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Abstract: The asymptotic profile for diffusion wave terms of solutions to the compressible Navier–
Stokes–Korteweg system is studied on R2. The diffusion wave with time-decay estimate was studied
by Hoff and Zumbrun (1995, 1997), Kobayashi and Shibata (2002), and Kobayashi and Tsuda (2018)
for compressible Navier–Stokes and compressible Navier–Stokes–Korteweg systems. Our main
assertion in this paper is that, for some initial conditions given by the Hardy space, asymptotic
behaviors in space–time L2 of the diffusion wave parts are essentially different between density and
the potential flow part of the momentum. Even though measuring by L2 on space, decay of the
potential flow part is slower than that of the Stokes flow part of the momentum. The proof is based
on a modified version of Morawetz’s energy estimate, and the Fefferman–Stein inequality on the
duality between the Hardy space and functions of bounded mean oscillation.
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1. Introduction

We study the asymptotic behavior of solutions to the following compressible Navier–
Stokes–Korteweg system in R2, called CNSK:

∂tρ + div M = 0,

∂t M + div
(M⊗M

ρ

)
+∇P(ρ) = div

(
S(M

ρ
) +K(ρ)

)
, (1)

ρ(x, 0) = ρ0, M(x, 0) = M0.

Here, ρ = ρ(x, t) and M = (M1(x, t), M2(x, t)) are unknown density and momentum,
respectively, at time t ∈ R+ and position x ∈ R2; ρ0 = ρ0(x) and M0 = M0(x) are
given initial data; S and K denote the viscous stress tensor and Korteweg stress tensor,
respectively, given by (S)i,j(

M
ρ ) =

(
µ′div M

ρ

)
δi,j + 2µdij

(
M
ρ

)
,

(K)i,j(ρ) =
κ
2 (∆ρ2 − |∇ρ|2)δi,j − κ

∂ρ
∂xi

∂ρ
∂xj

,
(2)

where dij

(
M
ρ

)
= 1

2

(
∂

∂xi

(
M
ρ

)
j
+ ∂

∂xj

(
M
ρ

)
i

)
; µ and µ′ are the viscosity coefficients, supposed

to be constants satisfying
µ > 0, µ + µ′ ≥ 0.
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κ is the capillary constant satisfying κ ≥ 0. If κ = 0 in the Korteweg tensor, the usual
compressible Navier–Stokes equation (CNS) appears: P = P(ρ) is pressure assumed to
be a smooth function of ρ satisfying P′(ρ∗) > 0, where ρ∗ is a given positive constant
and >(ρ∗, 0) is a given constant state for (1). We consider solutions to (1) around the
constant state.

(1) is the system of equations of motion of liquid–vapor type two-phase flow with
phase transition in a compressible fluid, similarly as in [1]. To describe the phase transition,
this model uses the diffusive interface. Hence, the phase boundary is regarded as a narrow
transition layer and change of the density prescribes fluid state. Due to the diffusive
interface, it is enough to consider one set of equations and a single spatial domain and
difficulty of topological change of interface do not occur. If we assume that κ = 0, the
CNS that describes the motion of one-phase compressible fluid is obtained. Hence, (1) is
obtained from adding higher-order derivative terms for ρ, including ∇∆ρ and ∇ρ⊗∇ρ
to CNS.

For the derivation of (1), Van der Waals [2] suggested that a phase-transition boundary
be regarded as a thin transition zone, i.e., a diffusive interface caused by a steep gradi-
ent of density. On the basis of his idea, Korteweg [3] modified the stress tensor of the
Navier–Stokes equation to that including term ∇ρ⊗∇ρ. Dunn and Serrin [4] generalized
Korteweg’s work and strictly provided System (1) with (2). In their recent works, Heida
and Málek [5] derived (1) by the entropy production method.

We focus on the diffusion wave that stems from hyperbolic and parabolic aspects
of the system. The diffusion wave is given by convolution between heat kernel and the
fundamental solution to the wave equation. The importance of the diffusion wave for
problems in one-dimensional cases was first recognized by Liu [6] for the study of stability
of shock waves for viscous conservation laws. The multidimensional diffusion wave with
a time-decay estimate of solutions was studied for CNS by Hoff and Zumbrun [7,8], and
Kobayashi and Shibata [9]; for the viscoelastic equation on Rn (n ≥ 2), by Shibata [10].
Let u = >(ρ− ρ∗, M) be a solution to CNS and set E := ‖u0‖Hs+`∩L1 , where u0 = >(ρ0 −
ρ∗, M0) =

>(ρ(0)− ρ∗, M(0)), s is an integer part of n/2 and ` is integer satisfying ` ≥ 3.
Then, the authors in [7–9] showed that the linear parts decay faster than nonlinear parts do
in the Duhamel formula, and the asymptotic behavior in Lp(Rn) (p > 2, n ≥ 2) of solutions
was presented as

u(t) ∼
(

0
Kν(t) ∗M0,in

)
+

(
ρ(t)− ρ∗

M(t)−Kν(t) ∗M0,in

)
︸ ︷︷ ︸

solutions to linearized system

+ · · ·︸︷︷︸
nonlinear parts

in Lp(Rn) (3)

as t goes to infinity. Here, notation u(t) ∼ f (t) in Lp(Rn) is defined as

lim sup
t→∞

‖u(t)− f (t)‖Lp(Rn) ≤ C

for a positive number C independent of t, similar notation is used hereafter. Kν = Kν(t, x)
is the standard heat kernel and M0,in is a divergence-free part of M0, given by

Kν = F−1(e−ν|ξ|2t), M0,in = F−1
{(

In −
ξ>ξ

|ξ|2
)

M0

}
.

More precisely, it holds that

‖u(t)‖Lp(Rn) ≤ C(1 + t)−
n
2 (1−

1
p ), ‖u(t)− G(t) ∗ u0‖Lp(Rn) ≤ C(1 + t)−

n
2 (1−

1
p )−

1
2

and ∥∥∥( ρ(t)− ρ∗
M(t)−Kν(t) ∗M0,in

)∥∥∥
Lp(Rn)

≤ C(1 + t)−
n
2 (1−

1
p )+( n−1

4 )( 2
p−1)
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for t > 0, where G = G(t) is the Green function of linearized CNS and ( n−1
4 )( 2

p − 1) ≤
0 when 2 ≤ p ≤ ∞. Kν(t) ∗ M0,in and M(t) − Kν(t) ∗ M0,in are the Stokes flow and
potential flow parts of M, respectively, in the Helmholtz decomposition. ρ(t)− ρ∗ and
M(t)−Kν(t) ∗M0,in are given by the Green matrix of the linearized system, which consists
of the convolution with the Green functions of the diffusion and the wave equations and are
called the diffusion-wave part. In addition, when p = 2, the behaviors of both of ρ(t)− ρ∗
and M(t)−Kν(t) ∗M0,in coincide with those of Kν(t) ∗M0,in as the parabolic-type decay
rate. Kobayashi and Tsuda studied the diffusion-wave property for (1) in [11].

In this paper, we consider the linearized system for (1). Under some initial conditions
given by the Hardy space H1(defined below), we show some space–time L2 estimates
for the density and the Stokes flow part of the momentum. The potential flow part of
the momentum is also shown to grow at the rate of logarithmic order in spatial-time L2

norm. The precise initial condition given by the Hardy space is shown below. Here, we
assume a stronger initial condition by H1 for density than that by L1, in contrast to [11];
thus, our results may show a gain of regularity by the Hardy space in the decay estimates.
Such a gain is also obtained for heat equations (see Appendix A). Nonlinear terms are
expected to decay faster than the linear terms in the Duhamel formula do, as in [7,11].
As a consequence, the leading terms of the asymptotic expansion of solution u for (1) are
given by

u(t) ∼
(

0
M(t)−Kν(t) ∗M0,in

)
+

(
ρ(t)− ρ∗
Kν(t) ∗M0,in

)
︸ ︷︷ ︸

solutions to linearized system

+ · · ·︸︷︷︸
nonlinear parts

in L2(0, ∞;R2). (4)

Precisely, the following estimates hold true for solutions to the linearized CNSK:∫ t

0
‖M(τ)−Kν(τ) ∗M0,in‖2

L2(R2)dτ ∼ log t as t→ ∞,

‖ρ− ρ∗‖L2(0,∞; L2(R2)) + ‖Kν ∗M0,in‖L2(0,∞; L2(R2)) < ∞.

The above behaviors of the diffusion-wave parts ρ(t)− ρ∗ and M(t)−Kν(t) ∗M0,in
are clearly different from (3). Measuring by L2 on space, M(t) − Kν(t) ∗ M0,in decays
slower than the Stokes flow part of M does. By the dependence on κ of constants, the above
estimate (4) also holds true for CNS (Theorems 2 and 3). We also obtain a decay rate of L2

norm of density (Theorem 4). Furthermore, if M0 ∈ H1, space–time L2 boundedness is
obtained for M(t)−Kν(t) ∗M0,in, ρ(t)− ρ∗ and Kν(t) ∗M0,in.

The proofs of the main results are based on Morawetz-type energy estimates for a
linearized system. The diffusion-wave part of density ρ(t)− ρ∗ is bounded in space–time L2.
We rewrite (1) to some linear doubly dispersion equation for ρ and apply a modified version
of Morawetz’s energy estimate. A preliminary function is introduced in the Morawetz
estimate (see (12) below), which is defined by use of a doubly Laplace-type equation. The
existence of solution to the linear doubly Laplace-type equation is shown by use of the
linear theory onH1, which may be of its own interest. Through the preliminary function,
we perform Morawetz-type energy estimates utilizing the Fefferman–Stein inequality on
the duality betweenH1 and the space of functions of bounded mean oscillation. Another
diffusion-wave part M(t) − Kν(t) ∗ M0,in is shown to grow at the rate of order log t as
t goes to infinity. Here, we use fundamental solutions for the linearized system given
in [11]. Since a high-frequency part of the solutions exponentially decays, a low-frequency
part only has to be estimated here. By direct computation with the explicit form of the
Green matrix, we obtain the growth order for M(t)−Kν(t) ∗M0,in. For the Stokes flow
part Kν(t) ∗M0,in, space–time L2 boundedness is derived in Theorem A3 bellow. These
estimates are combined for a diffusion wave, and the Stokes flow parts yields asymptotic
expansion (4).
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This paper is organized as follows. In Section 2 some notations and lemmas are given.
In Section 3, the main results are presented. In Section 4, the proofs of the estimates for the
diffusion wave parts are demonstrated.

2. Preliminaries

In this section, we introduce notations such as function spaces that are used in this
paper. We also present lemmas needed in the proof of the main result.

The norm on X is denoted by ‖ · ‖X for a given Banach space X.
Let 1 5 p 5 ∞. Lp is the usual Lebesgue space of pth powered integrable and

essentially bounded functions on R2 for a finite p and p = ∞, respectively. Let k be a
non-negative integer. Wk,p and Hk are the usual Sobolev spaces of order k, based on L2 and
Lp, respectively. As usual, H0 is defined by H0 := L2.

We also use notation Lp to denote the function space of all vector fields w = >(w1, w2)
on R2 satisfying wj ∈ Lp (j = 1, 2), and ‖ · ‖Lp is norm ‖ · ‖(Lp)2 for brevity if no confusion
occurs. Similarly, a function space X is the linear space of all vector fields w = >(w1, w2)
on R2 satisfying wj ∈ X (j = 1, 2), and ‖ · ‖X is norm ‖ · ‖X2 if no confusion occurs.

Let u = >(φ, m) with φ ∈ Hk and m = >(m1, m2) ∈ H j. Then, norm ‖u‖Hk×H j is
defined as that of u on Hk × H j

‖u‖Hk×H j :=
(
‖φ‖2

Hk + ‖w‖2
H j

) 1
2 .

In particular, if j = k, we put

Hk := Hk × (Hk)2, ‖u‖Hk := ‖u‖Hk×(Hk)2 (u = >(φ, m)).

Let X and Y be given Banach spaces. For u = >(φ, m) ∈ X × Y with m = >(m1, m2),
we similarly set

‖u‖X×Y :=
(
‖φ‖2

X + ‖m‖2
Y

) 1
2 .

More generally, in the case that Y = X2, let

X := X× X2, ‖u‖X := ‖u‖X×X2 .

Symbols f̂ and F [ f ] stand for the Fourier transform of f with respect to space
variable x

f̂ (ξ) = F [ f ](ξ) :=
∫
R2

f (x)e−ix·ξdx, ξ ∈ R2.

Furthermore, the inverse Fourier transform of f is defined by

F−1[ f ](x) := (2π)−2
∫
R2

f (ξ)eiξ·xdξ, x ∈ R2.

For a non-negative number s, [s] is the Gaussian symbol that denotes the integer part
of s. Symbol “ ∗ ” denotes the convolution on space variable x.

Now, we prepare Hardy spaceH1 and BMO space.

Definition 1. Hardy space H1 = H1(R2) consists of integrable functions on R2, f ∈ L1(R2)
such that

‖ f ‖H1(R2) =
∫
R2

sup
r>0
|φr ∗ f (x)|dx
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is finite, where φr(x) = r−nφ(r−1x) for r > 0, and φ is a smooth function on R2 with compact
support in an unit ball with center of the origin, B1(0) = {x ∈ R2; |x| < 1}. The definition does
not depend on the choice of a function φ.

Definition 2. Let f be locally integrable in R2, f ∈ L1
loc(R

2). We say that f is of bounded mean
oscillation, abbreviated as BMO, if

‖ f ‖BMO = sup
B⊂R2

1
|B|

∫
B
| f − ( f )B|dx < ∞,

where the supremum ranges over all finite balls B ⊂ R2, |B| is the 2-dimensional Lebesgue measure
of B, and ( f )B denotes the integral mean of f over B, namely ( f )B = 1

|B|
∫

B f (x)dx.

The class of functions of BMO, modulo constants, is a Banach space with norm ‖ · ‖BMO
defined above.

We crucially use the decisive Fefferman–Stein inequality, which means the duality
betweenH1(R2) and BMO(R2), i.e., (H1(R2))∗ = BMO(R2). For the proof, see [12].

Lemma 1. (Fefferman-Stein inequality) There is a positive constant C, such that, if f ∈ H1(R2)
and g ∈ BMO(R2), then ∣∣∣∣∫R2

f gdx
∣∣∣∣ ≤ C‖ f ‖H1(R2)‖g‖BMO(R2).

We also recall the well-known Poincaré inequality.

Lemma 2. It holds that
‖ f ‖BMO(R2) ≤ ‖∇ f ‖L2(R2)

for f ∈ H1(R2).

We denote by C∞
0,σ the set of all vector-valued functions φ = >(φ1, φ2) whose each φj

(j = 1, 2) is C∞ function having compact support, and satisfying that div φ = 0. For 1 ≤
q < ∞, Lq

σ is the closure of C∞
0,σ with respect to the Lq norm.

A spatial weighted function space W1,2
w (R2) is defined by

W1,2
w (R2) =

{
u :

u
w(x)

∈ L2(R2),∇u ∈ L2(R2)

}
,

where w(x) is a spatial weight defined by w(x) = (1 + |x|) log(2 + |x|).
The following Hölder type inequality was proved by Amrouche and Nguyen [13].

Lemma 3. ([13] Corollary 2.10) Let f ∈ L1
σ(R2). Then it holds true that

∫
R2 f (x)dx = 0 and

that, for such f and any g ∈W1,2
w (R2) ∩ L∞(R2),∣∣∣∣∫R2

f gdx
∣∣∣∣ ≤ C‖ f ‖L1‖∇g‖L2 .

Since W1,2(R2) ⊂W1,2
w (R2), Lemma 3 also yields the following.

Corollary 1. Let f ∈ L1
σ(R2). Then, there holds that

∫
R2 f (x)dx = 0 and, for such f and any

g ∈W1,2(R2) ∩ L∞(R2), ∣∣∣∣∫R2
f gdx

∣∣∣∣ ≤ C‖ f ‖L1‖∇g‖L2 .
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3. Main Results

In this section, we consider the linearized system corresponding to (1) and present
some decay estimates for its solution. akey estimate to show (4) is space–time L2 bounded-
ness of the density for the linearized system. First, (1) is reformulated and linearized as
follows. Hereafter, we assume that ρ∗ = 1 without loss of generality. We also set

φ = ρ− 1, m =
M
γ

, γ =
√

P′(1).

Substituting φ and m into (1), we have system of equations
∂tφ + γdiv m = 0,
∂tm− ν∆m− ν̃∇div m + γ∇φ− κ0∇∆φ = f (u),
φ|t=0 = φ0, m|t=0 = m0,

(5)

where we use notation

u = >(φ, m), φ0 = ρ0 − 1, m0 =
M0

γ
, ν = µ, ν̃ = µ + µ′, κ0 =

κ

γ

and put

f (u) = −
{

γdiv (m⊗m) + γdiv (P(1)(φ)φm⊗m) +
1
γ
∇(P(2)(φ)φ

2)

−ν∆(P(1)(φ)φm)− ν̃∇div (P(1)(φ)φm)− div Φ(φ)
}

,

P(1)(φ) =
∫ 1

0
f ′(1 + τφ)dτ, f (τ) =

1
τ

, τ ∈ R,

P(2)(φ) =
∫ 1

0
(1− τ)P′′

(
1 + τφ

)
dτ,

Φ(φ) = κ0

{
φ∆φI2 + (∇φ) · (∇φ)I2 −

|∇φ|2
2

I2 −∇φ⊗∇φ
}

.

Therefore, (1) is linearized as
∂tφ + γdiv m = 0,
∂tm− ν∆m− ν̃∇div m + γ∇φ− κ0∇∆φ = 0,
φ|t=0 = φ0, m|t=0 = m0.

(6)

By (6), φ satisfies the following doubly dissipative equation:

{
∂ttφ− (ν + ν̃)∆φt − γ2∆φ + γκ0∆2φ = 0,
φ(x, 0) = φ0, ∂tφ(x, 0) = −γdiv m0.

Due to the positivity of ν and ν̃, we may suppose that ν + ν̃ = 1 and γ = 1 without
loss of generality. Then, φ satisfies{

∂ttφ− ∆φt − ∆φ + κ0∆2φ = 0,
φ(x, 0) = φ0, ∂tφ(x, 0) = −div m0.

Now, we state the existence of solutions to (7) in the energy class, defined in the following.

Definition 3. A function φ defined on (0, ∞)×R2 is called to be a solution to (7) if φ belongs to
C([0, ∞); H2) with ∂tφ ∈ C([0, ∞); L2) and satisfies (7) in the distribution sense, i.e., satisfies the
following conditions:
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(i) For each T > 0, ϕ ∈ H2 and a.e. 0 ≤ t < T,

(∂ttφ, ϕ)L2 + (∇φt,∇ϕ)L2 + (∇φ,∇ϕ)L2 + κ0(∆φ, ∆ϕ)L2 = 0;

(ii) φ0(x, 0) = φ0 and ∂tφ(x, 0) = −div m0.

Theorem 1. For each (φ0, m0) ∈ H2 × H1, there exists a unique solution φ ∈ C([0, ∞); H2)
with ∂tφ ∈ C([0, ∞); L2) to (7) such that

1
2
(‖φt(t2)‖2

L2 + ‖∇φ(t2)‖2
L2 + κ0‖∆φ(t2)‖2

L2) +
∫ t2

t1

‖∇φτ(τ)‖2
L2 dτ

=
1
2
(‖φt(t1)‖2

L2 + ‖∇φ(t1)‖2
L2 + κ0‖∆φ(t1)‖2

L2) (7)

holds for any 0 ≤ t1 < t2 < +∞.

Theorem 1 is valid by the standard Galerkin method based on energy inequality (7) in a
similar manner to the proof of Theorem 3.1 in Huafei and Yadong [14].
In ([14] Theorem 3.1), they added −∆utt in a linear system and considered nonlinear-
ity. We apply a similar manner as [14] to the proof without −∆utt and nonlinearity; thus,
we do not obtain in Theorem 1 that ∂tφ ∈ L∞(0, ∞; H1) in contrast to ([14] Theorem 3.1);
we omitted the details.

In L2(0, ∞; L2) for a solution φ to (7).

Theorem 2. Suppose that φ0 ∈ H2 ∩H1, m0 ∈ H1 and m0 +∇φ0 ∈ H1. Set

J0 = (κ0 + κ2
0){‖>(φ0, m0)‖2

H1 + ‖∆φ0‖2
L2}+ (1 + κ0)‖m0 +∇φ0‖2

H1 + ‖φ0‖2
H1∩L2 .

Let φ be a solution to (7). Then, it holds true that∫ t

0
‖φ(τ)‖2

L2 dτ ≤ CJ0

for any t > 0, where C is a positive constant independent of t and κ0.

In the case that κ0 = 0, we also have the time–space L2 estimate for linearized CNS.

Theorem 3. Let (φ0, m0) ∈ H1, φ0 ∈ H1 and m0 +∇φ0 ∈ H1. Set

J1 = ‖m0 +∇φ0‖2
H1 + ‖φ0‖2

H1∩L2 .

Let φ be a solution to (A2) in Appendix B. Then, there holds that∫ t

0
‖φ(τ)‖2

L2 dτ ≤ CJ1

for any t > 0, where C is a positive constant independent of t.

Next, we have a time-decay estimate of the solution in the energy class to (7). By
Theorem 1 and the Sobolev inequality φ ∈ C([0, ∞); L2). We have the following:

Theorem 4. Under the assumption of Theorem 2, it holds that

(1 + t)‖φ(t)‖2
L2 ≤ CJ0

for any t > 0, where C is a positive constant independent of t.
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We now recall the existence of solutions to linear system (6) in the energy class in
order to consider another diffusion-wave part m−Kν ∗m0,in. System (6) is rewritten as

∂tu + Au = 0, (8)

where

u = >(φ, m), A =

(
0 γdiv

γ∇− κ0∇∆ −ν∆− ν̃∇div

)
(9)

Let us introduce a semigroup S(t) = e−tA generated by A;

S(t) = e−tA = F−1e−tÂξF ,

where

Âξ =

(
0 iγ>ξ

iγξ + iκ0|ξ|2ξ ν|ξ|2 In + ν̃ξ>ξ

)
(ξ ∈ R2).

Theorem 5. ([15] Proposition 3.3) Let s be a non-negative integer satisfying s ≥ 2. Then,
S(t) = e−tA is a contraction semigroup for (8) on Hs × Hs−1. In addition, for each
u0 = >(φ0, m0) ∈ Hs × Hs−1 and all T > 0, S(t) satisfies

S(·)u0 ∈ C([0, T]; Hs × Hs−1), S(0)u0 = u0

and there holds the estimate

‖S(t)u0‖Hs×Hs−1 ≤ ‖u0‖Hs×Hs−1 (10)

for u0 = >(φ0, m0) ∈ Hs × Hs−1 and t ≥ 0.

Remark 1. Proposition 3.3 in [15] is stated on the three-dimensional case. However, the proof is
based on the standard energy estimate for the resolvent problem in the Fourier space, and it can also
be applied to our two-dimensional case.

Lastly, another diffusion-wave part m−Kν ∗m0,in is shown to grow in L2(0, ∞; L2) at
the rate of logarithmic order.

Theorem 6. Let u0 = >(φ0, m0) ∈ H2 × H1 and u be a solution of (6), u(t) = S(t)u0, as in
Theorem 5. Suppose that m0 ∈ L2 ∩ L1, |x|m0 ∈ L1 and m̂0(0) 6= 0. Then, it holds true that∫ t

0
‖m(τ)−Kν(τ) ∗m0,in‖2

L2 dτ ∼ log t as t→ ∞,

precisely,

lim sup
t→∞

∣∣∣ ∫ t

0
‖m(τ)−Kν(τ) ∗m0,in‖2

L2 dτ − log t
∣∣∣ ≤ C,

where C = C(u0) is a positive constant independent of t.

Remark 2. In addition of the initial condition in Theorem 2, we assume that m0 ∈ H1; then, it
holds that ∫ t

0
‖m(τ)−Kν(τ) ∗m0,in‖2

L2 dτ ≤ C, t > 0, (11)

where C = C(u0) is a positive constant independent of t. This shows a gain of regularity by
the membership in the Hardy space of data, similarly as in the decay estimates for density in
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Theorems 2 and 3. a similar phenomenon was already observed in [16,17] for dissipative wave
equations. The proof is given by direct computations based on the explicit form of fundamental
solution (40) below and a similar argument as in Kobayashi and Misawa [16,17]. We omitted the
details here.

We state the space–time L2 boundedness for Stokes flow part Kν(t) ∗ M0,in. Indeed,
from (11) together with Theorem A3 in Appendix C and ([18] Chapter 3, Section 3, Theorem 3),
we find that if m0 ∈ H1 is added in the assumption of Theorem 2, space–time L2 bounded-
ness holds true for M(t)−Kν ∗M0,in(t), ρ(t)− ρ∗ and Kν(t) ∗M0,in.

4. Proof of Main Results
4.1. Proof of Theorems 2 and 4

In this subsection, we prove Theorems 2 and 4. The proof is performed by modifying
Morawetz’s energy estimate. For a solution φ to (7), we define function w by

w =
∫ t

0
φ(τ)dτ − div Φ, (12)

where Φ is a solution to the doubly Laplace equation

(−∆ + κ0∆2)Φ = m0 +∇φ0. (13)

For the existence of a solution to (13), we have

Theorem 7. Suppose that φ0 ∈ H2 ∩H1(R2), m0 ∈ H1(R2) and m0 +∇φ0 ∈ H1(R2). Then,
there exists a solution Φ of

(−∆)Φ = (I − κ0∆)−1(m0 +∇φ0) in R2 (14)

such that

‖∇Φ‖L2(R2) + ‖∆Φ‖L2(R2) ≤ C‖m0 +∇φ0‖H1(R2), (15)

‖div ∆Φ‖L2(R2) ≤ C(‖∆φ0‖L2(R2) + ‖>(φ0, m0)‖H1(R2)). (16)

The proof of Theorem 7 is in Appendix D.
By the definition of w, we derive{

wtt − ∆wt − ∆w + κ0∆2w = 0,
w(0) = −div Φ, wt(0) = φ0.

(17)

To estimate ∫ t

0
‖φ(τ)‖2

L2 dτ =
∫ t

0
‖wτ(τ)‖2

L2 dτ,

we take the L2 inner product of (17)1 with w; thus, we have

d
dt
(wt, w) +

1
2

d
dt
‖∇w‖2

L2 + ‖∇w‖2
L2 + κ0‖∆w‖2

L2 = ‖wt‖2
L2 ,

which is integrated on time interval (0, t), yielding∫ t

0
‖wτ(τ)‖2

L2 dτ

=
∫ t

0
‖∇w(τ)‖2

L2 dτ +
∫ t

0
κ0‖∆w(τ)‖2

L2 dτ

+
‖∇w(t)‖2

L2

2
+ (wt, w)−

‖∇w(0)‖2
L2

2
− (wt(0), w(0)), (18)
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where w(0) = −div Φ. Now, we estimate the terms in the right-hand side of (18). Terms
‖∇w(0)‖2

L2 and (wt(0), w(0)) are directly estimated by (15). A test function wt in (17),
being integrated on time interval (0, t) and using (15) and (16), yields estimate

‖wt(t)‖2
L2 + ‖∇w(t)‖2

L2 + κ0‖∆w(t)‖2
L2 +

∫ t

0
‖∇wτ(τ)‖2

L2 dτ

≤ C(‖φ0‖2
L2 + ‖m0 +∇φ0‖2

H1) + Cκ0(‖∆φ0‖2
L2 + ‖>(φ0, m0)‖2

H1). (19)

On the other hand, from taking the L2 inner product of −κ0∆w with (17) and integrat-
ing on (0, t), we obtain that

1
2

κ0‖∆w(t)‖2
L2 + κ0

∫ t

0
‖∆w(τ)‖2

L2 dτ + κ0(∇wt,∇w) + κ2
0

∫ t

0
‖∇∆w(τ)‖2

L2 dτ

=
1
2

κ0‖∆w(0)‖2
L2 + κ0

∫ t

0
‖∇wτ(τ)‖2

L2 dτ + κ0(∇wt(0),∇w(0))

and thus,

1
2

κ0‖∆w(t)‖2
L2 + κ0

∫ t

0
‖∆w(τ)‖2

L2 dτ + κ2
0

∫ t

0
‖∇∆w(τ)‖2

L2 dτ

≤ Cκ0{‖∇φ0‖2
L2 + ‖∇div Φ‖2

L2 + ‖∆div Φ‖2
L2 +

∫ t

0
‖∇wτ(τ)‖2

L2 dτ}

+Cκ0(‖∇w(t)‖2
L2 + ‖∇wt(t)‖2

L2). (20)

Terms having Φ in (20) are estimated by (15) and (16). The fourth and fifth terms on
the right-hand side of (20) are also estimated by (19). For term ‖∇wt(t)‖2

L2 = ‖∇φ(t)‖2
L2 ,

we apply the standard energy estimate obtained from (7) with a test function φt

1
2
(‖φt(t)‖2

L2 + ‖∇φ(t)‖2
L2 + κ0‖∆φ(t)‖2

L2) +
∫ t

0
‖∇φτ(τ)‖2

L2 dτ

=
1
2
(‖φt(0)‖2

L2 + ‖∇φ(0)‖2
L2 + κ0‖∆φ(0)‖2

L2)

≤ C(‖div m0‖2
L2 + ‖∇φ0‖2

L2) + Cκ0‖∆φ0‖2
L2

and thus,

κ0

∫ t

0
‖∆w(τ)‖2

L2 dτ ≤ C(κ0 + κ2
0){‖>(φ0, m0)‖2

H1 + ‖∆φ0‖2
L2}

+Cκ0‖m0 +∇φ0‖2
H1 . (21)

For the estimation of the L2−norm on a space of w and the one on the time–space of
its spatial gradient, let

v =
∫ t

0
w(s)ds (22)

and proceed to the energy estimates of v. From the direct calculation, v satisfies{
vtt − ∆v− ∆vt + κ0∆2v = φ0 + ∆divΦ,
v(0) = 0, vt(0) = −divΦ.

(23)
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A test function vt in (23) gives

1
2

d
dt
‖vt(t)‖2

L2 +
1
2

d
dt
‖∇v(t)‖2

L2 + ‖∇vt(t)‖2
L2 +

1
2

κ0
d
dt
‖∆v(t)‖2

L2

= (φ0 + ∆divΦ, vt(t))

=
d
dt
(φ0 + ∆divΦ, v(t)), (24)

being integrated on (0, t) and yielding

1
2
‖vt(t)‖2

L2 +
1
2
‖∇v(t)‖2 +

∫ t

0
‖∇vs(s)‖2

L2 ds +
1
2

κ0‖∆v(s)‖2
L2

= (φ0 + ∆divΦ, v(t)) +
1
2
‖w(0)‖2

L2 . (25)

Now, the first term of the right-hand side of (25) is

(φ0 + ∆divΦ, v(t)) = (φ0, v(t)) + (∆divΦ, v(t)) (26)

of which the first term is evaluated by the use of Lemmas 1 and 2 and Young’s inequality as

|(φ0, v(t))| ≤ C‖φ0‖H1‖v(t)‖BMO ≤ C‖φ0‖H1‖∇v(t)‖L2

≤ 1
8
‖∇v(t)‖2

L2 + C‖φ0‖2
H1

and, the second term is controlled by (15) as

|(∆divΦ, v(t))| = |(∆Φ,∇v(t))|
≤ ‖m0 +∇φ0‖H1‖∇v(t)‖L2

≤ 1
8
‖∇v(t)‖2

L2 + C‖m0 +∇φ0‖2
H1 .

Since w(0) = −divΦ, the right-hand side of (25) is bounded by

(φ0 + ∆divΦ, v(t)) +
1
2
‖w(0)‖2

L2

≤ 1
4
‖∇v(t)‖2

L2 + C‖φ0‖2
H1 + C‖m0 +∇φ0‖2

H1 .

Thus, it follows that

1
2
‖vt(t)‖2 +

1
4
‖∇v(t)‖2 +

∫ t

0
‖∇vs(s)‖2 ds +

1
2

κ0‖∆v(s)‖2
L2

≤ C‖φ0‖2
H1 + C‖m0 +∇φ0‖2

H1 . (27)

Gathering (18), (19), (21), and (27), we obtain Theorem 2.

On the basis of Theorems 2 and 4 is proved as follows. We set a total energy of w as

E(w(t)) = ‖wt(t)‖2
L2 + ‖∇w(t)‖2

L2 + κ0‖∆w(t)‖2
L2 .

By the proof of Theorem 2 and integration by parts, we find that

CJ0 ≥
∫ t

0
E(w(s))ds

= tE(w(t))−
∫ t

0
s

d
ds

E(w(s))ds.
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Since, by integration by parts again,

d
dt

E(w(t)) =
d
dt

{
‖∇w(t)‖2

L2 + ‖wt(t)‖2
L2 + κ0‖∆w(t)‖2

L2

}
= 2(∇wt(t),∇w(t)) + 2(wtt(t), wt(t)) + 2(κ0∆w, ∆wt)

= −2(wt(t), ∆w(t)) + 2(wtt(t), wt(t)) + 2(κ0∆2w, wt)

= 2(wtt(t)− ∆w(t) + κ0∆2w(t), wt(t))

= 2(∆wt(t), wt(t))

= −2‖∇wt(t)‖2
L2

= −2‖∇φ(t)‖2
L2 ,

we have

CJ0 ≥ tE(w(t)) + 2
∫ t

0
s‖∇φ(s)‖2ds. (28)

This, together with (19), gives the assertion of Theorem 4. The proof is completed. �

4.2. Proof of Theorem 6

In this section, we show the validity of Theorem 6. By taking the Fourier transform
of (6) with respect to space variable x, we have the following ordinary differential equation
with a parameter ξ.

∂tφ̂(t, ξ) + iγξ · m̂(t, ξ) = 0,
∂tm̂(t, ξ) + ν|ξ|2m̂(t, ξ) + ν̃ξ(ξ · m̂(t, ξ)) + iγξφ̂(t, ξ) + iξκ0|ξ|2φ̂(t, ξ) = 0,
φ̂(0, ξ) = φ̂0, m̂(0, ξ) = m̂0.

(29)

Therefore, the solutions of (6) are given by the following formulas by [11]. Let K =
2
√

κ0γ

ν + ν̃

and B =
2γ

ν + ν̃
. For |ξ| 6= 0, B/

√
1− K2 when 0 < K < 1 and |ξ| 6= 0 when K ≥ 1, the

Fourier transforms of φ and m are given explicitly by formulas

φ̂ =
λ+(ξ)eλ−(ξ)t − λ−(ξ)eλ+(ξ)t

λ+(ξ)− λ−(ξ)
φ̂0 − iγ

eλ+(ξ)t − eλ−(ξ)t

λ+(ξ)− λ−(ξ)
ξ · m̂0,

m̂ = e−ν|ξ|2tm̂0 − iξ(γ + κ0|ξ|2)
(

eλ+(ξ)t − eλ−(ξ)t

λ+(ξ)− λ−(ξ)

)
φ̂0

+

(
λ+(ξ)eλ+(ξ)t − λ−(ξ)eλ−(ξ)t

λ+(ξ)− λ−(ξ)
− e−ν|ξ|2t

)
ξ(ξ · m̂0)

|ξ|2 , (30)

where λ± are given by

λ±(ξ) = −A(|ξ|2 ±
√
|ξ|4 − B2|ξ|2 − K2|ξ|4) (31)
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with a positive constant A =
ν + ν̃

2
and stand for roots of the characteristic equation of (29).

If 0 < K < 1 and min
{

1
2 ,

B
2
√

1− K2

}
≤ |ξ| ≤ 2

B√
1− K2

, φ̂ and m̂ are represented as

φ̂ =
1

2πi

∮
Γ

(z + A|ξ|2)ezt

z2 + (ν + ν̃)|ξ|2z + κ0γ|ξ|4 + γ2|ξ|2 dzφ̂0

− γ

2π

∮
Γ

ezt

z2 + (ν + ν̃)|ξ|2z + κ0γ|ξ|4 + γ2|ξ|2 dzξ · m̂0, (32)

m̂ = e−ν|ξ|2tm̂0 −
γξ

2π

∮
Γ

ezt

z2 + (ν + ν̃)|ξ|2z + κ0γ|ξ|4 + γ2|ξ|2 dzφ̂0

+

(
1

2πi

∮
Γ

zezt

z2 + (ν + ν̃)|ξ|2z + κ0γ|ξ|4 + γ2|ξ|2 dz
)

ξ(ξ · m̂0)

|ξ|2 , (33)

where Γ is a closed pass surrounding λ± and included in set {z ∈ C|Rez ≤ −c0}, and c0 is
a positive number satisfying

max
min
{

1
2 , B

2
√

1−K2

}
≤|ξ|≤2 B√

1−K2

Reλ± ≤ −2c0.

Cut-off functions ϕ1, ϕ∞ and ϕM in C∞(R2) are defined by [11] as follows: in the case
such that K 6= 1, ϕ1 is given by

ϕ1(ξ) =

{
1 for |ξ| ≤ 1

2
0 for |ξ| ≥ 1

if
B

2
√
|1− K2|

> 1;

ϕ1(ξ) =

 1 for |ξ| ≤ B
2
√
|1− K2|

0 for |ξ| ≥ 1
if

B
2
√
|1− K2|

≤ 1 <
B√

2|1− K2|
;

ϕ1(ξ) =


1 for |ξ| ≤ B

2
√
|1− K2|

0 for |ξ| ≥ B√
2|1− K2|

if
B√

2|1− K2|
≤ 1.

ϕ∞ and ϕM are

ϕ∞(ξ) =


1 for |ξ| ≥ 2B√

|1− K2|

0 for |ξ| ≤
√

2B√
|1− K2|

,
ϕM(ξ) = 1− ϕ1(ξ)− ϕ∞(ξ).

In the case that K = 1, ϕ1 and ϕ∞ are

ϕ1(ξ) =

{
1 for |ξ| ≤ 1

2
0 for |ξ| ≥ 1,

ϕ∞(ξ) =

{
0 for |ξ| ≤ 1

2
1 for |ξ| ≥ 1,

ϕ1(ξ) + ϕ∞(ξ) = 1.

We define solution operators E1 and E∞ on a low- and high-frequency part of (6),
respectively, as follows:

E1(t) = (E1,φ(t), E1,m(t)),

E∞(t) = (E∞,φ(t), E∞,m(t)), (34)
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where

E1,φ(t)(φ0, m0)(x) = F−1[ϕ1(ξ)φ̂(t, ξ)](x), (35)

E1,m(t)(φ0, m0)(x) = F−1[ϕ1(ξ)m̂(t, ξ)](x), (36)

E∞,φ(t)(φ0, m0)(x) = F−1[(ϕM(ξ) + ϕ∞(ξ))φ̂(t, ξ)](x), (37)

E∞,m(t)(φ0, m0)(x) = F−1[(ϕM(ξ) + ϕ∞(ξ))m̂(t, ξ)](x). (38)

In [11], the solution operator is shown to have an exponential decay in time on the
high-frequency part (34). In fact we have

Theorem 8. ([11] Theorem 3.2) Let 1 ≤ p ≤ ∞. Then, it holds that

‖∂k
t ∂α

xE∞(t)(φ0, m0)‖Lp

≤ Ck,αe−ct
{
(1 + t−δ1−

|α|
2 −k)

[
‖φ0‖Lp + ‖m0‖Lp

]
+ t−δ2− |α|2 −k‖φ0‖Lp

}
(39)

for t > 0, k ≥ 0 and |α| ≥ 0, where (δ1, δ2) = (1/2, 1) and (1, 3/2) for K 6= 1 and K = 1,
respectively.

Therefore, in order to show Theorem 6, it is enough to consider the low-frequency
part. We estimate the Green function. We put

L11,j(t, x) = F−1
{λ+(ξ)eλ−(ξ)t − λ−(ξ)eλ+(ξ)t

λ+(ξ)− λ−(ξ)
ϕj(ξ)

}
(x),

L12,j(t, x) = F−1(−iγ>ξ L̂j),

L̂j(t, ξ) =
eλ+(ξ)t − eλ−(ξ)t

λ+(ξ)− λ−(ξ)
ϕj(ξ),

L21,j(t, x) = F−1{−ξ(iγ + k0|ξ|2)L̂j},
L22,j(t, x) = K1,j(t, x) + K2,j(t, x)− K3,j(t, x),

K1,j(t, x) = F−1
[
e−ν|ξ|2t ϕj(ξ)

]
(x)In,

K2,j(t, x) = F−1
{λ+(ξ)eλ+(ξ)t − λ−(ξ)eλ−(ξ)t

λ+(ξ)− λ−(ξ)

ξ>ξ

|ξ|2 ϕj(ξ)
}
(x),

K3,j(t, x) = F−1
[
e−ν|ξ|2t ξ>ξ

|ξ|2 ϕj(ξ)
]
(x)

for j = 1, ∞. We see from (30) that

Ej(t)(φ0, m0) =

(
L11,j(t, ·) L12,j(t, ·)
L21,j(t, ·) L22,j(t, ·)

)
∗
(

φ0
m0

)
(40)

for j = 1, ∞.
We set

K1m0 = F−1
[λ+(ξ)eλ+(ξ)t − λ−(ξ)eλ−(ξ)t

λ+(ξ)− λ−(ξ)

ξ>ξ

|ξ|2 ϕ1(ξ)m̂0

]
.

K1m0 is a part of the Green matrix and corresponds to the diffusion-wave part m−
Kν ∗m0,in. Our claim is the following estimate.

Proposition 1. Let m0 ∈ L2 ∩ L1, |x|m0 ∈ L1 and m̂0 6= 0. Then, it holds that

lim sup
t→∞

∣∣∣ ∫ t

0
‖K1m0(τ)‖2

L2 dτ − log t
∣∣∣ ≤ C1,
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where C1 = C1(u0) is a positive constant independent of t.

Proof. By the Plancherel theorem and (31), we see that there exists a positive constant C,
such that

C‖e−|ξ|2tm̂0(ξ)‖2
L2(|ξ|≤c1)

≤ ‖K1m0(t)‖2
L2 ≤

1
C
‖e−|ξ|2tm̂0(ξ)‖2

L2(|ξ|≤c1)
,

where c1 = 1 when B
2
√
|1−K2|

> 1 or B
2
√
|1−K2|

≤ 1 < B√
2|1−K2|

and c1 = B√
2|1−K2|

when

B√
2|1−K2|

≤ 1. Hence, we have to estimate ‖e−|ξ|2tm̂0(ξ)‖2
L2(|ξ|≤c1)

. It follows from the polar

coordinates that

‖e−|ξ|2tm̂0(ξ)‖2
L2(|ξ|≤c1)

= Cω

∫ c1

0
|e−r2tm̂0(rω)|2rdr,

where r = |ξ|, ω = ξ/|ξ|, and Cω is some positive constant that appears in the polar
coordinates. Changing variables r

√
t = s, we have

∫ c1

0
|e−r2tm̂0(ωr)|2rdr = t−1

∫ c1
√

t

0
e−2s2 |m̂0(sω/

√
t)|2sds.

This, together with the fundamental theorem of calculus for m̂0, implies that

∣∣∣‖e−|ξ|2tm̂0(ξ)‖2
L2(|ξ|≤c1)

− Cωt−1|m̂0(0)|2
∫ c1

√
t

0
e−2s2

sds
∣∣∣

= Cω

∣∣∣t−1
∫ c1

√
t

0
(|m̂0(sω/

√
t)|2 − |m̂0(0)|2)e−2s2

sds
∣∣∣

≤ Ct−1
∫ c1

√
t

0
|m̂0(sω/

√
t)− m̂0(0)|2e−2s2

sds

= Ct−1
∫ c1

√
t

0

∣∣∣ ∫ 1

0
∇ξ m̂0

(
θ

sω√
t

)
dθ

sω√
t

∣∣∣2e−2s2
sds

≤ Ct−1
∫ c1

√
t

0
‖∇ξ m̂0‖2

L∞

∣∣∣ sω√
t

∣∣∣2e−2s2
sds

≤ C‖|x|m0‖2
L1 t−2

∫ c1
√

t

0
e−2s2

s3ds

≤ C2t−2 (41)

for a positive constant C2 = C2(u0) independent of t. m̂0(0) 6= 0 by our assumption. Since∫ 1

0
‖e−|ξ|2τm̂0(ξ)‖2

L2 dτ ≤ C‖m0‖2
L2 ,

we estimate
∫ t

1
‖e−|ξ|2τm̂0(ξ)‖2

L2 dτ. We set

I1(t) := Cω |m̂0(0)|2t−1
∫ c1

√
t

0
e−2s2

sds

Applying (41) yields that, for t ≥ 1,∣∣∣ ∫ t

1

{
‖e−|ξ|2τm̂0(ξ)‖2

L2(|ξ|≤c1)
− I1(τ)

}
dτ
∣∣∣ ≤ C2

∫ t

1
τ−2dτ ≤ C2. (42)
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Let positive constants Q1 and Q2 be defined by

Q1 :=
∫ c1

0
e−2s2

s3ds, Q2 :=
∫ ∞

0
e−2s2

s3ds.

It obviously follows that, for t ≥ 1,

Q1 ≤
∫ c1

√
t

0
e−2s2

s3ds ≤ Q2.

This implies that, for t ≥ 1,∫ t

1
Cω |m̂0(0)|2Q1τ−1dτ ≤

∫ t

1
I1(τ)dτ ≤

∫ t

1
Cω |m̂0(0)|2Q2τ−1dτ

and thus,

Cω |m̂0(0)|2Q1 log t ≤
∫ t

1
I1(τ)dτ ≤ Cω |m̂0(0)|2Q2 log t. (43)

(42) and (43) yield that

lim sup
t→∞

∣∣∣ ∫ t

1
‖e−|ξ|2τm̂0(ξ)‖2

L2(|ξ|≤c1)
dτ − log t

∣∣∣ ≤ CC2.

Therefore, there exists a positive constant C1 = C1(u0) independent of t, such that

lim sup
t→∞

∣∣∣ ∫ t

0
‖K1m0(τ)‖2

L2 dτ − log t
∣∣∣ ≤ C1.

Since other parts of diffusion wave m−Kν ∗m0,in that appear in the Green matrix on
the low-frequency part are estimated similarly to Proposition 1, we obtain the estimation
in Theorem 6. The proof is completed.

5. Conclusions

We studied the asymptotic behavior of solutions to the compressible Navier–Stokes–
Korteweg system in R2. Concerning the linearized system for (1), under some initial
conditions given by Hardy space H1, we showed some space–time L2 estimates for the
density and Stokes flow parts of the momentum. The potential flow part of the momentum
was also shown to grow at the rate of logarithmic order in space–time L2 norm. The asymp-
totic behaviors in space–time L2 of the diffusion-wave parts were shown to be essentially
different between density and the potential flow part of the momentum. Nonlinear terms
are expected to decay faster than the linear terms in the Duhamel formula do, as in [7,11].
As a consequence, the leading terms of the asymptotic expansion of solution u for (1) were
given by

u(t) ∼
(

0
M(t)−Kν(t) ∗M0,in

)
+

(
ρ(t)− ρ∗
Kν(t) ∗M0,in

)
︸ ︷︷ ︸

solutions to linearized system

+ · · ·︸︷︷︸
nonlinear parts

in L2(0, ∞;R2). (44)

Analysis for asymptotic behavior in the two-dimensional case is difficult because the
time decay of solutions to the linear system in two-dimensional cases is slower than that in
higher-dimensional cases. To overcome this difficulty, we used a gain of regularity by the
Hardy space; by the L2 energy estimate of the Morawetz type, we succeeded to derive the
asymptotic behavior (44).

Concerning future works, it is important to consider how the pressure term has an
effect on the asymptotic behavior of (1). As shown in our paper [19], since (1) governs the
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motion of two-phase fluids, pressure is a nonmonotone function. When pressure decreases,
solutions are expected to be unstable due to positive eigenvalues in linear systems. Hence,
we will study the asymptotic behavior of solutions with relation to a critical value, such
that P′(ρ) = 0 holds or an initial condition of pressure. Furthermore, from the point of
view of engineering, analysis of two-phase fluids in bounded or unbounded domains with
boundaries is more important. On the basis of our analysis of the Caucy problem, we will
study the asymptotic behavior of solutions to CNSK under boundary conditions.
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Appendix A

We consider the following Cauchy problem:{
∂tu− ∆u = 0, in (0, ∞)×R2,
u = u0 on {t = 0} ×R2.

(A1)

Solution u to (A1) satisfies estimate∫ ∞

0
‖u(t)‖2

L2(R2)dt ≤ C‖u0‖2
H1

for u0 ∈ H1, whileH1 ⊂ L1 and for u0 ∈ L1, estimate∫ ∞

0
‖u(t)‖2

L2(R2)dt ≤ C‖u0‖2
L1

generally does not hold. This shows a subtle gain of regularity by the Hardy space.

Appendix B

We treat the linearized CNS, that is, (7) with zero capillary constant κ0 = 0.{
∂ttφ− ∆φt − ∆φ = 0,
φ(x, 0) = φ0, ∂tφ(x, 0) = −div m0.

(A2)

Definition A1. A function φ defined on (0, ∞)×R2 is called to be a solution to (A2) if φ belongs
to C([0, ∞); H1) with ∂tφ ∈ C([0, ∞); L2) and satisfies (A2) in the distribution sense, i.e., satisfies
the following conditions:

(i) For each T > 0, ϕ ∈ H1 and a.e. 0 ≤ t < T,

(∂ttφ, ϕ)L2 + (∇φt,∇ϕ)L2 + (∇φ,∇ϕ)L2 = 0;

(ii) φ0(x, 0) = φ0 and ∂tφ(x, 0) = −div m0.
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The existence of a unique solution to (A2) is well-known, as follows. For the proof,
we can refer to Proposition 2.1 in Ikehata, Todorova, and Yordanov [20] using the Lumer–
Phillips theorem.

Theorem A1. For each (φ0, m0) ∈ H1 there exists a unique solution φ ∈ C([0, ∞); H1) with
∂tφ ∈ C([0, ∞); L2) to (A2), such that

1
2
(‖φt(t2)‖2

L2 + ‖∇φ(t2)‖2
L2) +

∫ t2

t1

‖∇φτ(τ)‖2
L2 dτ

=
1
2
(‖φt(t1)‖2

L2 + ‖∇φ(t1)‖2
L2)

holds for any 0 ≤ t1 < t2 < +∞.

Appendix C

Let us introduce the following incompressible Stokes system:
∂tu− ν∆u +∇P = 0 in (0, ∞)×R2,
div u = 0 in (0, ∞)×R2,
u(0, x) = M0,in in R2.

(A3)

The following Helmholtz decomposition is well-known (cf., Simader and Sohr [21])

Lq(R2) = Lq
σ(R2)⊕ Gq(R2), (1 < q < ∞),

where Gq(R2) denotes the set of all functions of the potential flow part, defined by Gq =
{∇p ∈ Lq(R2); p ∈ Lq

loc(R
2)}. Here, we denote by Pq the projection operator from Lq(R2)

to Lq
σ(R2). On the whole, space Pq is given by the Riesz operator

Pq f = F−1
{(

I2 −
ξ>ξ

|ξ|2
)

f̂
}

.

Applying the Helmholtz projection to Stokes Equation (A3) derives the following system.
∂tu− νPq∆u = 0 in (0, ∞)×R2,
div u = 0 in (0, ∞)×R2,
u(0, x) = u0 := M0,in in R2.

(A4)

We define Stokes operator Aq on Lq
σ by Aq = −Pq∆ with domain D(Aq) = W2,q(R2)∩

Lq
σ(R2). Concerning the existence of solutions to (A4), we have

Theorem A2. (Giga and Sohr [22]) −Aq generates a uniformly bounded holomorphic semigroup
{e−tAq}t≥0 of class C0 in Lq

σ(R2).

The solution to (A4) satisfies u(t) = Kν(t) ∗M0,in; we can thus estimate solution u
to (A4) as follows.

Theorem A3. Let M0,in ∈ L2 ∩ L1 and u be a solution to (A4). Then, u satisfies estimate∫ t

0
‖u(s)‖2

L2 ds ≤ C‖M0,in‖2
L1

uniformly for t.

We give the proof of Theorem A3 here.
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Proof of Theorem A3. Put v(t, x) :=
∫ t

0 u(s, x)ds. Then, v satisfies{
∂tv− ν∆v = u0 in (0, ∞)×R2,
v(0, x) = 0 in R2.

(A5)

Here, we used P2(∆u) = ∆(P2u) = u in (A4). A test function ∂tw in (A5), being
integrated on time interval (0, t), and ∂tw = u yields estimate∫ t

0
‖u(s)‖2

L2 ds +
ν

2
‖∇v(t)‖2

L2 = (u0, v(t)) (A6)

The first term of the right-hand side in (A6) is estimated by Corollary 1 as follows.

|(u0, v(t))| ≤ C‖u0‖L1‖∇v(t)‖L2 ≤ C1‖u0‖2
L1 +

ν

4
‖∇v(t)‖2

L2 . (A7)

(A6) and (A7) derive the desired estimate. The proof is completed.

Appendix D

Here, we demonstrate the proof of Theorem 7.

Proof of Theorem 7. Now, we define operator T for f ∈ H1 by

T f = F−1((1 + κ0|ξ|2)−1 f̂ ) := K ∗ f .

From direct computation, we see that

|∂α
ξ K̂(ξ)| ≤ C|ξ|−|α|, for any ξ 6= 0 and |α| ≥ 0

for a positive constant C independent of κ0. Then, it follows from Shimizu and Shibata ([23]
Theorem 2.3) that

|∂α
ξ K(x)| ≤ C3|x|−2−|α| (x 6= 0)

holds true for a positive constant C3 independent of κ0. By this fact and the multiplier type
theorem on the Hardy space as in Stein ([18] Chapter 3, Section 3.2, Theorem 4), we find
that T is a bounded operator onH1 and

‖T f ‖H1 ≤ C‖ f ‖H1 ,

where C is independent of κ0. Therefore, (I − κ0∆)−1 is bounded on H1 and thus,
(I − κ0∆)−1(m0 +∇φ0) ∈ H1 for m0 +∇φ0 ∈ H1. Then, from [24] we obtain the exis-
tence of a solution to (13) satisfying (15). Furthermore, since (I − κ0∆)−1 is bounded on L2,
we have estimation

‖div ∆Φ‖L2 = ‖div (I − κ0∆)−1(m0 +∇φ0)‖L2

≤ C‖div (m0 +∇φ0)‖L2

≤ C(‖∆φ0‖L2 + ‖>(φ0, m0)‖H1),

from which (16) is obtained. The proof is completed.
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