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Abstract: The output sequence of the shrinking generator can be considered as an interleaving
of determined shifted versions of a single PN -sequence. In this paper, we present a study of the
interleaving of a PN-sequence and shifted versions of itself. We analyze some important crypto-
graphic properties as the period and the linear complexity in terms of the shifts. Furthermore, we
determine the total number of the interleaving sequences that achieve each possible value of the
linear complexity.
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1. Introduction

Stream ciphers are fast encryption algorithms since they consist of applying a bit-wise
XOR operation among the bits of the keystream sequence and the message to obtain the
ciphertext. The same bit-wise XOR operation between the ciphertext and the keystream is
done to recover the original message.

Many keystream generators are based on maximal-length Linear Feedback Shift
Registers (LFSRs) [1] because they offer several advantages due to their performance. They
also have an easy hardware and software implementation in cryptographic applications.
For example, some widely used stream ciphers based on LFSRs are the cryptosystem E0 for
Bluetooth [2], the A5/1 for GSM use [3], or the SNOW 2.0 used in UMTS 3G networks [4].

The output sequences of a maximal-length LFSR, whose characteristic polynomial
is primitive, are called PN -sequences [5]. These sequences have the largest period and
present good randomness properties as balancedness, large period, low correlation, ex-
cellent runs distribution, and so forth. However, they are easily predictable due to their
inherent linearity. In order to break this linearity, but at the same time maintaining the
pseudorandomness characteristics, different design techniques are applied—non-linear
filtering, combinational generators, clock-controlled generators or the irregular decimation
of PN-sequences, among others.

We focus our attention on a particular kind of stream ciphers based on LFSRs where
an irregular decimation is applied: the class of shrinking generators [6–10]. The shrinking
generator is a pseudorandom number generator based on a simple combination of two
LFSRs which are clocked synchronously [7]. Its simplicity and efficiency of implementation,
in addition to the generation of sequences with good cryptographic properties, make it
suitable for its real use in stream cipher cryptosystems. For example, the shrinking genera-
tor is part of the internal structure of different stream ciphers as the EP0619659A2 [11], an
European patent application; or the Decimv2 , a hardware oriented stream cipher submitted
to the ECRYPT Stream CipherProject (eSTREAM) [12], among other applications [6,13].

From the shrinking generator emerged a great family of decimation-based sequence
generators, which are improved versions of this or themselves—the self-shrinking genera-
tor [10], the generalized self-shrinking generator [8], the modified self-shrinking genera-
tor [9] and the t-modified self-shrinking generator [14]; there exists a complete guide in [6]
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that offers a thorough study of all these generators, their fundamentals and applications.
These generators are fast, easy and with low implementation costs to generate good crypto-
graphic sequences. The authors of [15] presented a statistical and graphical study of the
randomness of the sequences generated by the generalized self-shrinking generator that
prove their suitability for cryptographic applications.

The output sequences of a shrinking generator, called shrunken sequences, have been
widely studied in several mathematical fields in the last decades. For instance, they have
been considered particular solutions of a kind of linear difference equations [16,17]; they
have also been studied as the output sequences of linear elementary cellular automata
(CA) [18]. Furthermore, the shrunken sequences can be expressed as the interleaving of
shifted versions of a PN-sequence [19,20]. In [18], the authors determined how to compute
the shifts of the interleaved sequences that compose the shrunken sequence. This fact can
be used advantageously to design cryptanalytic attacks against this generator [18,21–24].
A natural way to deal with this vulnerability is to alter the shifts or interleave PN-sequences
of different primitive polynomials. In this paper, we study the resultant sequences of
interleaving shifted versions of the same PN-sequence with different shifts. We analyze the
conditions that must satisfy these shifts to obtain interleaving sequences with high linear
complexity and long period.

In Section 2, we introduce some preliminary concepts and results about the shrinking
generator; we define the main concept of interleaving sequence and we check that the
shrunken sequence can be expressed as an interleaving of PN-sequences. In Section 3, we
analyze the period and the linear complexity of the resultant sequences of interleaving
2t shifted versions of a given PN-sequence. We study, in depth, the cases of 2 and 4
interleaving sequences obtaining the amount of them which have certain values for linear
complexity. In Section 4, we give some preliminary results about the case of interleaving
t PN-sequences. In Section 6, we present the main conclusions of our research and the
future work.

2. Interleaving Sequences in the Shrinking Generator

First of all, we recall the concept of decimation. The decimation of a sequence {vi}i≥0
by d is a new sequence obtained by taking every d-th term of {vi}i≥0, that is, {vd·i}i≥0 [25].

Let F2 be the Galois field of two elements. In this section, we consider two maximal-
length LFSRs, R1 and R2, with characteristic polynomials p1(x), p2(x) ∈ F2[x], lengths L1
and L2 with L1 < L2 and gcd(L1, L2) = 1, and T1 = 2L1 − 1 and T2 = 2L2 − 1 the periods
of the corresponding PN-sequences, respectively. Besides, the PN-sequences generated
by both registers are {ai}i≥0 and {bi}i≥0, respectively, with ai, bi ∈ F2. From now on, we
denote any sequence {vi}i≥0 by {vi}, without loss of generality.

The shrinking generator [7] is composed of two maximal-length LFSRs, R1 and R2,
with the properties mentioned before. The PN-sequence {ai} generated by R1 decimates
the PN-sequence {bi} produced by R2. The decimation rule is very simple—given two bits
ai and bi, for i = 0, 1, 2, . . ., of both PN-sequences, the output sequence {sj} is obtained
as follows: {

If ai = 1, then sj = bi.
If ai = 0, then bi is discarded.

The sequence {sj} is called the shrunken sequence and its period is T = (2L2 − 1)2L1−1.
The linear complexity of this sequence, denoted by LC, satisfies L22L1−2 < LC ≤ L22L1−1

and its characteristic polynomial has the form p(x)m, where 2L1−2 < m ≤ 2L1−1 and p(x)
is a primitive polynomial of degree L2 [26].

Notice that the shrunken sequence is obtained by irregular decimation of a PN-
sequence, as we can see in the following example.
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Example 1. Consider R1 the LFSR with characteristic polynomial p1(x) = 1 + x + x2 and initial
state {11}. Consider also R2 the LFSR with characteristic polynomial p2(x) = 1 + x2 + x3 and
initial state {111}. The shrunken sequence can be computed in the following way:

R1 : 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
R2 : 1 1 �A1 0 1 �A0 0 1 �A1 1 0 �A1 0 0 �A1 1 1 �A0 1 0 �A0
{sj} : 111 111 000 111 000 111 111 000 000 111 111 111 111 000.

The sequence has period 14 and it is not difficult to check that its characteristic polynomial is
p(x)2 = (1 + x + x3)2, consequently its linear complexity is 6.

It is worth mentioning that all the results that appear in this work are valid for
large values of L, where L is the length of the LFSR that generates the corresponding
PN-sequences in each case. We use small examples in order to illustrate the ideas. In
practical applications, the recommended values in the shrinking case are L1, L2 ≥ 64, so
the key has at least 128 bits.

The following definition introduces one of the main concepts of this paper.

Definition 1. We say that the sequence {sj} is obtained interleaving the sequences {u(1)
i }, {u

(2)
i },

. . ., {u(t)
i }, all of them of period T, if it has the following form:

{sj} =
{

u(1)
0 , u(2)

0 , . . . , u(t)
0 , u(1)

1 , u(2)
1 , . . . , u(t)

1 , . . . , u(1)
T−1, u(2)

T−1, . . . , u(t)
T−1

}
.

We call this sequence a t-interleaving sequence.

From now on, we always consider that these t sequences {u(j)
i } for j = 1, 2, . . . , t, are

(left circular) shifted versions of a given PN-sequence {ui}. Notice that, in this case, if
the characteristic polynomial p(x) of {ui} is a primitive polynomial of degree L, then the
resultant t-interleaving sequence is almost balanced as its number of 1s is t · 2(L−1).

The following result shows us that the shrunken sequence is an (2L1−1)-interleaving
sequence.

Theorem 1 ([27] Theorem 3.1). The sequences obtained decimating by (distance) 2L1−1 the
shrunken-sequence are PN-sequences with period T2. We call these sequences the interleaved
PN-sequences of the shrunken sequence.

It is worth noticing that the 2L1−1 interleaved PN-sequences of the shrunken sequence
correspond to shifted versions of the same PN-sequence. The following example illustrate
the previous results.

Example 2. Consider R1 the LFSR with characteristic polynomial p1(x) = 1 + x2 + x3, L1 = 3
and initial state {111}. The corresponding PN-sequence has period T1 = 7. Consider also R2 the
LFSR with characteristic polynomial p2(x) = 1 + x3 + x4, L2 = 4 and initial state {1111}. The
corresponding PN-sequence has period T2 = 15. The shrunken-sequence is given by:

{sj} = {111011010111011000111010000101011001101101001100001011111000}

This sequence has period T = (2L2 − 1)2L1−1 = 60 and it is possible to check that the
characteristic polynomial is p(x)16 = (1+ x + x4)4, this is, LC = 16. If we decimate the shrunken
sequence by (distance) d = 2L1−1 = 4, we obtain 4 PN-sequences:

{s4·j} : 110001001101011
{s4·j+1} : 111100010011010
{s4·j+2} : 101111000100110
{s4·j+3} : 011010111100010
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Notice that the characteristic polynomial of the four PN-sequences is p(x) = 1 + x + x4

(the reciprocal polynomial of p2(x)), that is, the four PN-sequences are shifted versions of the
same sequence.

The next theorem shows us how to obtain the characteristic polynomial of the inter-
leaved PN-sequences.

Theorem 2 ([27] Theorem 3.3). The primitive polynomial p(x) that generates the interleaved
PN-sequences of the shrunken sequence can be computed as

p(x) =
(

x + αT1
)(

x + α2T1
)(

x + α4T1
)
· · ·
(

x + α2L2−1T1
)

,

where α ∈ F2L2 is root of p2(x). If L2 = L1 + 1, then the polynomial p(x) is the reciprocal
polynomial of p2(x).

Note that the characteristic polynomial of the shrunken sequence is p(x)m, and p(x)
only depends on p2(x). The polynomial p1(x) only affects to the power m. In this way,
given a fixed polynomial p2(x), every primitive polynomial with degree L1 would provide
the same p(x).

Example 3. Consider again Example 2. Notice that

p(x) =
(

x + α7
)(

x + α14
)(

x + α28
)(

x + α56
)
= 1 + x + x4,

where α ∈ F24 is root of p2(x) = 1 + x3 + x4. Observe that p(x) is the reciprocal polynomial
of p2(x).

It is worth noticing that if p(x) is the primitive polynomial that generates the in-
terleaved PN-sequences of the shrunken sequence, then the polynomial p(x)2L1−1

also
generates the shrunken sequence. However, this polynomial might not be the character-
istic polynomial. In some cases, the characteristic polynomial has the form p(x)m, with
2L1−2 < m < 2L1−1.

The interleaved PN-sequences of the shrunken sequence are shifted versions of the
same PN-sequence, and these shifts can be determined [18]. Denote each one of the 2L1−1

interleaved PN-sequences by:

{vi},
{

vi+d1

}
,
{

vi+d2

}
, . . . , {vi+d

2L1−1−1
}.

The shifts dj, with j = 1, 2, 3, . . . , 2L1−1 − 1, depend on the positions of the ones in the
PN-sequence {ai} generated by p1(x) in the shrinking process. The following theorem
gives us a way to compute these shifts.

Theorem 3 ([18] Proposition 2). Let δ ∈ {1, 2, 3, . . . , T2 − 1}, such that T1 · δ = 1 mod T2.
Denote by I = {0, i1, i2, . . . , i2L1−1−1} the set of positions of the 1s in the PN-sequence {ai}
generated by p1(x) in its first period. We have that

dj = δ · ij mod T2, j = 1, 2, . . . , 2L1−1 − 1.

Example 4. Consider again Example 2. We have that the interleaved sequences of the shrunken
sequence are:

{s4·j} : 110001001101011
{s4·j+1} : 111100010011010
{s4·j+2} : 101111000100110
{s4·j+3} : 011010111100010
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The four PN-sequences {s4·j+i}, for i = 0, 1, 2, 3, have the same characteristic polynomial
p(x) = 1 + x + x4, thus all of them are shifted versions of the same PN-sequence. We can rename
them as:

{vi} : 110001001101011
{vi+d1} : 111100010011010
{vi+d2} : 101111000100110
{vi+d3} : 011010111100010

(1)

We consider, without loss of generality, that the last three PN-sequences are shifted versions of
the first one. From Theorem 3, we know that these shifts dj, for j = 1, 2, 3, depend on the ones in the
PN-sequence {ai} generated by p1(x) = 1 + x2 + x3 in the shrinking process. In order to obtain
these values, we have to find a value δ such that 7 · δ = 1 mod 15. In this case, δ = 13. Now, we
know that the ones in {ai} are in the positions {0, 1, 2, 4}, thus:

d1 = 13 · 1 mod 15→ d1 = 13

d2 = 13 · 2 mod 15→ d2 = 11

d3 = 13 · 4 mod 15→ d3 = 7

and, therefore, {ai} = {1110100}.
It is easy to check (see Equation (1)) that the second PN-sequence {vi+d1} starts in the 13-th

position of the first PN-sequence {vi} (underlined bit), the third {vi+d2} in the 11-th position (bit
in bold) and the last one {vi+d3} in the 7-th position (overlined bit).

The weakness of the shrunken sequence lies in the fact that the shifts of the interleaved
sequences can be determined. This means that, a shrunken sequence cannot be obtained
from some random shifted versions of a given PN-sequence; on the contrary, the shifts are
known as we saw before. In this fact our research begins.

3. Interleaving 2t Shifted Versions of the Same PN-Sequence

In this section, we study the resultant sequences of interleaving any shifted versions
of the same PN-sequence, that is, the so-called t-interleaving sequences. We determine
certain conditions on the shifts in order to obtain interleaving sequences with high linear
complexity, long period and good cryptographic properties.

In the following subsections, we analyze the cases of interleaving 2 and 4 shifted
versions of a same PN-sequence with a view to establish general conditions for the 2t

PN-sequences case.

3.1. Analysis of 2-Interleaving Sequences

Consider a primitive polynomial p(x) of degree L. If we interleave two shifted
versions of the same PN-sequence of period T = 2L − 1, then the period of the resultant
2-interleaving sequence, denoted by T , must be a divisor of 2T. Our main interest lies
in the study of its linear complexity LC, since a large linear complexity it is an important
cryptographic property in order to resist against cryptanalytic attacks.

By means of the following theorem we can narrow down the possible values of LC for
the 2-interleaving sequences.

Lemma 1. If we interleave two shifted versions of the same PN-sequence generated by the primitive
polynomial p(x), then the resultant 2-interleaving sequence can be generated by p(x)2.

Proof. Assume that we have the PN-sequence {ai} with characteristic polynomial

p(x) = p0 + p1x + p2x2 + · · ·+ pL−1xL−1 + xL;
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this means that the PN-sequence {ai} satisfies the linear recurrence relation:

ai+L = p0ai + p1ai+1 + p2ai+2 + · · ·+ pL−1ai+L−1. (2)

Consider now a shifted version of {ai}:

{ai+k} =
{

ak, ak+1, . . . , ak+2L−2
}

.

We know that the PN-sequence {ai+k} also satisfies the linear recurrence relation (2)
and the sequence obtained by interleaving {ai} and {ai+k} has the following form:

{sj} = {a0, ak, a1, ak+1, a2, ak+2, . . .}.

Denote the two PN-sequences as {ui} = {ai} and {vi} = {ai+k}, for i = 0, 1, . . ., 2L− 2.
We know that

ui+L = p0ui + p1ui+1 + p2ui+2 + · · ·+ pL−1ui+L−1 (3)

vi+L = p0vi + p1vi+1 + p2vi+2 + · · ·+ pL−1vi+L−1

and

ui = ai = s2i

vi = ai+k = s2i+1.

If we substitute the corresponding bits of {sj} in (3), we have that:

s2i+2L = p0s2i + p1s2i+2 + p2s2i+4 + · · ·+ pL−1s2i+2L−2

s2i+2L+1 = p0s2i+1 + p1s2i+3 + p2s2i+5 + · · ·+ pL−1s2i+2L−1.

Now, if we substitute j = 2i, we have that:

sj+2L = p0sj + p1sj+2 + p2sj+4 + · · ·+ pL−1sj+2L−2

sj+2L+1 = p0sj+1 + p1sj+3 + p2sj+5 + · · ·+ pL−1sj+2L−1.

This means that {sj} satisfies the linear recurrence relation:

sj+2L = p0sj + p1sj+2 + p2sj+4 + · · ·+ pL−1sj+2L−2

and, thus,
p(x)2 = p0 + p1x2 + p2x4 + · · ·+ pL−1x2(L−1) + x2L

generates the sequence {sj}.

Notice that if p(x)2 generates the 2-interleaving sequence, then its characteristic
polynomial must be p(x)2 or p(x). Thus, the linear complexity of the sequence must be
LC = 2L or LC = L, respectively. Moreover, the total number of 2-interleaving sequences,
using different shifts, is T2.

The following theorem shows that, given a PN-sequence {ai} and a shifted version
of itself with shift k 6= 2L−1, the characteristic polynomial of the 2-interleaving sequence
{sj} cannot be the same characteristic polynomial as that of {ai}. In other words, the shift
k = 2L−1 is the only shift that produces a 2-interleaving sequence with LC = L.

Theorem 4. Consider the PN-sequence {ai} generated by a primitive polynomial p(x) of degree
L and {ai+k} a version of {ai} shifted k positions. If k 6= 2L−1, then the resultant 2-interleaving
sequence {sj} cannot be the PN-sequence {ai} neither a shifted version of it.



Mathematics 2021, 9, 687 7 of 23

Proof. Consider the PN-sequences:

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+k} : ak ak+1 ak+2 ak+3 . . . ak+2L−2

and the resultant 2-interleaving sequence

{sj} =
{

a0, ak, a1, ak+1, a2, ak+2, . . . , a2L−2, ak+2L−2,
}

with period divisor of 2T, where T = 2L − 1 is the period of {ai}.
We proceed by contradiction. Assume that p(x) is the characteristic polynomial of

{sj}, thus {sj} would be the PN-sequence {ai} or a shifted version. In this case, we
would have that {sj} = {ai+D} with D ∈ {0, 1, . . . , 2L − 2}, that is, the PN-sequence {ai}
shifted D positions and concatenated with itself. Therefore, we can equal one by one the
corresponding terms of both subsequences:

a0 = ak+(2L−1−1)
a1 = ak+(2L−1−1)+1
a2 = ak+(2L−1−1)+2
...

...
a2L−1−1 = ak+(2L−1−1)+(2L−1−1)

ak = a2L−1

ak+1 = a2L−1+1
ak+2 = a2L−1+2

...
...

ak+2L−1−2 = a2L−1+2L−1−2.

Rewriting these equalities, we have that:

a0 = ak+(2L−1−1)
a1 = ak+(2L−1−1)+1
a2 = ak+(2L−1−1)+2
...

...
a2L−1−1 = ak+(2L−1−1)+(2L−1−1)

a2L−1 = ak = ak+(2L−1−1)+(2L−1)

a2L−1+1 = ak+1 = ak+(2L−1−1)+(2L−1)+1
a2L−1+2 = ak+2 = ak+(2L−1−1)+(2L−1)+2

...
...

a2L−1+2L−1−2 = ak+2L−1−2 = ak+(2L−1−1)+(2L−1)+2L−1−2.

In a succinct way, we can write:

ai = ak+(2L−1−1)+i for i = 0, 1, . . . , 2L − 2, (4)

where the elements of the first member in the equalities are the terms of {ai} while the
elements of the second member are the terms of

{
ak+(2L−1−1)+i

}
, a shifted version of {ai}.

If we write d = k + (2L−1 − 1), then Equation (4) can be expressed as:

ai + ad+i = 0 for i = 0, 1, . . . , 2L − 2.

Therefore, in sequential notation

{ai}+ {ad+i} = {0}, (5)
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where {0} is the identically null sequence. In order to satisfy Equation (5) d must satisfy
d = k + (2L−1 − 1) = 0(modT), that is, Equation (5) can be rewritten as:

{ai}+ {a0+i} = {0},

which is true since the bit-wise XOR of any sequence with itself is the identically
null sequence.

If d = k + (2L−1 − 1) = 0 mod T, then k + (2L−1 − 1) = n · T, for some n ∈ Z.
Since both k and n are integers, it is possible to check that the only possible solutions are
k = 2L−1 + n · T, n ∈ Z. Finally, we are working modulo T, therefore the only possible
solution is k = 2L−1.

Next result proves that the interleaving of a PN-sequence with any shifted version of
itself, except one, produces a new sequence with maximum period and LC = 2L.

Corollary 1. Consider the PN-sequence {ai} generated by a primitive polynomial p(x) of degree
L and period T = 2L − 1. If we interleave {ai} with the shifted version of itself given by {ai+k},
with k 6= 2L−1, the resultant 2-interleaving sequence has p(x)2 as characteristic polynomial and
period T = 2T.

Proof. We have that the PN-sequences

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+2L−1} : a2L−1 a2L−1+1 a2L−1+2 a2L−1+3 . . . a2L−1+2L−2

produce the 2-interleaving sequence given by:

{sj} = {a0, ak, a1, ak+1, a2, ak+2, . . .}.

According to Lemma 1, {sj} can be generated by p(x)2. Now, according to Theorem 4,
since k 6= 2L−1, we have that {sj} cannot be the PN-sequence {ai} (or a shifted version);
therefore, p(x)2 is the characteristic polynomial of {sj}.

3.2. Analysis of 4-Interleaving Sequences

Consider a primitive polynomial p(x) of degree L. If we interleave four shifted
versions of the same PN-sequence of period T = 2L− 1, then the period of the 4-interleaving
sequence must be a divisor of 4T. However, in this subsection, we go in depth in the study
of the linear complexity of these sequences by its importance in cryptography.

The following result is a generalization of Lemma 1 and narrows down the possible
values of LC.

Lemma 2. Consider a PN-sequence {ai} generated by a primitive polynomial p(x) of degree L and
period T = 2L − 1. If we interleave four shifted versions of {ai}, then the resultant 4-interleaving
sequence can be generated by p(x)4.

Proof. Assume that we have the PN-sequence {ai} with characteristic polynomial:

p(x) = p0 + p1x + p2x2 + · · ·+ pL−1xL−1 + xL;

this means that the PN-sequence {ai} satisfies the linear recurrence relation:

ai+L = p0ai + p1ai+1 + p2ai+2 + · · ·+ pL−1ai+L−1. (6)
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Consider now {ai} and any three PN-sequences shifted versions of {ai}:

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+k1} : ak1 ak1+1 ak1+2 ak1+3 . . . ak1+2L−2
{ai+k2} : ak2 ak2+1 ak2+2 ak2+3 . . . ak2+2L−2
{ai+k3} : ak3 ak3+1 ak3+2 ak3+3 . . . ak3+2L−2

The resultant 4-interleaving sequence has the following form:

{sj} = {a0, ak1 , ak2 , ak3 , a1, ak1+1, ak2+1, ak3+1, a2, ak1+2, ak2+2, ak3+2, . . .}.

We know that all three shifted versions, {ai+k1}, {ai+k2}, and {ai+k3}, also satisfy the
linear recurrence relation (6). If we denote by:

{u(0)
i } = {ai}

{u(1)
i } = {ai+k1}

{u(2)
i } = {ai+k2}

{u(3)
i } = {ai+k3}

for i = 0, 1, . . . , 2L − 2, we have that:

u(0)
i+L = p0u(0)

i + p1u(0)
i+1 + p2u(0)

i+2 + · · ·+ pL−1u(0)
i+L−1

u(1)
i+L = p0u(1)

i + p1u(1)
i+1 + p2u(1)

i+2 + · · ·+ pL−1u(1)
i+L−1 (7)

u(2)
i+L = p0u(2)

i + p1u(2)
i+1 + p2u(2)

i+2 + · · ·+ pL−1u(2)
i+L−1

u(3)
i+L = p0u(3)

i + p1u(3)
i+1 + p2u(3)

i+2 + · · ·+ pL−1u(3)
i+L−1

and

{u(0)
i } = {ai} = {s4i}

{u(1)
i } = {ai+k1} = {s4i+1}

{u(2)
i } = {ai+k2} = {s4i+2}

{u(3)
i } = {ai+k3} = {s4i+3}.

If we substitute the corresponding bits of {sj} in (7), we have that

s4i+4L = p0s4i + p1s4i+4 + p2s4i+8 + · · ·+ pL−1s4i+4L−4

s4i+4L+1 = p0s4i+1 + p1s4i+5 + p2s4i+9 + · · ·+ pL−1s4i+4L−3

s4i+4L+2 = p0s4i+2 + p1s4i+6 + p2s4i+10 + · · ·+ pL−1s4i+4L−2

s4i+4L+3 = p0s4i+3 + p1s4i+7 + p2s4i+11 + · · ·+ pL−1s4i+4L−1.

Now, if we substitute j = 4i, we have that:

sj+4L = p0sj + p1sj+4 + p2sj+8 + · · ·+ pL−1sj+4L−4

sj+4L+1 = p0sj+1 + p1sj+5 + p2sj+9 + · · ·+ pL−1sj+4L−3

sj+4L+2 = p0sj+2 + p1sj+6 + p2sj+10 + · · ·+ pL−1sj+4L−2

sj+4L+3 = p0sj+3 + p1sj+7 + p2sj+11 + · · ·+ pL−1sj+4L−1.
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This means that {sj} satisfies the linear recurrence relation:

sj+4L = p0sj + p1sj+4 + p2sj+8 + · · ·+ pL−1sj+4L−4

and, thus,
p(x)4 = p0 + p1x4 + p2x8 + · · ·+ pL−1x4(L−1) + x4L

generates the sequence {sj}.

As a consequence of the previous lemma, the only possibilities for the characteristic
polynomial of the 4-interleaving sequence are p(x), p(x)2, p(x)3 or p(x)4, that is, its linear
complexity is L, 2L, 3L or 4L, respectively. Moreover, the total number of 4-interleaving
sequences, using different shifts, is T4.

3.2.1. Analysis of 4-Interleaving Sequences with LC = L

In this subsection, we do an exhaustive study on the linear complexity of the 4-
interleaving sequences. Furthermore, we count the total number of 4-interleaving se-
quences for different values of LC.

The following theorem provides the shifts that produce 4-interleaving sequences with
linear complexity LC = L.

Theorem 5. Consider a PN-sequence {ai} generated by a primitive polynomial p(x) of degree
L and period T = 2L − 1. If we interleave 4 shifted versions of {ai}, with shifts k1 = 2L−2,
k2 = 2 · 2L−2 and k3 = 3 · 2L−2, the resultant 4-interleaving sequence has LC = L and period
T = 2L − 1.

Proof. Consider the four PN-sequences:

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+2L−2} : a2L−2 a2L−2+1 a2L−2+2 a2L−2+3 . . . a2L−2+2L−2
{ai+2·2L−2} : a2·2L−2 a2·2L−2+1 a2·2L−2+2 a2·2L−2+3 . . . a2·2L−2+2L−2
{ai+3·2L−2} : a3·2L−2 a3·2L−2+1 a3·2L−2+2 a3·2L−2+3 . . . a3·2L−2+2L−2,

where indices are considered modulo T. The resultant 4-interleaving sequence has the form:

{sj} = {a0, a2L−2 , a2·2L−2 , a3·2L−2 , a1, a2L−2+1, a2·2L−2+1, a3·2L−2+1,

a2, a2L−2+2, a2·2L−2+2, a3·2L−2+2, . . .}.

Notice that:

4 · 2L−2 mod T = 2L mod T = 1

5 · 2L−2 mod T = (2L−2 + 4 · 2L−2) mod T = 2L−2 + 1

6 · 2L−2 mod T = (2 · 2L−2 + 4 · 2L−2) mod T = 2 · 2L−2 + 1

7 · 2L−2 mod T = (3 · 2L−2 + 4 · 2L−2) mod T = 3 · 2L−2 + 1

8 · 2L−2 mod T = 2 · 2L mod T = 2
...

so, we can express:

{sj} = {a0, a2L−2 , a2·2L−2 , a3·2L−2 , a4·2L−2 , a5·2L−2 , a6·2L−2 , . . .} = {ai∗2L−2};

that is, the sequence {sj} can be also obtained decimating {ai} by distance d = 2L−2.
According to Golomb [1] (page 76), if we decimate a PN-sequence with distance a power of
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two, we obtain the same PN-sequence except for a phase shift. Therefore, {sj} is a shifted
version of {ai} and LC = L.

Next, we present two examples to illustrate the previous result.

Example 5. Consider the primitive polynomial p(x) = 1 + x + x4, that is, L = 4. We consider
the initial state {1111} for the PN-sequence {ai} and, the shifts k1 = 2L−2 = 4, k2 = 2 · 2L−2 = 8,
k3 = 3 · 2L−2 = 12. The corresponding PN-sequences are:

{ai} : 11110001000011010
{ai+4} : 000100110101111
{ai+8} : 00001101011110001
{ai+12} : 010111100010011

and the resultant 4-interleaving sequence is:

{sj} ={100010011010111 100010011010111

100010011010111 100010011010111}.

Notice that {sj} = {a4·i} = {ai+3}, that is, the 4-interleaving sequence is a shifted version
of {ai} (starting in the third bit of {ai}). Therefore, its linear complexity is LC = L = 4.

Example 6. Consider the primitive polynomial p(x) = 1 + x2 + x5, that is, L = 5. We consider
the initial state {11111} for {ai} and k1 = 2L−2 = 8, k2 = 2 · 2L−2 = 16, k3 = 3 · 2L−2 = 24.
The corresponding PN-sequences are:

{ai} : 111110001101110100010000100101100
{ai+8} : 1101110101000010010110011111000
{ai+16} : 000100001001011001111100011011101
{ai+24} : 0101100111110001101110101000010

The resultant 4-interleaving sequence is:

{sj} ={1100111110001101110101000010010 1100111110001101110101000010010

1100111110001101110101000010010 1100111110001101110101000010010}

Notice that {sj} = {a8·i} = {ai+27}, that is, {sj} is a shifted version of {ai} (starting in the
27-th bit of {ai}). Therefore, LC = 5.

As a consequence of Theorem 5, we can count the number of 4-interleaving PN-
sequences with linear complexity LC = L.

Corollary 2. If we interleave 4 shifted versions of the same PN-sequence of period T and LC = L,
then there are T possible resultant 4-interleaving sequences with LC = L and period T = 2L − 1.

Proof. Since k1, k2 and k3 are fixed, the resultant sequence depends on the initial state of
{ai}. We have T = 2L − 1 possible non-zero initial states for {ai}, therefore we have T
different interleaving sequences with LC = L.

3.2.2. Interleaving Sequences with LC = 2L

As we did in the previous subsection, here we study which shifts provide 4-interleaving
PN-sequences with linear complexity LC = 2L.
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Theorem 6. If we interleave 4 shifted versions of the same PN-sequence of period T = 2L− 1, with
shifts k1 6= 2L−2, k2 = 2L−1 and k3 = k1 + 2L−1 mod T, the resultant 4-interleaving sequence
has LC = 2L and period T = 2T.

Proof. Consider the four PN-sequences:

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+k1} : ak1 ak1+1 ak1+2 ak1+3 . . . ak1+2L−2
{ai+2L−1} : a2L−1 a2L−1+1 a2L−1+2 a2L−1+3 . . . a2L−1+2L−2

{ai+k1+2L−1} : ak1+2L−1 ak1+2L−1+1 ak1+2L−1+2 ak1+2L−1+3 . . . ak1+2L−1+2L−2

where the indices are considered modulo T. The resultant interleaving sequence has
the form:

{sj} = {a0, ak1 , a2L−1 , ak1+2L−1 , a1, ak1+1, a2L−1+1, ak1+2L−1+1,

a2, ak1+2, a2L−1+2, ak1+2L−1+2, . . .}.

Notice that {sj} is also obtained interleaving the two sequences:

{u(1)
i } = {a0, a2L−1 , a1, a2L−1+1, a2, a2L−1+2, . . .}

{u(2)
i } = {ak1 , ak1+2L−1 , ak1+1, ak1+2L−1+1, ak1+2, ak1+2L−1+2, . . .}

Both sequences, {u(1)
i } and {u(2)

i }, are obtained decimating {ai} and {ai+k1}, respec-
tively, by distance d = 2L−1; therefore, both are shifted versions of {ai} [1] (page 76).
According to Theorem 1, if {u(2)

i } = {u
(1)
i+d} with d = 2L−1 (the phase shift between both

PN-sequences is 2L−1), then the 2-interleaving sequence is a shifted version of the same
PN-sequence and has LC = L.

Notice that:

2 · 2L−1 mod T = 2L mod T = 1

3 · 2L−1 mod T = (2L−1 + 2L) mod T = 2L−1 + 1

4 · 2L−1 mod T = 2 · 2L mod T = 2 (8)

5 · 2L−1 mod T = (2L−1 + 2 · 2L) mod T = 2L−1 + 2
...

According to (8), we have that:

{u(1)
i } = {a0, a2L−1 , a2·2L−1 , a3·2L−1 , a4·2L−1 , a5·2L−1 , . . .},

therefore, {u(1)
i } = {ai·2L−1}. If {u(2)

i } = {u
(1)
i+2L−1}, this means that the PN-sequence {u(2)

i }
starts in the 2L−1-th position of {u(1)

i }, that is:

{u(2)
i } = {a2L−1·2L−1 , a(2L−1+1)·2L−1 , a(2L−1+2)·2L−1 , . . .};

therefore, k1 = 22L−2 mod T = 2L−2. However, we know that k1 6= 2L−2.
According to Theorem 4, the only shift that gives us a 2-interleaving sequence with

LC = L is d = 2L−1, which we have seen that is impossible. Thus, according to Lemma 1,
the polynomial p(x)2 generates {sj} and must also be the characteristic polynomial.

Notice that if k1 = 2L−2, then k2 = 2 · 2L−2 and k3 = 3 · 2L−2, and we have the case
studied in Theorem 5.

Through the following example, we illustrate the previous result.
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Example 7. Consider the primitive polynomial p(x) = 1 + x2 + x5, that is, L = 5. We consider
the initial state {11111} for {ai} and k1 = 6 6= 23, k2 = 24 = 16, k3 = 6 + 24 = 22. The
corresponding PN-sequences are:

{ai} : 111110001101110100010000100101100
{ai+6} : 0011011101010000100101100111110
{ai+16} : 000100001001011001111100011011101
{ai+22} : 1001011001111100011011101010000

and the 4-interleaving sequence obtained is:

{sj} = {10011010110011011000010101110100100011110001111110111001000010

10011010110011011000010101110100100011110001111110111001000010}

which has period equal to 62 and LC = 10. Moreover, its characteristic polynomial is p(x)2 =
(1 + x2 + x5)2.

As a consequence of Theorem 6, we can count the number of 4-interleaving sequences
with LC = 2L.

Corollary 3. If we interleave 4 shifted versions of the same PN-sequence of period T and LC = L,
then we obtain T(T − 1) possible 4-interleaving sequences of LC = 2L.

Proof. The shift between the first and third sequences (and the second and the fourth) is
fixed. Therefore, the resultant sequence depends on the initial state of {ai} and k1. We have
T = 2L − 1 possible non-zero initial states for {ai} and T − 1 possible values for k1, thus,
we have T(T − 1) different 4-interleaving sequences with LC = 2L.

Until now, we have characterized the 4-interleaving sequences with linear complexities
L and 2L. For the cases LC = 3L and LC = 4L we do not have any conclusive results.
We have analyzed them computationally, obtaining expressions to count the number of
interleaving sequences with these linear complexities. We need only to compute one of
both cases, since that the other one would be immediate.

Table 1 shows the total number of 4-interleaving sequences that are generated for each
possible value of LC. Observe that the number of the 4-interleaving sequences does not
depend on the characteristic polynomial, only on its degree. The expression at the bottom
of the table represents the total number of 4-interleaving sequences.

Table 1. Number of 4-interleaving sequences with LC = L, 2L, 3L and 4L and the correspond-
ing period.

LC Period Number of 4-Interleaving Sequences

L T T

2L 2T T · (T − 1)

3L 4T T · (T − 1)2

4L 4T T4 − T3 + T2 − T

∑ = T4

Notice that when L is large the number of interleaving sequences with maximal linear
complexity, LC = 4L, tends to the total amount of interleaving sequences; that is,

lim
L→∞

T4 − T3 − T2 − T
T4 = 1.
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Therefore, we can ensure that the great majority of the 4-interleaving sequences have
the maximal linear complexity.

In Appendix A, we present several examples where we compute the number of 4-
interleaving sequences for each possible value of the linear complexity using polynomials
with different degrees (see Table A2).

3.3. Analysis of 2t-Interleaving Sequences

In this section, we generalize some of the results obtained in Sections 3.1 and 3.2.
Consider a primitive polynomial p(x) of degree L. If we interleave 2t shifted versions

of the same PN-sequence of period T = 2L − 1, then the period of the resultant interleaving
sequence must be a divisor of (2t · T). We determine the period and the linear complexity
of 2t-interleaving sequences.

The following result is a generalization of Lemmas 1 and 2 and narrows down the
possible values of LC. The proof can be implemented using a similar method as that used
in the proof of Lemma 2.

Lemma 3. If we interleave 2t shifted versions of the same PN-sequence generated by the primitive
polynomial p(x), the resultant 2t-interleaving sequence can be generated by p(x)2t

.

As a consequence of the previous lemma, we have that the possibilities for the char-
acteristic polynomial are p(x), p(x)2, p(x)3, . . ., p(x)2t

, that is, the possible values for the
linear complexity are L, 2L, 3L, . . . , or 2tL

3.3.1. Analysis of 2t-Interleaving Sequences with LC = L

Next theorem determines the shifts that provide 2t-interleaving sequences with
LC = L.

Theorem 7. If we interleave 2t shifted versions of the same PN-sequence of period T = 2L − 1
with shifts k1 = 2L−t, k2 = 2 · 2L−t, k3 = 3 · 2L−t,. . ., k2t−1 = (2t − 1) · 2L−t, then the resultant
2t-interleaving sequence has LC = L and period T = 2L − 1.

Proof. Applying induction in the proof of Theorem 5.

Through the following example, we reflect the previous result.

Example 8. Consider the primitive polynomial p(x) = 1 + x + x2 + x3 + x5, where L = 5
and T = 31. Consider the initial state {11111} for {ai} and k1 = 25−3 = 4, k2 = 2 · 4 = 8,
k3 = 3 · 4 = 12, k4 = 4 · 4 = 16, k5 = 5 · 4 = 20, k6 = 6 · 4 = 24 and k7 = 7 · 4 = 28. The
corresponding PN-sequences are:

{ai} : 11111111100100001100000011101100010100000111110
{ai+4} : 1001001100001011010100011101111
{ai+8} : 0011000010110101000111011111001
{ai+12} : 0000101101010001110111110010011
{ai+16} : 1011010100011101111100100110000
{ai+20} : 0101000111011111001001100001011
{ai+24} : 0001110111110010011000010110101
{ai+28} : 1101111100100110000101101010001

The resultant 8-interleaving sequence is:

{sj} ={1100100110000101101010001110111

1100100110000101101010001110111 . . .}.
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Notice that {sj} = {a4·i} = {ai+3}, that is, a shifted version of {ai} (starting in the 3rd bit
of {ai}). Therefore, its linear complexity is LC = 5.

As a result of the previous theorem, we can count the number of 2t-interleaving
sequences with LC = L.

Corollary 4. If we interleave 2t PN-sequences of period T and LC = L, produced by the same
LFSR, then there are T resultant 2t-interleaving sequences with linear complexity LC = L and
period T.

Proof. Since k1, k2, . . . k2t−1 are fixed, the resultant 2t-interleaving sequence depends only
on the initial state of {ai}. We have T = 2L − 1 possible non-zero initial states for {ai},
therefore, we have T different 2t-interleaving sequences with LC = L.

3.3.2. Analysis of 2t-Interleaving Sequences with LC = 2L

Next, we present the shifts that produce 2t-interleaving sequences with LC = 2L.

Theorem 8. If we interleave 2t shifted versions of the same PN-sequence of period T = 2L − 1
with shifts k1 6= 2L−t, k2p = p · 2L−t+1, k2p+1 = k1 + p · 2L−t+1, for p = 1, 2, . . . , 2t−1 − 1, the
resultant 2t-interleaving sequence has LC = 2L and period T = 2(2L − 1).

Proof. We first analyze the mentioned shifts:

k1 6= 2L−t

k2 = 2L−t+1 k3 = k1 + 2L−t+1

k4 = 2 · 2L−t+1 k5 = k1 + 2 · 2L−t+1

k6 = 3 · 2L−t+1 k7 = k1 + 3 · 2L−t+1

...
...

k2t−2 = (2t−1 − 1) · 2L−t+1 k2t−1 = k1 + (2t−1 − 1) · 2L−t+1.

Consider now the 2t PN-sequences:

{ai} : a0 a1 a2 . . . a2L−2
{ai+k1} : ak1 ak1+1 ak1+2 . . . ak1+2L−2
{ai+k2} : a2L−t+1 a2L−t+1+1 a2L−t+1+2 . . . a2L−t+1+2L−2
{ai+k3} : ak1+2L−t+1 ak1+2L−t+1+1 ak1+2L−t+1+2 . . . ak1+2L−t+1+2L−2
{ai+k4} : a2·2L−t+1 a2·2L−t+1+1 a2·2L−t+1+2 . . . a2·2L−t+1+2L−2
{ai+k5} : ak1+2·2L−t+1 ak1+2·2L−t+1+1 ak1+2·2L−t+1+2 . . . ak1+2·2L−t+1+2L−2

...
{ai+k2t−2

} : a(2t−1−1)·2L−t+1 a(2t−1−1)·2L−t+1+1 a(2t−1−1)·2L−t+1+2 . . . a(2t−1−1)·2L−t+1+2L−2
{ai+k2t−1

} : ak1+(2t−1−1)·2L−t+1 ak1+(2t−1−1)·2L−t+1+1 ak1+(2t−1−1)·2L−t+1+2 . . . ak1+(2t−1−1)·2L−t+1+2L−2,

where indices are considered modulo T. The resultant 2t-interleaving sequence has
the form:

{sj} = {a0, ak1 , a2L−t+1 , ak1+2L−t+1 , a2·2L−t+1 , ak1+2·2L−t+1 , a3·2L−t+1 , ak1+3·2L−t+1 , . . .}.

Notice that {sj} is also obtained interleaving the two sequences:

{u(1)
i } = {a0, a2L−t+1 , a2·2L−t+1 , a3·2L−t+1 , . . .} (9)

{u(2)
i } = {ak1 , ak1+2L−t+1 , ak1+2·2L−t+1 , ak1+3·2L−t+1 , . . .}.
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Both sequences, {u(1)
i } and {u(2)

i }, are obtained decimating {ai} and {ai+k1}, respec-
tively, by distance d = 2L−t+1. Therefore, both are shifted versions of {ai} [1] (page 76).
According to Theorem 1, if {u(2)

i } = {u
(1)
i+d} with d = 2L−1 (the phase shift between both

PN-sequences is 2L−1), then the 2-interleaving sequence is a shifted version of the same
PN-sequence and has LC = L.

According to (9) we have that {u(1)
i } = {ai·2L−t+1}. If {u(2)

i } = {u
(1)
i+2L−1}, this means

that the PN-sequence {u(2)
i } starts in the 2L−1-th position of {u(1)

i }, that is:

{u(2)
i } = {a2L−1·2L−t+1 , a(2L−1+1)·2L−t+1 , a(2L−1+2)·2L−t+1 , . . .}

therefore k1 = 22L−t mod T = 2L−t. However, we know that k1 6= 2L−t.
The shift k1 = 2L−t is the only one that gives us an interleaving sequence with LC = L.

Now, according to Lemma 1, the polynomial p(x)2 generates {sj}. Since k1 6= 2L−t, the
polynomial p(x)2 must also be the characteristic polynomial.

Example 9. Consider the primitive polynomial p(x) = 1 + x + x2 + x3 + x5, that is, L = 5
and T = 31. We consider the initial state {11111} for {ai} and the shifts k1 = 3 6= 25−3,
k2 = 25−3+1 = 8, k3 = 3 + 8 = 11, k4 = 2 · 8 = 16, k5 = 3 + 2 · 8 = 19, k6 = 3 · 8 = 24 and
k7 = 3 + 3 · 8 = 27. The corresponding PN-sequences are:

{ai} : 1111100100110000101101010001110
{ai+3} : 1100100110000101101010001110111
{ai+8} : 0011000010110101000111011111001
{ai+11} : 1000010110101000111011111001001
{ai+16} : 1011010100011101111100100110000
{ai+19} : 1010100011101111100100110000101
{ai+24} : 0001110111110010011000010110101
{ai+27} : 1110111110010011000010110101000

and, the resultant 8-interleaving sequence is:

{sj} = {1101110111000001101011011010101

0110001110001101100000001110110

1101110111000001101011011010101

0110001110001101100000001110110 . . .}

It is possible to check that the period of this sequence is T = 64, the characteristic polynomial
is p(x) = 1 + x2 + x4 + x6 + x10 and, thus, LC = 10.

Corollary 5. When we interleave 2t shifted versions of the same PN-sequence of period T and
LC = L, there are T(T − 1) possible resultant 2t-interleaving sequences of LC = 2L.

Proof. The shifts between the odd sequences (and the even sequences) are fixed. Therefore,
the resultant 2t-interleaving sequence depends on the initial state of {ai} and k1. We have
T = 2L − 1 possible non-zero initial states for {ai} and T − 1 possible values for k1, thus,
we have T(T − 1) different interleaving sequences with LC = 2L.

As in the case of 4-interleaving sequences, we obtain expressions on the total number
of 8-interleaving sequences for each possible value of LC (see Table 2). The formulas for the
cases LC = 6L and LC = 7L have not been determined yet. The expression at the bottom
of the table represents the total number of 8-interleaving sequences.
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Table 2. Number of 8-interleaving sequences with the corresponding linear complexity and period.

LC Period Number of 8-Interleaving Sequences

L T T

2L 2T T · (T − 1)

3L 4T T · (T − 1)2

4L 4T T4 − T3 + T2 − T

5L 8T T · (T − 1)4

8L 8T T8 − T7 + T6 − T5 + T4 − T3 + T2 − T

T8

4. Interleaving t Sequences

Our main aim is to characterize the interleaving sequences using any number of
interleaved PN-sequences. In this section, we present some preliminary results.

As in the previous sections, we present some results on the shifts in order to obtain
t-interleaving sequences with LC = L.

Theorem 9. Consider a primitive polynomial p(x) of degree L. If we interleave t shifted versions of
the same PN-sequence of period T = 2L− 1 with shifts (modulo T) k1 = k, k2 = 2 · k, k3 = 3 · k,. . .,
kt−1 = (t− 1) · k, gcd(T, k) = 1 and (k · t) = 1 mod T, the resultant t-interleaving sequence
has LC = L and period T = 2L − 1.

Proof. Consider the t PN-sequences:

{ai} : a0 a1 a2 a3 . . . a2L−2
{ai+k} : ak ak+1 ak+2 ak+3 . . . ak+2L−2
{ai+2·k} : a2·k a2·k+1 a2·k+2 a2·k+3 . . . a2·k+2L−2
{ai+3·k} : a3·k a3·k+1 a3·k+2 a3·k+3 . . . a3·k+2L−2

...
{ai+(t−1)·k} : a(t−1)·k a(t−1)·k+1 a(t−1)·k+2 a(t−1)·k+3 . . . a(t−1)·k+2L−2

where the indices are considered modulo T. The resultant t-interleaving sequence has
the form:

{sj} = {a0, ak, a2·k, a3·k, . . . , a(t−1)·k, a1, ak+1, a2·k+1, a3·k+1, . . . , a(t−1)·k+1, . . . ,

a2L−2, ak+2L−2, a2k+2L−2, a3k+2L−2, . . . , a(t−1)k+2L−2}.

Notice that:

t · k mod T = 1

(t + 1) · k mod T = k + 1

(t + 2) · k mod T = 2k + 1
...

2t · k mod T = 2

(2t + 1) · k mod T = k + 2

(2t + 2) · k mod T = 2k + 2
...
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Therefore, we have that:

{sj} = {a0, ak, a2·k, a3·k, a4·k, . . . , a(t−1)·k, at·k, a(t+1)·k, a(t+2)·k, . . . , },

that is, the sequence {sj} can be also obtained decimating {ai} by distance d = k. According
to Golomb [1] (page 78), if we decimate a PN-sequence (produced by a primitive polynomial
of degree L) with distance k such that gcd(T, k) = 1, then the resultant sequence is also
a PN-sequence, generated by a primitive polynomial of degree L. Therefore, {sj} is a
PN-sequence with LC = L.

In the next example we apply the results of the previous theorem.

Example 10. Consider the primitive polynomial p(x) = 1 + x + x3, that is, L = 3 and T = 7.
In this case, we want to interleave 5 PN-sequences and let k = 3 (since that, gcd(7, 3) = 1 and
3 · 5 = 1 mod T). We consider the initial state {111} for {ai} and k1 = 3, k2 = 2 · 3 = 6,
k3 = 3 · 3 = 9 mod T = 2, k4 = 4 · 3 = 12 mod T = 5. The corresponding PN-sequences are:

{ai} : 0010111
{ai+3} : 0111001
{ai+6} : 1001011
{ai+2} : 1011100
{ai+5} : 1100101

The 5-interleaving sequence obtained is:

{sj} = {0011101 0011101 0011101 0011101 0011101}

which has period equal to 7 and LC = 3, since the characteristic polynomial is p∗(x) = 1+ x2 + x3

(where we denote the reciprocal polynomial of p(x) by p∗(x) ).

Corollary 6. Consider a primitive polynomial p(x) of degree L. Assume that T = 2L − 1 is not a
prime integer and let t be a divisor of T. If we interleave t shifted versions of any PN-sequence of
period T, the resultant t-interleaving sequence has LC > L and period T > 2L − 1.

Proof. If t is a divisor of T, then there is no multiplicative inverse of t modulo T, i.e., there
is no k such that (k · t) = 1 mod T. Therefore, according to Theorem 9, there are no t-
interleaving sequences with LC = L.

In the next example, we present a case where we cannot construct any 5-interleaving
sequence with LC = L.

Example 11. Consider the primitive polynomial p(x) = 1 + x + x4, that is, L = 4 and T = 15.
Assume that we want to interleave 5 PN-sequences. It is possible to check that there is no k such
that gcd(15, k) = 1 and k · 5 = 1 mod T (since 5 is a divisor of T). Therefore, if we interleave 5
shifted versions of the same PN-sequence generated by p(x), the resultant interleaving sequence has
LC > 4.

Other examples that illustrate the previous result can be found in Appendix A. For
instance, observe the case L = 6 in Table A1, where there are no 3-interleaving sequences
of LC = 6. This is a consequence of the fact that T = 63 is not a prime number and 3 is a
divisor of T.

Next result computes the number of t-interleaving sequences with linear complexity
equals to L.
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Corollary 7. Consider a primitive polynomial p(x) of degree L. If we interleave t shifted versions
of the same PN-sequence of period T = 2L − 1 with the shifts given in Theorem 9, there are T
possible resultant t-interleaving sequences of LC = L and period T.

Proof. Since the shifts are fixed and k is unique (k is the multiplicative inverse of t mod-
ulo T), the resultant sequence depends only on the initial state of {ai}. We have T = 2L − 1
possible non-zero initial states for {ai}, therefore, we have T different t-interleaving se-
quences with LC = L.

Although we do not provide a characterization of the t-interleaving sequences for the
other values of LC, it can be seen (computationally) that the majority of interleaving se-
quences achieve the maximum linear complexity. The percentage of interleaving sequences
with the maximum LC is approximately or greater than 90%.

In Tables A1–A3 of Appendix A, we show some examples that motivate us to continue
deepening on this research. For instance, we observe that there exist particular cases where
all the interleaving sequences obtained achieve the maximum value of the linear complexity.
It would be interesting to characterize this kind of sequences, since that they are the ones
with best cryptographic properties.

5. Preliminary Randomness Study and Comparison with Other Sequences

Given a shrunken sequence obtained from two registers of lengths, L1 and L2 (with
the characteristics seen in Section 3.1), we know that the linear complexity satisfies

L22L1−2 < LC ≤ L22L1−1,

and the period is T = (2L2 − 1)2L1−1. This sequence can be also generated interleaving
2L1−1 shifted versions of the same PN-sequence with characteristic polynomial p(x) of
degree L2 (see Theorem 2) and period 2L2 − 1. Therefore, the shrunken sequence is an
2L1−1-interleaving sequence. If we fix the polynomial p2(x) and range over all the possible
primitive polynomials of degree L1, then we can construct a family of shrunken sequences
where all of them are 2L1−1-interleaving sequences (by interleaving PN-sequences gener-
ated by p(x)). Notice that with the shrinking process, we can only construct families of
t-interleaving sequences with t equal to 2L1−1, a power of two, with additional restrictions
on the values of L1 and L2. Using the method presented in this paper, we can construct
families of t-interleaving sequences with no restriction on t or L (the length of the LFSR).

In Tables A4 and A5 of Appendix A, we present a comparison between the number
of shrunken sequences generated by polynomials of degrees L1 and L2 and the number
of t-interleaving sequences (obtained interleaving t = 2L1−1 shifted versions of the PN-
sequence generated by the polynomial p(x) of degree L2 given in Theorem 2), and their
corresponding values of LC in each case. Specifically, we present the results for t = 4, 8
where we can observe that the number of t-interleaving sequences, with maximum linear
complexity is clearly greater than that of the shrunken sequences. It is worth noticing that
if a shrunken sequence and a 2L−1- interleaving sequence have the same LC, then they
have the same period. Hence we focus on the parameter linear complexity better than on
the period.

For a practical use of the t-interleaving sequences in cryptographic algorithms, it is
important to analyse the quality of this random number generator and to focus on other
randomness properties beyond linear complexity. As a first approach, we have carried
out a preliminary study of the randomness of these sequences through the statistical
tests package FIPS 140-2 [28]. It is a U.S. government computer security standard used
to approve cryptographic modules issued by the National Institute of Standards and
Technology (NIST). Moreover, it has been widely used for the verification of the statistical
properties of pseudorandom numbers generated by PRNGs.

In this package, there are 4 statistical random number generator tests—the Monobit
Test, The Poker Test, The Runs Test and The Long Runs Test. All the tests have been
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applicable for a wide range of binary string size and considering different primitive
polynomials. There exist indicators which point out a good random behavior, since that all
the t-interleaving sequences evaluated have passed all the tests.

Below, we show the values obtained in the tests of FIPS for a particular 10-interleaving
sequence generated from a PN-sequence with characteristic polynomial of degree 16:

1. LONG RUNS TEST: Passed. There are no runs of more than 25 equal bits.
2. MONOBIT TEST: Passed. The test is passed if (9725 < number of ones < 10275).

Our result was: 10013.
3. X = POKER TEST: Passed. The test is passed if 1.03 < X < 57.4. Our result was:

X = 17.6064.
4. RUNS TEST: Passed. The test is passed if the runs (for both the runs of zeros, red line,

and the runs of ones, blue line) that occur (of lengths 1 through 6) are each within the
corresponding interval specified in the Figure 1 by the green line.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Runs length
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FIPS 1402 Runs Test

Figure 1. Run test for a 10-interleaving sequence generated from a PN -sequence with characteristic
polynomial of degree 16.

6. Conclusions

The output sequence of the shrinking generator, the shrunken sequence, is obtained
decimating the bits of a PN-sequences in terms of the bits of another PN-sequence. Besides,
the shrunken sequence can be also obtained interleaving shifted versions of a unique
PN-sequence. In this paper, we use the same idea of interleaving shifted versions of the
same PN-sequence in order to obtain a new family of sequences with the same features as
those of the shrunken sequences, that is, large period and linear complexity. We study their
periods, linear complexities and the number of sequences obtained for any possible value
of LC. Furthermore, we present a preliminary study of the randomness of t-interleaving
sequences with the application of the standard FIPS, a statistical test suite for the validation
of pseudorandom number generators. Through the analysis of a great number of these
sequences, for different values of t and different primitive polynomials, we point out a
good random behaviour.

As future work, we would like to study the open cases that we have not solved in
this paper. For instance, we would like to find an analytical proof for the expressions
we found on the total number of 4-interleaving sequences with LC = 3L and LC = 4L;
complete the study of 2t-interleaving sequences; and increase our knowledge about the
case of t-interleaving sequences. Furthermore, we would like to do a statistical randomness
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analysis of these new sequences using several statistical test batteries as the Diehard battery
of tests, the packet FIPS 140-2, CRYPT-X or TestU01, among others. Until now, our research
is focused on the use of a PN-sequence and shifted versions of itself. A natural step would
be the study of the resultant sequences of interleaving PN-sequences of different primitive
polynomials (with same or different degree).
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Appendix A

Table A1. Number and percentage of 3-interleaving sequences, with different values of LC, formed by PN-sequences with
characteristic polynomials of degree L = 3, 4, 5, 6.

L = 3 L = 4 L = 5 L = 6

LC Sequences % LC Sequences % LC Sequences % LC Sequences %

3 7 2.04% 4 0 0% 5 31 0.1% 6 0 0%
6 42 12.25% 8 0 0% 10 930 3.12% 12 0 0%
9 294 85.71% 12 3375 100% 15 28,830 96.78% 18 250,047 100%

343 3375 29,791 250,047

Table A2. Number and percentage of 4-interleaving sequences with different values of LC, formed by PN-sequences with
characteristic polynomials of degree L = 3, 4, 5, 6.

L = 3 L = 4 L = 5 L = 6

LC Sequences % LC Sequences % LC Sequences % LC Sequences %

3 7 0.29% 4 15 0.03% 5 31 0.003% 6 63 0.0004%
6 42 1.75% 8 210 0.41% 10 930 0.101% 12 3906 0.0249%
9 252 10.50% 12 2940 5.81% 15 27,900 3.021% 18 242,172 1.5373%

12 2100 87.46% 16 47,460 93.75% 20 894,660 96.875% 24 15,506,820 98.4373%

2401 50,625 92,3521 15,752,961

Table A3. Number and percentage of 5-interleaving sequences, with different values of LC, formed by PN-sequences with
characteristic polynomials of degree L = 3, 4, 5.

L = 3 L = 4 L = 5

LC Sequences % LC Sequences % LC Sequences %

3 7 0.04% 4 0 0% 5 31 0.0001%
6 0 0% 8 0 0% 10 0 0%
9 0 0% 12 0 0% 15 0 0%

12 2100 12.5% 16 0 0% 20 894,660 3.125 %
15 14,700 87.46% 20 759,375 100% 25 27,734,460 96.8749%

16,807 759,375 28,629,151
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Table A4. Comparison between number of shrunken sequences and 4-interleaving sequences with maximum LC.

(L1,L2)

(3,4) (3,5) (3,7)

LC Sequences % LC Sequences % LC Sequences %

Shrunken 16 420 100% 20 2604 100% 28 32,004 100%

4-interleaving 16 47,460 93.75% 20 894,660 96.875% 28 258,112,260 99.22%

Table A5. Comparison between number of shrunken sequences and 8-interleaving sequences with
maximum LC.

(L1,L2)

(4,5) (4,7)

LC Sequences % LC Sequences %

Shrunken 40 4650 83.33% 56 68,580 100%

8-interleaving 40 8.2624 × 1011 96.87% 56 6.7147 × 1016 99.22%
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