIDA,
DdoS2007, Conficker
Feature Selection Procedure:
Manual, Features Selected: 7
Training and Testing Instances:
N/A

Dataset: NSL-KDD
Features Selected: All features
Training instances: 1166
Testing instances: 7456

Dataset: KDD’99
Feature Selection Technique:
Information Gain
Features: 20
Training and Testing instances:
N/A

Dataset: KDD’99
No. of Features: All features
Training and Testing instances:
N/A

Dataset: NSL-KDD
No. of Features selected: All
Training and Testing instances:
N/A

Dataset: KDD’99
No. of features: All
Training instances: 148,753
Testing instances: 60,000

Classification Type N/A
Multi-Class, Normal, DoS
Probe
U2R
R2L

Multi-Class
Normal, DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Classifiers Evaluated

Naïve Bayes,
RBF Network,
Multilayer Perceptron,
BayesNet,
IBK,
J48 (C4.5),
Random Forest

BayesNet, Logistic, IBk, JRip,
PART, J48,
Random Forest, Random Tree,
REPTree

Bayes Net, Naïve Bayes, C4.5, ID3,
NBTree, Fuzzy Logic
SVM, Decision Table,
JRip, OneR, MLP, IBk

Decision Table, JRip, ZeroR, OneR,
PART, BayesNet, Naïve Bayes,
MLP, SMO, Simple Logistic, IBk
Kstar, LWL

Logistic Regression
Gaussian Naïve Bayes, SVM,
Random Forest

J48 (C4.5), Random Forest,
Random Tree, Decision Table,
Multilayer Perceptron, Naïve
Bayes, BayesNet

Author/Year/Reference Robinson et al. (2015) [47] Choudhury et al. (2015) [48] Jain et al. (2016) [49] Bostani et al. (2017) [50] Belavagi et al. (2016) [51] Almseidin et al. (2017) [52]
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Table 1. Cont.

Inferences/Observations/
Limitations/Research Gaps

The best classifier to classify
attacks of the NSL-KDD dataset
in an anomalous traffic condition:
DOS attacks—Multilayer
Perceptron, Probe
attacks—BFTree, U2R
attacks—J48, R2L attacks—Naïve
Bayes. Overall, all the classifiers
except Naïve Bayes worked well
with the NSL-KDD dataset. No
performance measures were used
to validate the classifiers in this
class imbalance situation;
therefore, the classifier seems to
be ideal, but it may not be
consistent in this scenario.

Decision Tree shows the highest
accuracy of 99%.
Class imbalance issue, not present.
Class wise samples contradict the
total training data size.

Random Forest proved to be the
best classifier, among others. The
class imbalance issue found as
NSL-KDD was a class imbalance
dataset.
Similarly, the U2R and R2L
attacks were not perfectly
detected due to inherent
class-imbalance issue. A similar
test on other state-of-the-art
classifiers is required

With all the features of the
NSL-KDD dataset, the J48
classifier outperforms all other
classifiers. With a reduced feature
set through information gain
feature selection, the IBk seems to
be a better classifier. The
under-sampling of highly
dominant classes and over a
sampling of poor classes
improves the detection accuracy
of R2L and U2R attacks.

The two-class decision forest
model evolved as the best
detection scheme with a detection
accuracy of 99.2%. The generic,
exploits, shellcode, and worms
attacks were also detected with
99%, 94.49%, 91.79% and 90.9%
accuracy, respectively. The
evaluation has been carried out
with the cutting-edged Microsoft
Azure Machine Learning Studio
to handle huge instances of the
UNSW NB-15 dataset.

The Random Forest emerged as
the best classifier for multi attacks
scenarios. On the other hand, in a
binary attack scenario, the C4.5
was found to be the best classifier
for detection.

Performance measures used

Accuracy
FP Rate
TP Rate
FN Rate
Precision
Recall
F-Score

Accuracy
Recall
Precision
F-Measure

Accuracy
F-Measure
Precision
Recall

Accuracy,
True Positive Rate,
False Positive Rate,
Precision,
Recall
F-Measure,
ROC Area

Accuracy,
Precision,
Recall,
F1-Score,
AUC,
False Alarm Rate, Training Time,
Testing Time

Detection Rate,
True Negative Rate,
False Alarm Rate, Accuracy,
Training Time, Testing Time

Dataset, Features and
Sample Size

Dataset: NSL-KDD
Feature Selection Technique:
Sequential Floating Forward
Selection (SFFS), No of Features:
26
Training instances:
125,973
Testing instances: 22,544

Dataset: CICIDS 2017
Feature Selection Techniques:
Fisher Score, No of Features: 30,
Training instances: 203,171
Testing instances: 22,575

Dataset: KDD’ 99,
NSL-KDD,
No. of features: All
Testing instances:
KDD’ 99
Sample Size: 494,021
NSL-KDD
Sample Size: 125,973

Dataset: NSL-KDD
Separately evaluated on
Information Gain Feature
Selection and All Features, 10-fold
cross validation on instances of
the dataset

Dataset: UNSW NB-15
Feature Selection Scheme: Mutual
information
Training samples: 1,75,341
Testing samples: 82,332

Dataset: CICIDS2017,
Feature Selection Techniques:
Manual feature selection.
Features having unique values for
each instance of the dataset has
been considered.
Training instances: 40,000
Testing instances: 40,000

Classification Type

Multi-Class
Normal
DoS
Probe
U2R
R2L

Binary
Benign
DoS

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal
DoS
Probe
U2R
R2L

Multi-Class
Normal,
Analysis,
Backdoor,
Reconnaissance,
Shellcode,
Worms,
DOS,
Fuzzers,
Generic,
Exploits

Multi-Class
Benign, DoS, PortScan, Bot, Brute
Force, Web Attacks, Infiltration

Classifiers Evaluated

Naïve Bayes
BF Tree
J48
Multilayer Perceptron
NB Tree
RFT

SVM
IBk(k-NN)
Decision Tree

Random Forest
J48 (C4.5)
BayesNet
Naïve Bayes
SVM

Naïve Bayes,
Logistic Regression,
MLP,
SVM,
IBk,
J48 (C4.5)

Average Perceptron,
Bayes point machine,
Boosted Decision Tree,
Decision Forest,
Decision Jungle,
Locally deep SVM, Logistic
Regression

J48 (C4.5),
ForestPA,
Random Forest,
REP Tree,
Jrip, FURIA,
RIdor, MLP, RBF, LIBSVM, SVM,
Naïve Bayes

Author/Year/Reference Aziz et al. (2017) [53] Aksu et al. (2018) [54] Nehra et al. (2019) [55] Mahfouz et al. (2020) [56] Rajagopal et al. (2020) [57] Ahmim et al. (2020) [58]
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Figure 2. Comparison of classification accuracy in various classifier groups found in the literature.

Similarly, considering the average accuracy, the Lazy classifiers are far ahead of dif-
ferent groups of classifiers. Despite having an impressive accuracy rate, the Lazy group
classifiers were deeply analyzed by a handful of researchers [48–50]. On the other hand,
decision trees and function-based classifiers were the center point of many research papers.
Consequently, in this paper, the authors have decided to explore multiple classifiers of all
the classifier groups. In this work, fifty-four state-of-the-art classifiers of six different classi-
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fier groups were analyzed. The classifier groups were created based on their functionality
and the guidelines presented by Frank et al. [59]. The classifiers under evaluation and their
groups are presented in Tables 2–7 under six different classifier groups.

Table 2. Bayes classifiers for evaluation.

Sl. No. Name of Classifiers Short Name

1 Discriminative Multinomial Naive Bayes [60] DMNB
2 Hidden Markov Models [61,62] HMM
3 Naive Bayes [63,64] NB
4 Sparse Generative Model [65] SGM

Table 3. Functions classifiers.

Sl. No. Name of Classifiers Short Name

1 Linear Discriminant Analysis [66] LDA
2 LibLINEAR [67] LLNR
3 LibSVM [68] LSVM
4 Logistic Regression [69] LR
5 Multilayer Perceptron—With one hidden layer [70] MLPH
6 Multilayer Perceptron—Back Propagation Neural Network [71] MLPB
7 Quadratic Discriminant Analysis [72] QDA
8 Radial Basis Function [73] RBF
9 Radial Basis Function Network [74] RBFN

10 Simple Logistic Regression [75] SLR
11 Sequential Minimal Optimization [76,77] SMO

Table 4. Lazy group classifiers.

Sl. No. Name of Classifiers Short Name

1 IB1 (Nearest Neighbor approach) [78] IB1
2 IBk (k-nearest neighbor approach) [78] IBK
3 IBkLG (k-nearest neighbor with Log and Gaussian kernel) [78] IBKLG
4 KStar [79] KSTAR
5 Local Knn [80] LKNN
6 Locally Weighted Learning [81,82] LWL
7 Rseslib Knn [80] RLKNN

Table 5. Rule-based classifiers.

Sl. No. Name of Classifiers Short Name

1 Conjunctive Rule [83] CR
2 Decision Table [84] DTBL
3 Decision Table Naïve Bayes hybrid classifier [85] DTNB
4 Fuzzy Rule Induction [86] FURIA
5 JRip [87] JRIP
6 MODLEM [88] MODLEM
7 Nearest Neighbor with Generalization [89,90] NNGE
8 Ordinal Learning Method [91] OLM
9 OneR [92] ONER

10 PART [93] PART
11 RIpple-DOwn Rule learner [94] RIDOR
12 Rough Set [95] ROUGHS
13 ZeroR [96] ZEROR
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Table 6. Decision tree classifiers.

Sl. No. Name of Classifiers Short Name

1 Best-First Decision Tree [97] BFT
2 Criteria Based Decision Tree [98] CDT
3 ForestPA [99] FPA
4 Functional Tree [100] FT
5 J48 [101] J48
6 J48Consolidated [101–103] J48C
7 J48Graft [104] J48G
8 Logit Boost-based Alternating Decision Tree [105] LADT
9 Logistic Model Trees [106,107] LMT

10 Naïve Bayes based Decision Tree [108] NBT
11 Reduces Error Pruning Tree [109] REPT
12 Random Forest [110,111] RF
13 Random Tree [111] RT
14 Simple Cart [112] SC
15 SysFor [113] SF

Table 7. Miscellaneous classifiers.

Sl. No. Name of Classifiers Short Name

1 Composite Hypercubes on Iterated Random Projections [114] CHIRP
2 Fuzzy Lattice Reasoning [115] FLR
3 Hyper Pipes [116] HP
4 Voting Feature Intervals [117] VFI

3. Materials and Methods

The authors used Weka 3.8.1 [59] software in a CentOS platform on the Param Shavak
supercomputing facility provided by the Centre for Development of Advanced Computing
(CDAC), India. The supercomputing system consists of 64 GB RAM with two multicore
CPUs, each with 12 cores having a performance of 2.3 Teraflops. To evaluate all the
classifiers of Tables 2–7, the authors have considered samples of NSLKDD [118–120],
ISCXIDS2012 [121], and CICIDS2017 [122] datasets. The training and testing sample size
for each dataset is outlined in Table 8. The training and testing samples were generated
with 66% and a 34% split of the total sample size.

Table 8. Miscellaneous classifiers.

Datasets Sample Size Training Instances Testing Instances

NSLKDD 7781 5135 2646
ISCXIDS2012 5494 3626 1868
CICIDS2017 8917 5885 3032

All three NSLKDD, CICIDS2017 and ISCXIDS2012, have a high-class imbalance. Addi-
tionally, NSLKDD and CICIDS2017 are multi-class, and the ISCXIDS2012 dataset contains
binary class information. The performance of a classifier cannot be explored only through
its accuracy and detection rate. Therefore, the authors have considered a variety of perfor-
mance measures such as training time, testing time, model accuracy, misclassification rate,
kappa, mean absolute error, root mean squared error, relative absolute error, root relative
squared error, true positive rate, false-positive rate, precision, and receiver operating curve
(ROC). The ROC value reveals the real performance on class imbalance datasets such as
the CICIDS2017 and the NSL-KDD. Similarly, the Matthews correlation coefficient (MCC)
and precision-recall curve (PRC) are useful for evaluating binary classification on the
ISCXIDS2012 dataset.
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The experiment for evaluating classifiers covers five essential steps [123], such as
dataset selection, classification, weight calculation using multi-criteria decision making,
weight to rank transformation, and finally, global rank generation. Figure 3 shows the
methodology used by the authors.
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The authors have conducted all five steps iteratively for all datasets and classifiers
under evaluation. In the initial steps from the pool of datasets, a dataset has been selected.
The dataset initially contains several tuples with variable class densities. From each dataset,
the requisite number of random samples were generated. The output of this step has been
presented in Table 8. This procedure was conducted deliberately to ensure that all the
classifiers were not biased for a specific dataset. The second step began by classifying each
dataset using each classifier that is presented in the classifier pool. The performance of each
classifier was tabulated for future reference. The process has been recursively conducted
for each dataset.
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The third and fourth steps jointly work to achieve the research objectives. In this
process, the average performance score of each group of classifiers has been analyzed.
Additionally, each group’s ranking has also been calculated to retrieve the best classifier
group specific to the dataset. All the group’s classifiers with better results were considered
to evaluate their consistent performance across the three datasets. Furthermore, considering
the performances of the best performing group’s classifiers, the authors have calculated
the weight and rank of each classifier of that group, specific to each dataset. The authors
aimed to provide a reliable evaluation of the best classifier for each dataset.

The final step involved global weight and rank calculation. At this stage, the global
weight of a classifier of the best performing group was calculated based on the ranking
received for each dataset. The average performance results of those included in the group
with the better score across the three datasets were based on the individual score of
each classifier. The scores were further arranged in ascending order to provide a clear
presentation about the best performance classifier.

All the five steps of methodologies included a two-stage procedure. First, the best
classifier group was selected, and the second-best classifier was proposed. The best classi-
fier and classifier group were based on an extensively used conventional multiple-criteria
decision-making (MCDM) method named TOPSIS. Before applying TOPSIS, the perfor-
mance outcome of each classifier and each classifier group were calculated. Therefore,
the authors have calculated 13 performance metrics of the classifiers.

Furthermore, the authors considered only eight performance measures, i.e., testing
time per instance, accuracy, kappa value, mean absolute error, false-positive rate, precision,
and receiver operating curve value for weighting and ranking purpose. On the one
hand, these eight measures are in line with the aim of this research. On the other hand,
all the other performance metrics can be calculated through one of these measures that
are considered in this study. Consequently, the significance of those 17 measures did not
affect the weighting and ranking process. The algorithmic method of the weighting of each
classifier and classifier group based on TOPSIS has been demonstrated in Table 9.

It should be noted that in algoWeighting, C1, C2, C3, . . . . . . . . . , Cn are the classifier
or classifier group labels, and P1, P2, P3, . . . . . . . . . , Pk are the performance or average
performance score, respectively.

The algorithm begins with constructing a decision matrix Md, where the nth classifier
or classifier group is the performance outcome for kth performance measure. The decision
matrix is the basis for the evaluation of the best classifier. It helps the decision-making
module (TOPSIS) to calculate the weight for each feature.

At the second stage, a weightage normalized decision matrix has been calculated,
which is the weight of the jth performance measures.

The idea behind allocating appropriate weight to performance measures is in its
ability to rank classifiers specific to domain area and learning environment. For instance,
in high class-imbalance learning, the performance measure Matthews correlation coefficient
(MCC), Kappa, and receiver operating curve (ROC) value should be given more weightage
than other performance matrices. The datasets used here were class imbalance in nature;
therefore, more emphasis has been given to performance matrices suitable for the class
imbalance environment. In this regard, eight performance matrices have been shortlisted,
and corresponding weights have been allocated for TOPSIS processing. The weight for
eight performance measures is presented in Table 10. Another reason for not considering
all the performance matrices is because other performance measures themselves can be
derived from the matrices presented in Table 10. For instance, detection accuracy can be
calculated from True Positives (TP) and True Negatives (TN). Therefore, the True Positive
Rate (TPR) and True Negative Rate (TNR) have been dropped from calculating weight
for classifiers. In this way, out of the 13 performance measures, only eight performance
measures have been selected.
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Table 9. The algorithm algoWeighting.

Input:
C := {C1, C2, C3, . . . . . . . . . , Cn} //Classifiers or classifiers groups
P := {P1, P2, P3, . . . . . . . . . , Pk} //Performance measures

Output:
Classifiers group with weights Wi.

begin
Step 1. Decision matrix construction

Md :=


C1P1 C1P2 · · · C1Pk
C2P1 C2P2 · · · C2Pk
· · · · · · · · · · · ·

CnP1 CnP2 · · · CnPk

. // n = clasfiers and k = performance outcomes

Step 2. Decision matrix normalization
for i: = 0 to n.
begin

for j: = 0 to k.
begin

rij :=
xij−min(xj)

max(xj)− min(xj)
.

end
end

Step 3. Formation of weighted normalized matrix
VijWjrij. // Wj= weight allocated for performance matric j

Step 4. Estimation of positive (A+) and negative (A−) ideal solution
A+ :=

{
V+

1 , . . . , V+
n
}

, A′ :=
{

V−1 , . . . , V−n
}

.
Step 5. Estimation of separation point of each classifier/classifier group

S+
i

√
n
∑

j=1

(
Vij −V+

j

)2
, //positive ideal solutions

S−i

√
n
∑

j=1

(
Vij −V−j

)2
, //negative ideal solutions

Step 6. Weight estimation of classifiers

Wi := S−i
(S−i +S+

i )
.

end

Table 10. Weights allocated to various performance measures.

Performance Measures Weight Allocated

Testing Time 1
Accuracy 8
Kappa 4
Mean Absolute Error (MAE) 2
False Positive Rate (FPR) 5
Precision 7
Receiver Operating Curve (ROC) Value 6
Matthews Correlation Coefficient (MCC) 3

The algorithm includes a positive and negative ideal solution to calculate the sepa-
ration measure of each classifier/classifier group, which supports the calculation of each
classifier or group’s score. The scores are used to rank the classifiers. The procedure
followed here for calculating the rank of classifiers has been presented in Table 11.
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Table 11. The algorithm rankClassifiers.

Input:
C :=

{
C1, C2, C3, . . . . . . . . . , Cp

}
. //Classifiers or classifiers groups

Wd :={
W1, W2, W3, . . . . . . . . . , Wq

}
.

//Classifiers’ weight for dataset d

Output:
Classifiers/Classifier group labels with rank R

begin
Step 1. Import list of classifiers

C :=
{C1, C2, C3, . . . . . . . . . , Cn}

Step 2. Import classifiers weights
W :=
{W1, W2, W3, . . . . . . . . . , Wn}

Step 3. Calculate average weight of classifiers for each dataset

Wd
c

∑d
i=0 CpW i

q

|d|
Step 4. Rank classifiers based on descending order of their weight

RcRankdesc
(

Wd
c

)
end

4. Results and Discussion

The presented analysis to reach the best classifier was conducted through a top-to-
bottom approach. Firstly, the best classifier group has been identified through intergroup
analysis. Secondly, the best performing classifier of that best classifier group has been
acknowledged through intragroup analysis.

4.1. Intergroup Performance Analysis

Under intergroup performance analysis, the authors have calculated the classifier
group performance as a whole. The classifier’s group performances for NSLKDD, ISCX-
IDS2012, and CICIDS2017 datasets have been listed in Tables 12–14, respectively.

According to Table 12, decision tree classifiers present reliable results in all the fields
of performance metrics, except training and testing time. On the one hand, the deci-
sion tree classifiers consume training and testing times of 4.18 s and 0.03 s, respectively.
Similarly, the Bayes group of classifiers has a fast response in training and testing time
but presents low-quality performance metrics. The ROC and MCC values are suitable
for evaluating classifier groups’ performance, considering the class imbalance learning.
Therefore, by observing the average ROC and MCC of classifier groups on the NSL-KDD
dataset, the authors have seen that the decision tree behaves far better than other classifier
groups. The authors found a similar observation concerning the ISCXIDS2012 dataset.
Table 6 shows the group performance of supervised classifiers for the ISCXIDS2012 dataset.
The decision tree classifiers showed the highest amount of average accuracy of 97.3519%,
but the average testing time per instance was low and on par with Bayes and Miscellaneous
classifiers. Nevertheless, decision tree classifiers were far ahead of their peer classifier
groups, with a higher average ROC value of 0.985. The authors have also conducted
intergroup performance analysis on CICIDS2017. The average, maximum, and minimum
performance reading has been outlined in Table 12. The decision tree classifiers reveal an
impressive amount of accuracy and ROC values of 99.635 and 0.999, respectively.

Furthermore, the decision tree classifiers present consistent performance metrics for all
three intrusion detection datasets NSLKDD, ISCXIDS2012, and CICIDS2017. However, before
concluding that decision trees are best for these datasets by considering a limited number
of parameters, the authors have decided to identify all these classifier groups’ actual weight
and rank through TOPSIS. The classifier group with the highest weight and rank will be
pointed out as the best classifier for these IDS datasets. This will improve the proposed study’s
relevance and background to find the best classifier within the winning classifier group.
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Table 12. Overall performance of classifier groups for NSLKDD dataset.

Miscellaneous

Avg 1.410 0.020 49.698 50.302 0.372 0.245 0.393 80.759 100.762 0.955 0.045 95.464 95.464 95.464 0.745 0.437 0.552

Max 5.550 0.040 84.392 75.246 0.793 0.317 0.549 104.430 140.701 0.993 0.078 99.288 99.288 99.288 0.896 0.801 0.751

Min 0.010 0.010 24.754 15.609 0.071 0.062 0.250 20.571 64.082 0.922 0.007 92.167 92.167 92.167 0.538 0.180 0.285

Decision Tree

Avg 4.180 0.030 95.460 4.540 0.940 0.027 0.121 8.826 31.035 0.996 0.004 99.561 99.561 99.561 0.988 0.943 0.963

Max 39.970 0.130 97.619 13.568 0.969 0.094 0.200 30.903 51.334 0.999 0.020 99.938 99.938 99.938 0.998 0.970 0.993

Min 0.020 0.001 86.432 2.381 0.823 0.013 0.090 4.160 23.006 0.980 0.001 98.002 98.002 98.002 0.971 0.841 0.886

Rules

Avg 1.590 0.040 82.121 17.859 0.763 0.081 0.200 26.846 51.314 0.988 0.012 98.754 98.754 98.754 0.898 0.767 0.799

Max 7.620 0.200 97.241 74.339 0.964 0.304 0.433 100.000 111.128 0.999 0.100 99.935 99.935 99.935 0.993 0.965 0.976

Min 0.001 0.001 25.661 2.759 0.000 0.012 0.102 3.807 26.088 0.900 0.001 89.991 89.991 89.991 0.500 0.000 0.240

Lazy
Avg 48.960 15.560 90.730 9.270 0.876 0.050 0.165 16.474 42.355 0.996 0.004 99.601 99.601 99.601 0.969 0.876 0.919

Max 333.500 67.290 95.729 34.467 0.944 0.209 0.313 68.821 80.239 0.999 0.012 99.880 99.880 99.880 0.991 0.945 0.971

Min 0.001 0.140 65.533 4.271 0.534 0.020 0.122 6.724 31.167 0.988 0.001 98.775 98.775 98.775 0.927 0.525 0.825

Functions

Avg 2.990 0.120 72.061 27.939 0.629 0.155 0.292 50.928 74.868 0.991 0.009 99.130 99.130 99.130 0.887 0.639 0.737

Max 9.370 1.220 92.026 38.813 0.895 0.262 0.371 86.342 95.227 0.997 0.016 99.675 99.675 99.675 0.946 0.897 0.866

Min 0.020 0.001 61.187 7.974 0.501 0.032 0.179 10.509 45.804 0.984 0.003 98.400 98.400 98.400 0.770 0.520 0.510

Bayes
Avg 0.040 0.010 41.043 58.957 0.266 0.258 0.369 84.979 94.696 0.966 0.034 96.596 96.596 96.596 0.694 0.282 0.479

Max 0.080 0.020 70.824 81.519 0.610 0.322 0.405 106.223 103.920 0.987 0.064 98.664 98.664 98.664 0.889 0.628 0.745

Min 0.010 0.001 18.481 29.176 0.000 0.176 0.309 57.835 79.140 0.936 0.013 93.591 93.591 93.591 0.500 0.000 0.240

Performance Measures Training
Time (s)

Testing
Time (s)

Model
Accuracy

(%)

M.C.R.
(%)

Kappa
Statistics M.A.E. r R.M.S.E. R.A.E.

(%)
R.R.S.E.

(%)
True

Positive
Rate

False
Positive

Rate
Precision

(%)
Sensitivity

(%)
F-

Measure
ROC
Value

MCC
Value

PRC
Area
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Table 13. Overall performance of classifier groups for ISCXIDS2012 dataset.

Miscellaneous

Avg 0.740 0.010 57.548 42.452 0.145 0.428 0.543 85.557 108.576 0.995 0.005 99.540 99.540 99.540 0.590 0.176 0.573

Max 2.940 0.030 77.356 49.090 0.545 0.499 0.701 99.813 140.098 0.997 0.006 99.699 99.699 99.699 0.771 0.570 0.717

Min 0.001 0.001 50.910 22.645 0.000 0.226 0.476 45.281 95.152 0.994 0.003 99.406 99.406 99.406 0.500 0.000 0.500

Decision Tree

Avg 5.170 0.010 97.352 2.648 0.947 0.036 0.152 7.197 30.338 1.000 0.000 99.973 99.973 99.973 0.985 0.947 0.980

Max 60.480 0.040 98.555 5.300 0.971 0.081 0.213 16.135 42.649 1.000 0.000 99.987 99.987 99.987 0.998 0.971 0.998

Min 0.020 0.001 94.700 1.445 0.894 0.021 0.107 4.175 21.384 1.000 0.000 99.951 99.951 99.951 0.968 0.895 0.954

Rules

Avg 0.610 0.020 89.960 10.031 0.800 0.114 0.243 22.758 48.564 0.999 0.001 99.907 99.907 99.907 0.905 0.808 0.890

Max 3.430 0.160 97.912 50.910 0.958 0.500 0.529 100.000 105.702 1.000 0.004 99.982 99.982 99.982 0.992 0.959 0.991

Min 0.001 0.001 49.090 2.088 0.000 0.023 0.139 4.670 27.863 0.996 0.000 99.605 99.605 99.605 0.500 0.000 0.500

Lazy
Avg 14.070 9.220 92.551 7.449 0.851 0.089 0.252 17.747 50.293 0.999 0.001 99.923 99.923 99.923 0.940 0.855 0.920

Max 92.180 29.720 97.323 17.827 0.946 0.273 0.367 54.614 73.282 1.000 0.002 99.972 99.972 99.972 0.990 0.946 0.987

Min 0.001 0.010 82.173 2.677 0.641 0.030 0.153 5.995 30.560 0.998 0.000 99.825 99.825 99.825 0.884 0.674 0.866

Functions

Avg 2.340 0.170 70.873 29.127 0.413 0.343 0.471 68.686 94.124 0.997 0.003 99.730 99.730 99.730 0.739 0.451 0.731

Max 18.720 1.860 90.364 49.090 0.807 0.491 0.701 98.163 140.098 0.999 0.005 99.906 99.906 99.906 0.929 0.807 0.924

Min 0.010 0.001 50.910 9.636 0.000 0.170 0.302 33.986 60.396 0.995 0.001 99.498 99.498 99.498 0.500 0.000 0.500

Bayes
Avg 0.020 0.010 50.669 49.331 0.004 0.498 0.552 99.558 110.331 0.995 0.005 99.486 99.486 99.486 0.576 0.004 0.563

Max 0.050 0.020 50.910 49.786 0.021 0.500 0.702 99.983 140.281 0.996 0.006 99.610 99.610 99.610 0.791 0.058 0.746

Min 0.001 0.001 50.214 49.090 −0.005 0.493 0.500 98.603 99.969 0.994 0.004 99.373 99.373 99.373 0.500 −0.043 0.500

Performance Measures Training
Time (s)

Testing
Time (s)

Model
Accuracy

(%)

M.C.R.
(%)

Kappa
Statistics M.A.E. R.M.S.E. R.A.E.

(%)
R.R.S.E.

(%)
True

Positive
Rate

False
Positive

Rate
Precision

(%)
Sensitivity

(%)
F-

Measure
ROC
Value

MCC
Value

PRC
Area
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Table 14. Overall performance of classifier groups for CICIDS2017 dataset.

Miscellaneous

Avg 0.750 0.020 98.961 1.039 0.987 0.079 0.141 33.502 41.113 1.000 0.000 99.989 99.989 99.989 0.996 0.988 0.987

Max 2.900 0.030 99.835 1.847 0.998 0.225 0.323 95.108 93.957 1.000 0.000 99.998 99.998 99.998 1.000 0.998 0.999

Min 0.010 0.010 98.153 0.165 0.978 0.001 0.022 0.200 6.315 1.000 0.000 99.979 99.979 99.979 0.989 0.978 0.968

Decision Tree

Avg 19.150 0.040 99.635 0.365 0.996 0.002 0.030 0.856 8.847 1.000 0.000 99.996 99.996 99.996 0.999 0.996 0.997

Max 258.830 0.180 99.868 0.693 0.998 0.005 0.044 1.888 12.889 1.000 0.000 99.999 99.999 99.999 1.000 0.998 1.000

Min 0.030 0.000 99.307 0.132 0.992 0.000 0.019 0.160 5.648 1.000 0.000 99.993 99.993 99.993 0.997 0.992 0.990

Rules

Avg 1.490 0.020 86.528 13.472 0.835 0.040 0.097 17.109 28.123 0.999 0.001 99.874 99.874 99.874 0.931 0.836 0.857

Max 8.790 0.050 99.868 81.300 0.998 0.236 0.344 100.000 100.000 1.000 0.007 99.999 99.999 99.999 1.000 0.998 1.000

Min 0.000 0.000 18.701 0.132 0.000 0.001 0.020 0.200 5.861 0.993 0.000 99.258 99.258 99.258 0.500 0.000 0.173

Lazy
Avg 24.600 22.380 94.973 5.027 0.938 0.022 0.064 9.513 18.547 1.000 0.000 99.953 99.953 99.953 0.998 0.938 0.993

Max 158.190 74.390 99.802 31.860 0.998 0.148 0.254 62.516 73.749 1.000 0.003 99.998 99.998 99.998 1.000 0.998 0.999

Min 0.000 0.030 68.140 0.198 0.609 0.001 0.024 0.239 6.918 0.997 0.000 99.703 99.703 99.703 0.991 0.606 0.982

Functions

Avg 18.420 0.430 86.702 13.298 0.837 0.065 0.166 27.680 48.178 0.999 0.001 99.876 99.876 99.876 0.933 0.843 0.871

Max 115.950 4.470 99.373 73.450 0.992 0.210 0.458 88.857 133.270 1.000 0.007 99.995 99.995 99.995 0.999 0.992 0.998

Min 0.030 0.010 26.550 0.627 0.097 0.002 0.041 0.758 12.018 0.993 0.000 99.295 99.295 99.295 0.548 0.232 0.241

Bayes
Avg 0.030 0.020 43.041 56.959 0.347 0.172 0.265 72.822 77.112 0.994 0.006 99.440 99.440 99.440 0.711 0.345 0.472

Max 0.070 0.070 98.318 89.116 0.980 0.246 0.353 104.155 102.627 1.000 0.010 99.985 99.985 99.985 0.999 0.979 0.996

Min 0.010 0.001 10.884 1.682 0.001 0.005 0.063 2.004 18.251 0.990 0.000 99.024 99.024 99.024 0.500 0.000 0.173

Performance Measures Training
Time (s)

Testing
Time (s)

Model
Accuracy

(%)

M.C.R.
(%)

Kappa
Statistics M.A.E. R.M.S.E. R.A.E.

(%)
R.R.S.E.

(%)
True

Positive
Rate

False
Positive

Rate
Precision

(%)
Sensitivity

(%)
F-

Measure
ROC
Value

MCC
Value

PRC
Area
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Figure 4 presents the weights and ranks of classifier groups for all three IDS datasets.
The decision tree classifier presents the highest performance. Moreover, the decision trees
present a consistent performance for all the IDS datasets. Therefore, the decision tree can
be considered as the best method for the development of reliable IDSs.
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4.2. Intragroup Performance Analysis

In the intergroup analysis, the authors conclude that decision tree classifiers reveal
the best performance for imbalanced IDS datasets. The authors have decided to conduct
an intragroup analysis of decision trees for NSLKDD, ISCXIDS2012, and CICIDS2017
datasets. The intragroup study aims to identify the best decision tree within the decision
tree group of classifiers for the concerned datasets. Several performance outcomes of
decision tree classifiers for NSLKDD, ISCXIDS2012, and CICIDS2017 datasets have been
analyzed through Figures 5–7.
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Figure 5. Performance of decision tree classifiers for NSLKDD dataset.
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Figure 6. Performance of decision tree classifiers for ISCXIDS2012 dataset.
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Figure 7. Performance of decision tree classifiers for CICIDS2017 dataset.

The J48Consolidated classifier shows better accuracy for the NSL-KDD dataset. The sam-
ple size of NSLKDD here is an imbalance in nature. Therefore, these measures play a signif-
icant role in finding the best classifier. Considering the ROC value, the ForestPA performs
better as compared to J48Consolidated. Additionally, both ForestPA and J48Consolidated
show similar performance in terms of the MCC value. Consequently, the authors did not find
sufficient scope for deciding an ideal decision tree classifier for the NSLKDD dataset.

Furthermore, the decision tree classifiers’ performance on a sample of the ISCX-
IDS2012 dataset is presented in Figure 6. The Functional Trees (FT), J48Consolidated,
NBTree, and SysFor classifiers consumed a significant amount of computational time.
Nevertheless, the rest of the decision trees consumed 0.001 s of testing time per instance.
The J48Consolidated algorithm was limited by presenting the longest amount of time to
detect an anomalous instance. However, this computation time consumption supports
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the fact that J48Consolidated provides the highest accuracy of 98.5546%, which leads to
the lowest misclassification rate of 1.4454%. Moreover, J48Consolidated seems to lead the
decision trees group with the best Kappa value (0.9711).

The test results of decision trees on a CICIDS2017 dataset are presented in Figure 7.
The J48Consolidated algorithm provides high-quality results in the class imbalance in-
stances of the CICIDS2017 dataset. J48Consolidated scores the highest accuracy with a low
misclassification rate. However, considering the ROC and MCC values, the J48 presents
better performance than the J48Consolidated. Therefore, it is not clear about the best
classifiers, which can be considered as the base learner for future IDS.

In the case of ISCXIDS2012, J48Consolidated also presents consistent results in all
performance measures. However, in the case of NSL-KDD and CICIDS2017, it was not
possible to find the best classifier. Therefore, the authors have also considered TOPSIS to
allocate individual decision tree classifiers’ weight and rank. The average weight and rank
of decision tree classifiers for all datasets have also been calculated to find the best classifier
for all the datasets. The average weight and rank across all the datasets are not significant in
identifying a suitable classifier because an IDS is designed considering a specific dataset or
environment. However, average weight and rank will play a relevant role in the conclusion
concerning the most versatile classifier conducted in this study. The average ranks and
weights of all the classifiers for all the three IDS datasets are represented in Figure 8.

The J48Consolidated classifier has the highest rank across all the datasets. More-
over, J48Consolidated presents the highest weight of 0.964 for the ISCXIDS2012 dataset.
The J48Consolidated decision tree classifier is best for the high-class imbalance NSLKDD
and CICIDS2017 and ISCXIDS2012 datasets. Therefore, J48Consolidated will be a suitable
classifier for designing IDS base learners using either NSLKDD, ISCXIDS2012, and CI-
CIDS2017 datasets.
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Tables 15–17 provide a detailed insight into all the supervised classifiers of six dis-

tinct groups. These tables outlined thirteen performance metrics. The authors have iden-
tified the best classifier group (decision tree) and the best classifier (J48Consolidated). 
Nevertheless, other classifiers can have different performances considering other different 
datasets. Therefore, while designing IDS, the authors suggest further evaluation of super-
vised classifiers based on specific computing and network environments. 
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Figure 8. Techniques for Order Preference by Similarity to the Ideal Solution (TOPSIS) weights and ranks of decision tree
classifiers for NSLKDD, ISCXIDS2012 and CICIIDS2017 dataset.

4.3. Detailed Performance Reading of All the Classifiers

Tables 15–17 provide a detailed insight of all the supervised classifiers in six distinct
groups. These tables outlined thirteen performance metrics. However, the authors have
identified the best classifier group (decision tree) and the best classifier (J48Consolidated).
Nevertheless, other classifiers can have different performances considering other datasets.
Therefore, while designing IDSs, the authors suggest further evaluation of supervised
classifiers based on specific computing and network environments.
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Table 15. Performance outcome of supervised classifiers on NSL-KDD dataset.

PRC 0.69 0.24 0.75 0.24 0.75 0.51 0.87 0.84 0.69 0.84 0.73 0.71 0.76 0.84 0.58 0.91 0.94 0.97 0.97 0.9 0.83 0.91 0.43 0.97 0.98 0.97

MCC 0.63 0 0.5 0 0.54 0.52 0.9 0.72 0.57 0.75 0.53 0.57 0.65 0.71 0.56 0.93 0.94 0.94 0.95 0.93 0.53 0.93 0.28 0.93 0.93 0.95

ROC 0.89 0.5 0.89 0.5 0.89 0.77 0.95 0.94 0.87 0.93 0.88 0.88 0.91 0.94 0.83 0.97 0.98 0.99 0.99 0.96 0.93 0.97 0.78 0.99 0.99 0.99

PRE 95.82
31889

93.59
08483

98.66
36249

98.30
7638

98.39
9922

98.55
60253

99.67
48494

99.19
72477

98.89
33377

99.37
02418

98.97
77229

99.20
17755

99.35
70459

99.52
77488

99.27
14257

99.63
10669

99.6
6243

99.68
28219

99.79
18892

99.78
39184

98.77
48687

99.88
02779

89.99
10501

99.01
83819

99.28
2802

99.64
97204

FPR 0.041
76811

0.064
09152

0.013
36375

0.016
92362

0.016
00078

0.014
43975

0.003
25151

0.008
02752

0.011
06662

0.006
29758

0.010
22277

0.007
98225

0.006
42954

0.004
72251

0.007
28574

0.003
68933

0.00
33757

0.003
17178

0.002
08111

0.002
16082

0.012
25131

0.001
19722

0.10
00895

0.009
81618

0.007
17198

0.00
35028

RRSE 79.1399 102.586 93.1367 103.92 81.8842 95.2269 45.804 66.1501 75.5902 62.0564 91.8191 76.9766 72.4047 66.2061 89.427 36.6378 36.0546 36.0659 31.1672 38.7481 80.2386 37.5756 87.5368 39.2184 36.9341 28.0692

RAE 70.4239 105.433 57.8345 106.223 61.3275 45.4247 10.5094 47.2252 59.8444 29.678 56.3749 62.3526 53.7548 47.3792 86.3418 6.7241 7.1712 7.1279 10.8788 7.521 68.8212 7.0727 76.422 22.9807 19.5085 5.2622

RMSE 0.309 0.4 0.363 0.405 0.319 0.371 0.179 0.258 0.295 0.242 0.358 0.3 0.282 0.258 0.349 0.143 0.141 0.141 0.122 0.151 0.313 0.147 0.341 0.153 0.144 0.109

MAE 0.214 0.32 0.176 0.322 0.186 0.138 0.032 0.143 0.182 0.09 0.171 0.189 0.163 0.144 0.262 0.02 0.022 0.022 0.033 0.023 0.209 0.022 0.232 0.07 0.059 0.016

KV 0.61 0 0.452 0 0.502 0.536 0.895 0.708 0.571 0.743 0.501 0.564 0.649 0.706 0.543 0.933 0.934 0.934 0.944 0.925 0.534 0.929 0.316 0.922 0.927 0.946

MCR 29.176 81.519 43.613 81.519 37.188 34.467 7.9743 21.958 31.859 19.539 38.813 32.351 26.493 22.071 34.618 5.102 4.9887 4.9887 4.2706 5.7067 34.467 5.3666 50.718 5.9335 5.5178 4.1194

ACC 70.824 18.481 56.387 18.481 62.812 65.533 92.026 78.042 68.141 80.461 61.187 67.649 73.507 77.929 65.382 94.898 95.011 95.011 95.729 94.293 65.533 94.633 49.282 94.067 94.482 95.881

TT 0.001 0.01 0.02 0.01 0.02 0.01 1.22 0.01 0.01 0.01 0.01 0.01 0.02 0.001 0.01 0.9 0.56 0.53 27.26 67.29 12.27 0.14 0.001 0.01 0.01 0.02
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PRC 0.96 0.91 0.91 0.48 0.69 0.97 0.93 0.95 0.24 0.97 0.97 0.99 0.94 0.96 0.99 0.97 0.89 0.96 0.98 0.97 0.97 0.95 0.97 0.97 0.75 0.29 0.44 0.73

MCC 0.96 0.94 0.93 0.46 0.74 0.97 0.95 0.96 0 0.95 0.94 0.95 0.93 0.97 0.97 0.96 0.84 0.96 0.96 0.95 0.95 0.96 0.92 0.94 0.8 0.18 0.18 0.59

ROC 0.99 0.97 0.97 0.71 0.86 0.99 0.97 0.98 0.5 0.99 0.99 1 0.98 0.99 1 0.99 0.97 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.9 0.54 0.65 0.9

PRE 99.82
79894

99.83
07215

99.841
0367

98.674
7335

99.41
443

99.924
9049

99.904
8517

99.934
5042

98.511
9678

98.001
9589

98.47
03883

99.63
1803

99.47
24522

99.93
12084

99.93
82843

99.81
64556

99.39
36835

99.86
18703

99.89
96154

99.89
90746

99.92
15602

99.62
81227

99.64
02261

99.90
69906

95.94
22283

92.16
69683

94.45
9749

99.287
9644

FPR 0.001
72011

0.001
69279

0.0015
8963

0.0132
5267

0.005
8557

0.000
75095

0.000
95148

0.000
65496

0.0148
8032

0.0199
8041

0.0152
9612

0.0036
8197

0.0052
7548

0.000
68792

0.000
61716

0.0018
3544

0.0060
6317

0.001
3813

0.001
00385

0.001
00926

0.000
7844

0.003
71877

0.003
59774

0.000
93009

0.040
57772

0.0783
3032

0.055
40251

0.0071
2036

RRSE 29.1536 36.2284 37.9705 111.128 74.42 26.0876 32.7698 27.5715 100 29.3488 31.0348 26.7965 35.1255 26.726 23.0061 27.3993 51.3341 29.6896 28.125 31.0852 28.9906 29.0771 37.2188 30.567 64.0822 140.701 101.664 96.6

RAE 7.1175 6.5746 7.2221 61.8613 27.7429 5.1261 5.3792 3.8067 100 6.1856 8.6064 7.66 9.4388 4.16 5.3558 5.6998 30.9031 5.9875 9.7965 8.5333 6.4623 4.838 12.3021 6.4675 20.5706 99.1673 104.43 98.8697

RMSE 0.114 0.141 0.148 0.433 0.29 0.102 0.128 0.107 0.39 0.114 0.121 0.105 0.137 0.104 0.09 0.107 0.2 0.116 0.11 0.121 0.113 0.113 0.145 0.119 0.25 0.549 0.396 0.377

MAE 0.022 0.02 0.022 0.188 0.084 0.016 0.016 0.012 0.304 0.019 0.026 0.023 0.029 0.013 0.016 0.017 0.094 0.018 0.03 0.026 0.02 0.015 0.037 0.02 0.062 0.301 0.317 0.3

KV 0.956 0.934 0.928 0.401 0.72 0.964 0.946 0.962 0 0.949 0.942 0.952 0.925 0.964 0.969 0.96 0.823 0.954 0.956 0.944 0.953 0.958 0.917 0.941 0.793 0.071 0.071 0.553

MCR 3.3636 4.9887 5.48 46.939 21.051 2.7589 4.0816 2.8723 74.339 3.8549 4.4218 3.6281 5.7067 2.7211 2.381 3.0612 13.568 3.5147 3.3636 4.2328 3.5903 3.2124 6.3492 4.4974 15.609 75.246 75.246 35.11

ACC 96.636 95.011 94.52 53.061 78.949 97.241 95.918 96.863 25.661 96.145 95.578 96.372 94.293 97.279 97.619 96.939 86.432 96.485 96.636 95.767 96.41 96.788 93.651 95.503 84.392 24.754 24.754 64.89

TT 0.01 0.07 0.19 0.01 0.001 0.01 0.001 0.2 0.001 0.001 0.001 0.01 0.13 0.001 0.08 0.001 0.01 0.001 0.05 0.001 0.001 0.001 0.01 0.1 0.04 0.01 0.01 0.01
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Table 16. Performance outcome of supervised classifiers on ISCXIDS2012 dataset.

PRC 0.51 0.5 0.75 0.5 0.88 0.5 0.54 0.89 0.92 0.58 0.88 0.68 0.76 0.89 0.52 0.89 0.89 0.93 0.99 0.96 0.87 0.92 0.78 0.96 0.99 0.98

MCC 0.06 0 −0.04 0 0.69 0 0.25 0.71 0.81 0.18 0.7 0.31 0.54 0.71 0.08 0.85 0.85 0.85 0.95 0.94 0.67 0.89 0.69 0.9 0.94 0.96

ROC 0.51 0.5 0.79 0.5 0.9 0.5 0.56 0.9 0.93 0.54 0.89 0.69 0.78 0.9 0.53 0.92 0.92 0.94 0.99 0.97 0.88 0.94 0.83 0.97 0.99 0.98

PRE 99.37
28674

99.42
99533

99.53
15303

99.60
97789

99.82
43482

99.49
77819

99.55
7592

99.84
30158

99.90
63948

99.5
618

99.85
16314

99.70
34607

99.79
1891

99.87
48053

99.62
05372

99.91
29747

99.91
38788

99.91
47643

99.97
18208

99.96
99616

99.82
54369

99.95
32906

99.77
76012

99.93
58449

99.96
51549

99.97
54771

FPR 0.006
27133

0.005
70047

0.00
46847

0.003
90221

0.001
75652

0.005
02218

0.004
42408

0.001
56984

0.000
93605

0.00
4382

0.001
48369

0.002
96539

0.002
08109

0.001
25195

0.003
79463

0.0008
7025

0.0008
6121

0.00085
236

0.0002
8179

0.0003
0038

0.001
74563

0.0004
6709

0.0022
2399

0.0006
4155

0.0003
4845

0.0002
4523

RRSE 99.9692 99.9786 140.281 101.097 71.0846 140.098 131.834 69.0002 60.3961 96.3492 82.1845 97.0951 80.9554 68.5047 137.865 55.3244 55.3091 55.3226 30.5601 34.6212 73.2824 47.6323 72.0015 41.3656 31.888 27.8625

RAE 99.971 99.983 98.603 99.675 50.171 98.163 86.923 51.026 34.658 92.162 33.986 95.649 64.472 53.276 95.059 15.308 15.355 15.313 6.3002 5.9947 54.614 11.347 52.167 18.041 11.966 4.6704

RMSE 0.5 0.5 0.702 0.506 0.356 0.701 0.659 0.345 0.302 0.482 0.411 0.486 0.405 0.343 0.69 0.277 0.277 0.277 0.153 0.173 0.367 0.238 0.36 0.207 0.16 0.139

MAE 0.5 0.5 0.493 0.499 0.251 0.491 0.435 0.255 0.173 0.461 0.17 0.478 0.322 0.266 0.475 0.077 0.077 0.077 0.032 0.03 0.273 0.057 0.261 0.09 0.06 0.023

KV 0.021 0 −0.005 0 0.658 0 0.116 0.68 0.807 0.066 0.659 0.306 0.506 0.687 0.06 0.847 0.847 0.847 0.946 0.94 0.641 0.887 0.656 0.899 0.944 0.958

MCR 49.786 49.09 49.358 49.09 17.024 49.09 43.469 15.899 9.636 45.932 16.97 34.743 24.518 15.578 47.538 7.6552 7.6552 7.6552 2.6767 2.9979 17.827 5.6745 17.077 5.0321 2.7837 2.0878

ACC 50.214 50.91 50.642 50.91 82.976 50.91 56.531 84.101 90.364 54.069 83.03 65.257 75.482 84.422 52.463 92.345 92.345 92.345 97.323 97.002 82.173 94.326 82.923 94.968 97.216 97.912

TT 0.001 0.001 0.02 0.01 0.01 0.001 1.86 0.001 0.01 0.001 0.001 0.01 0.01 0.001 0.001 0.43 0.42 0.43 25.96 29.72 7.6 0.01 0.001 0.001 0.01 0.001
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PRC 0.98 0.96 0.95 0.67 0.88 0.98 0.96 0.96 0.5 0.97 0.98 1 0.97 0.97 1 0.99 0.97 0.99 0.98 0.98 0.99 0.95 0.98 0.97 0.72 0.5 0.51 0.56

MCC 0.95 0.94 0.94 0.5 0.84 0.96 0.95 0.94 0 0.95 0.94 0.96 0.96 0.96 0.97 0.96 0.91 0.95 0.9 0.95 0.96 0.94 0.95 0.95 0.57 0 0 0.13

ROC 0.99 0.97 0.97 0.72 0.92 0.99 0.97 0.97 0.5 0.98 0.99 1 0.98 0.98 1 0.99 0.98 0.99 0.98 0.99 0.99 0.97 0.99 0.98 0.77 0.5 0.52 0.57

PRE 99.97
1268

99.97
31938

99.97
12323

99.74
88586

99.92
63852

99.98
15088

99.97
67136

99.97
6457

99.60
49811

99.966
4172

99.962
5352

99.97
42563

99.97
51918

99.97
41804

99.98
7454

99.97
99563

99.95
42549

99.97
4761

99.95
13088

99.97
78768

99.97
56092

99.97
28172

99.98
0487

99.98
18513

99.69
91743

99.40
61919

99.43
8694

99.61
67652

FPR 0.0002
8732

0.0002
6806

0.0002
8768

0.0025
1141

0.0007
3615

0.0001
8491

0.0002
3286

0.0002
3543

0.0039
5019

0.0003
3583

0.0003
7465

0.0002
5744

0.0002
4808

0.000
2582

0.0001
2546

0.0002
0044

0.0004
5745

0.0002
5239

0.0004
8691

0.0002
2123

0.0002
4391

0.0002
7183

0.0001
9513

0.0001
8149

0.0030
0826

0.0059
3808

0.0056
1306

0.0038
3235

RRSE 30.8651 33.3618 35.5365 105.702 57.4128 28.2636 33.3618 33.7169 100 28.84 32.3926 24.852 28.2722 28.8922 21.3836 26.2021 37.8522 29.0201 42.6491 31.1256 28.6718 35.5365 30.0486 29.3342 95.1522 140.098 99.8206 99.2345

RAE 7.8292 5.5665 6.3158 55.879 16.485 5.6777 5.5665 5.6857 100 6.0636 8.7887 7.1535 4.9106 4.1749 5.6436 5.213 16.135 6.501 10.926 7.8099 6.3565 6.3158 7.0733 4.8823 45.281 98.163 99.813 98.97

RMSE 0.154 0.167 0.178 0.529 0.287 0.141 0.167 0.169 0.5 0.144 0.162 0.124 0.141 0.145 0.107 0.131 0.189 0.145 0.213 0.156 0.143 0.178 0.15 0.147 0.476 0.701 0.499 0.496

MAE 0.039 0.028 0.032 0.279 0.082 0.028 0.028 0.028 0.5 0.03 0.044 0.036 0.025 0.021 0.028 0.026 0.081 0.033 0.055 0.039 0.032 0.032 0.035 0.024 0.226 0.491 0.499 0.495

KV 0.946 0.944 0.937 0.436 0.835 0.958 0.944 0.943 0 0.951 0.944 0.957 0.958 0.958 0.971 0.96 0.912 0.954 0.894 0.948 0.955 0.937 0.952 0.954 0.545 0 0 0.037

MCR 2.6767 2.7837 3.1585 27.944 8.2441 2.0878 2.7837 2.8373 50.91 2.4625 2.7837 2.1413 2.0878 2.0878 1.4454 1.9807 4.3897 2.3019 5.2998 2.6231 2.2484 3.1585 2.409 2.3019 22.645 49.09 49.09 48.983

ACC 97.323 97.216 96.842 72.056 91.756 97.912 97.216 97.056 49.09 97.538 97.216 97.859 97.912 97.912 98.555 98.019 95.61 97.698 94.7 97.377 97.752 96.842 97.591 97.698 77.356 50.91 50.91 51.017

TT 0.001 0.01 0.04 0.001 0.001 0.001 0.001 0.16 0.01 0.001 0.001 0.001 0.02 0.001 0.04 0.001 0.001 0.001 0.01 0.001 0.001 0.001 0.001 0.01 0.03 0.001 0.001 0.001
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Table 17. Performance outcome of supervised classifiers on CICIDS2017 dataset.

PRC 0.55 0.17 1 0.17 0.99 0.79 0.24 1 0.7 1 1 0.91 0.98 1 0.98 1 1 1 0.99 1 0.98 1 0.35 1 1 1

MCC 0.4 0 0.98 0 0.93 0.84 0.23 0.99 0.62 0.99 0.99 0.75 0.96 0.99 0.98 1 1 1 0.97 1 0.61 1 0.19 1 1 1

ROC 0.84 0.5 1 0.5 1 0.91 0.55 1 0.85 1 1 0.97 1 1 1 1 1 1 1 1 0.99 1 0.78 1 1 1

PRE 99.43
51798

99.02
42634

99.98
482

99.31
4295

99.94
20017

99.86
27102

99.29
48247

99.99
34914

99.75
22321

99.99
12904

99.99
46994

99.84
89866

99.97
43239

99.99
45883

99.98
82371

99.99
75286

99.99
75547

99.99
75803

99.97
77682

99.99
78099

99.70
33716

99.99
84293

99.25
80448

99.99
60665

99.99
84546

99.99
67141

FPR 0.005
6482

0.0097
5737

0.000
1518

0.006
85705

0.0005
7998

0.001
3729

0.0070
5175

0.000
0651

0.002
47768

0.000
0871

0.000
053

0.001
51013

0.0002
5676

0.000
0541

0.0001
1763

0.000
0247

0.000
0245

0.000
0242

0.0002
2232

0.000
0219

0.0029
6628

0.000
0157

0.007
41955

0.000
0393

0.000
0155

0.000
0329

RRSE 85.7682 101.801 18.2509 102.627 34.5891 58.5609 133.27 12.0178 74.8515 13.9419 12.3098 65.869 24.7756 12.2351 87.5349 7.4718 7.4683 7.4708 19.2768 7.4718 73.7487 6.9175 89.0538 10.2775 5.8612 7.8759

RAE 81.4361 103.694 2.0038 104.155 9.4823 17.157 88.8573 1.593 46.5799 1.9336 0.7581 43.2699 6.4697 1.8685 86.5127 0.2793 0.4021 0.2968 2.5804 0.2793 62.5164 0.2394 79.2697 4.2854 0.3721 0.3516

RMSE 0.295 0.35 0.063 0.353 0.119 0.201 0.458 0.041 0.257 0.048 0.042 0.226 0.085 0.042 0.301 0.026 0.026 0.026 0.066 0.026 0.254 0.024 0.306 0.035 0.02 0.027

MAE 0.192 0.245 0.005 0.246 0.022 0.041 0.21 0.004 0.11 0.005 0.002 0.102 0.015 0.004 0.204 7E-04 9E-04 7E-04 0.006 7E-04 0.148 6E-04 0.187 0.01 9E-04 8E-04

KV 0.409 0 0.98 0 0.928 0.828 0.097 0.992 0.669 0.988 0.992 0.777 0.962 0.992 0.982 0.997 0.997 0.997 0.973 0.997 0.609 0.998 0.236 0.996 0.998 0.996

MCR 47.922 89.116 1.6821 89.116 5.9367 14.182 73.45 0.6926 26.781 0.9565 0.6266 18.305 3.1332 0.6926 1.5172 0.2309 0.2309 0.2309 2.2098 0.2309 31.86 0.1979 61.643 0.3298 0.1319 0.2968

ACC 52.078 10.884 98.318 10.884 94.063 85.818 26.55 99.307 73.219 99.044 99.373 81.695 96.867 99.307 98.483 99.769 99.769 99.769 97.79 99.769 68.14 99.802 38.358 99.67 99.868 99.703

TT 0.001 0.001 0.07 0.01 0.03 0.01 4.47 0.03 0.01 0.01 0.02 0.01 0.07 0.01 0.02 1.53 0.75 0.63 74.39 50.56 28.76 0.03 0.001 0.01 0.03 0.01
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PRC 1 0.99 1 0.69 0.97 1 0.99 1 0.17 0.99 1 1 1 1 1 1 1 1 0.99 1 1 1 1 1 1 0.97 0.98 1

MCC 1 1 1 0.73 0.98 1 1 1 0 0.99 1 1 1 1 1 1 0.99 0.99 0.99 1 1 1 1 0.99 1 0.98 0.98 1

ROC 1 1 1 0.84 0.99 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 1 1

PRE 99.99
6313

99.99
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99.99
85577

99.75
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99.38
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99.99
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99.99
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99.99
54447

99.99
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5. J48Consolidated—A C4.5 Classifier Based on C4.5

J48Consolidated has been presented as the best classifier considering the decision tree
group. Therefore, this section provides an in-depth analysis of J48Consodated.

5.1. Detection Capabilities of J48Consolidated

In this section, the J48Consolidated classifier is analyzed, considering the classification
of the attack detection process. The classification threshold and the percentage of detection
have been taken into consideration while analyzing attack classes. The attack-wise classi-
fication output for NSLKDD, ISCXIDS, and CICIDS2017 datasets has been presented in
Figures 9–11, respectively.
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The detection output for the NSLKDD dataset remains consistently good for DoS,
Probe, R2L, U2R, and Normal classes with the increase in detection threshold. The U2R
attack class shows low false positives, whereas few regular instances are misclassified dur-
ing the classification process. Overall, the J48Consolidated classifier exhibited satisfactory
performance for the NSLKDD dataset.

ISCXIDS2012 is a binary class dataset; therefore, J48Consolidated seems to generate
false alarms. However, the presented results are low compared to the number of correctly
classified instances (true positives and true negatives).

Finally, the individual J48Consolidated evaluation presents an effective classification
considering six attack groups of the CICIDS2017 dataset. The classifier also differentiates
regular instances with attack instances during the classification process.

5.2. Classification Output of J48Consolidated

The three IDS datasets are considered for a specific environment. The correlation
of attributes, attacks, and benign instances varied from dataset to dataset. Therefore,
J48Consolidated shows a different classification performance considering different IDS
datasets. The classification output of J48Consolidated for NSLKDD, ISCXIDS2012, and CI-
CIDS2017 datasets has been outlined in Figures 12–14, respectively.
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Figure 12 shows that the J48Consolidated classifier presents a reliable classification
in the NSLKDD dataset. Nevertheless, J48Consolidated also produced false alarms for
positive and negative instances. Therefore, the authors recommend incorporating filter
components such as data standardization and effective feature selection while designing
IDSs using J48Considated. A filter component not only smooths the underlying data,
but will also improve classification performance.

On the one hand, for the ISCXIDS2012 dataset, J48Consolidated dramatically showed
improvement in classification. The classifier showed few false alarms. On the other hand,
J48Consolidated successfully detected almost all the instances of the ISCXIDS2012 binary
dataset. Therefore, the classifier achieved the highest TOPSIS score of 0.964 (Figure 8); thus,
contributing to the highest average rank.
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Finally, for the CICIDS2017 dataset, the J48Consolidated classifier presented a low
number of false alarms. The six attack groups of the CICIDS2017 dataset presented a
consistent classification with a detection accuracy of 99.868% (Table 17) and a low false
positive of 0.000011.

A reliable IDS benchmark dataset must fulfill 11 criteria [122], such as complete net-
work configuration, attack diversity, overall traffic, thorough interaction, labeled dataset,
full capture, existing protocols, heterogeneity, feature set, anonymity, and metadata. The CI-
CIDS2017 [123] dataset fulfills these criteria. Furthermore, CICIDS2017 is recent and focuses
on the latest attack scenarios. The J48Consolidated classifier presented the best results for
the CICIDS2017 dataset with an accuracy of 99.868%. Consequently, the J48Consolidated
classifier can be assumed as an effective IDS with the CICIDS2017 dataset. Neverthe-
less, the authors recommend the incorporation of feature selection procedures at the
preprocessing stage to extract the most relevant features of the dataset and promote sys-
tem performance.

6. Conclusions

This paper analyzed fifty-four widely used classifiers spanning six different groups.
These classifiers were evaluated on the three most popular intrusion detection datasets,
i.e., NSLKDD, ISCXIDS2012 and CICIDS2017. The authors have extracted a sufficient number
of random samples from these datasets, which retained the same class imbalance property
of the original datasets. Consequently, multi-criteria decision-making has been used to
allocate weight to these classifiers for different datasets. The rank of the classifiers was also
finalized using those weights. First, an intragroup analysis has been conducted to find the
best classifier group. Secondly, an intragroup analysis of the best classifier group has been
made to find the best classifiers for the intrusion detection datasets. The authors analyzed
thirteen performance metrics. Therefore, the best classifier has been selected impartially.
On the one hand, the intergroup analysis presented the decision tree group of classifiers as
the best classifier group, followed by the Rule-based classifiers, whereas the intragroup study
identified J48Consolidated as the best classifier for high-class imbalance considering NSLKDD,
CICIDS2017 and ISCXIDS2012 datasets. The J48Consolidated classifier provided the highest
accuracy of 99.868%, a misclassification rate of 0.1319%, and a Kappa value of 0.998.

This study presented an in-depth analysis that provides numerous outcomes for
IDS designers. Comparing fifty-four classifiers on intrusion detection datasets through
thirteen performance matrices and ranking them is the main contributory work of this
article. Nevertheless, the present study has limitations. Further investigation is required
considering other datasets and other specific application domains. Moreover, the number
of classes, class-wise performance observation, and classifiers’ performance based on
varying sample sizes should be carried out to understand the detailed aspects of the
classifiers. The scalability and robustness of the classifiers were not tested. As a future
work, many other IDS datasets can be used for ascertaining performance of the classifiers.
Many recent ranking algorithms can be used as voting principle to obtain exact ranks of
classifiers. Many other recent rule-based, decision forest classifiers were covered in this
article; those classifiers can be analyzed to understand the real performance of the classifiers
and classifier groups. Finally, J48Consolidated, which evolved as an ideal classifier out of
this analysis, can be used along with a suitable feature selection technique to design robust
intrusion detection systems.
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Abbreviations
Abbreviation Description
TT Testing Time
ACC Accuracy
KV Kappa Value
MAE Mean Absolute Error
RMSE Root Mean Squared Error
RAE Relative Absolute Error
RRSE Root Relative Squared Error
FPR False Positive Rate
PRE Precession
ROC Receiver Operating Curve
MCC Matthews Correlation Coefficient
PRC Precision Recall Curve
TOPSIS Techniques for Order Preference by Similarity to the Ideal Solution
IDS Intrusion Detection System
IoT Internet of Things
LWL Locally Weighted Learning
RLKNN Rseslib K-Nearest Neighbor
CR Conjunctive Rule
DTBL Decision Table
DTNB Decision Table Naïve Bayes
FURIA Fuzzy Rule Induction
NNGE Nearest Neighbor with Generalization
OLM Ordinal Learning Method
RIDOR RIpple-DOwn Rule learner
BFT Best-First Decision Tree
CDT Criteria Based Decision Tree
LADT Logit Boost based Alternating Decision Tree
LMT Logistic Model Trees
NBT Naïve Bayes based Decision Tree
REPT Reduces Error Pruning Tree
RF Random Forest
RT Random Tree
SC Simple Cart
CHIRP Composite Hypercubes on Iterated Random Projections
FLR Fuzzy Lattice Reasoning
HP Hyper Pipes
VFI Voting Feature Intervals
TP True Positives
TN True Negatives
TPR True Positive Rate
TNR True Negative Rate
FT Functional Trees

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids.html
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