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Abstract: Current machine intelligence metrics rely on a different philosophy, hindering their effective
comparison. There is no standardization of what is machine intelligence and what should be
measured to quantify it. In this study, we investigate the measurement of intelligence from the
viewpoint of real-life difficult-problem-solving abilities, and we highlight the importance of being
able to make accurate and robust comparisons between multiple cooperative multiagent systems
(CMASs) using a novel metric. A recent metric presented in the scientific literature, called MetrIntPair,
is capable of comparing the intelligence of only two CMASs at an application. In this paper, we
propose a generalization of that metric called MetrIntPairII. MetrIntPairII is based on pairwise
problem-solving intelligence comparisons (for the same problem, the problem-solving intelligence of
the studied CMASs is evaluated experimentally in pairs). The pairwise intelligence comparison is
proposed to decrease the necessary number of experimental intelligence measurements. MetrIntPairII
has the same properties as MetrIntPair, with the main advantage that it can be applied to any number
of CMASs conserving the accuracy of the comparison, while it exhibits enhanced robustness. An
important property of the proposed metric is the universality, as it can be applied as a black-box
method to intelligent agent-based systems (IABSs) generally, not depending on the aspect of IABS
architecture. To demonstrate the effectiveness of the MetrIntPairII metric, we provide a representative
experimental study, comparing the intelligence of several CMASs composed of agents specialized in
solving an NP-hard problem.

Keywords: mathematical modelling machine intelligence measuring; intelligent system; industry 4.0;
machine intelligence; intelligent agent; cooperative multiagent system; computational hard problem;
machine intelligence measure; classification of intelligent systems; data science

1. Introduction

Computer systems encounter various issues during problem-solving, including high
computational complexity, especially in the case of NP-hard problems, and the pres-
ence of different types of uncertainties, e.g., due to missing or erroneous data. Usually,
computationally complex problems can be effectively solved by intelligent agent-based
systems (IABSs), ranging from individual agents (IAGs) to cooperative multiagent sys-
tems (CMASs).

There are diverse CMASs specialized in difficult-problem-solving that are consid-
ered intelligent [1–4]. Applications of agent-based systems (ABSs) include the following:
diverse problems solving in Industry 4.0 [5]; adaptive clustering [6]; modeling strategic
interactions in diverse democratic systems [7]; investigation on supply chain of product
recycling [8]; detecting the proportion of traders in the stock market [9]; control design
in the presence of actuator saturation [10]; agent-based simulator for environmental land
change [11]; distributed intrusion detection [12]; investigations of complex information
systems [13]; discovering Semantic Web services through process similarity matching [14];
power system control and protection [15]; studies on task type and critic information in
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credit assignments [16]; planning with joint actions [17]; patient scheduling [18]; study
compliance with safety regulations [19]; multi-objective optimization [20]. Studies present
applications of computational intelligence in domains including the [21] industry and
environment. Problem-solving based on computational intelligence techniques include
adaptive reflection detection and location in iris biometric images [22], arithmetic codes
for concurrent error detection in artificial neural networks [23], and support in medical
decision-making [24,25].

This paper defines ICMASs formed of agent members that are not necessarily intelli-
gent, but at the level of the whole system, a measurable increase in collective intelligence
emerges [1,2]. Machine intelligence measures are considered in the context of difficult-
problem-solving abilities. Diverse studies and research related to the performance and
intelligence measures in the paper [26] are presented. The problem-solving ability of interest
should be established by a human assessor (Ha) who would like to make the problem-solving
intelligence measurement. Higher intelligence means a measurably improved problem-
solving ability. The intelligent biological life forms have variability in intelligence. For
problem-solving, a CMAS can manifest higher or lower intelligence, exhibiting variability.
For the solution of a difficult problem, a CMAS could manifest sometimes a statistically
high or low extreme (outlier) intelligence metric value. According to our bibliographic
study, the most important properties of intelligence metrics should include universality,
accuracy, and robustness [27,28].

The MetrIntPair metric [27] can make an accurate comparison of the intelligence of
two CMASs. It takes into account all the aforementioned considerations. Intelligence
measurements were also considered in the context of difficult-problem-solving abilities.
This metric can also be used to make classifications of the considered CMASs based on their
intelligence, where two CMASs with the same (from a statistical point of view) intelligence
can be included in the same class. MetrIntPair can make a differentiation in intelligence
between two CMASs even if the numerical difference between the measured intelligence
is small. In the framework of intelligence comparisons using the MetrIntPair metric, a
statistical analysis is performed. In the case of comparing more than two CMAS intelligence,
one idea is to use MetrIntPair in pair-by-pair comparisons of the CMASs. Unfortunately,
this increases the chance for a statistical intelligence comparison error, known as the Family-
wise error rate (FWER). A more detailed analysis of this subject and the calculus of the
FWER value [29] are presented in the discussion section. This is a motivation for the
design of a more general metric that could analyze simultaneously the intelligence of
any number of systems and classify them based on their problem-solving intelligence in
intelligence classes.

In this paper, a novel mathematically grounded metric called Pairwise Machine Intelli-
gence Measuring and Comparison of Multiple Intelligent Systems (MetrIntPairII) is proposed. It
is able to make an accurate and robust comparison of a large number of CMASs. It con-
forms to all the aforementioned considerations. MetrIntPairII represents a generalization
and an extension of the MetrIntPair metric, conserving all of its properties. The gener-
alization consists in the fact that MetrIntPairII is not restricted to the application on two
CMASs. The extension consists in the fact that it can handle intelligence indicator data that
does not satisfy the assumption of normality. Furthermore, an advantage of MetrIntPairII
over MetrIntPair in the context of intelligence comparisons is that it does not produce an
FWER error. To prove the effectiveness of the MetrIntPairII metric, we investigate a case
study, using different CMASs that operate by mimicking diverse biological swarms. In this
context, the intelligence of a few CMASs specialized in solving a type of NP-hard problem
are measured and compared.

The rest of this paper is organized as follows: Section 2 reviews state-of-the-art metrics
for intelligence measurement. In Section 3, the MetrIntPairII metric is presented, together
with the notions that stand at its foundation. Section 4 presents the performed experimental
study, which demonstrates the effectiveness of the MetrIntPairII metric. In Section 5, various
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aspects related to the considered metric are discussed. In the last section, the conclusions
of this research are summarized.

2. Metrics for Measuring Machine Intelligence

Many of the IABSs are CMASs. Even in very simple CMASs, an increased intelligence
can emerge at the system’s level. For instance, Yang et al. [1] proposed an ICMAS com-
posed of simple reactive mobile agents that are able to mimic the behavior of a human
network administrator.

One of the earliest famous definitions of machine intelligence was presented by Alan
Turing [30] in 1950. A computing system was considered intelligent if a human assessor
could not decide the nature of the system as being human or artificial based on questions
asked from a hidden room. The definition is based on the idea of an artificial cognitive
system that is able to mimic the cognition of a human being.

As examples of systems that could best fit the Turing’s criteria of intelligence appre-
ciation, from a specialty knowledge point of view, similar to the knowledge that human
specialists have, the expert systems (ESs) can be mentioned. ESs can solve specialty prob-
lems, similarly to human specialists, and have a diversity of applications [31].

Several studies have been performed related to machine intelligence, human intel-
ligence, and the analogies and differences between them, analyzing different aspects of
Turing’s test proposal. A relatively recent study on Turing’s test was presented by Ster-
ret [32], analyzing how Watson, an IBM-developed question-answering computer, could
compete against humans in the Jeopardy game. There is also the famous competition
between the chess playing machine named Deep Blue and the chess grandmaster Kas-
parov [33]. Besold et al. [34] studied diverse difficult problems for humans that could
be used as benchmark problems for IABSs. Detterman [35] proposed an interesting chal-
lenge regarding the Machine Intelligence Quotient (MIQ) measured by well-known IQ
tests developed for humans. Sanghi and Dowe [36] presented an intelligent computer
program that was evaluated successfully on some standard human IQ tests. According
to the authors, it surpassed the average human intelligence (by 100) on some tests [36].
Even in this successful situation from the side of the computing system, we consider that
artificial and human intelligence cannot be directly compared at the general level.

MetrIntSimil [37] represents an accurate and robust metric that can be applied for a
comparison of similarity in intelligence of any number of cooperative multiagent systems.

An interesting study realized at the US National Institute of Standards and Technol-
ogy was presented by Schreiner [38], aiming to create standard measures for intelligent
systems (ISs). Schreiner studied the research question of how precisely ISs are defined, and
analyzed how to measure and compare the intelligence capabilities of ISs. Park et al. [39]
introduced the notion of an intelligence task graph to study the measurement of machine
intelligence of human–machine cooperative systems. Anthon and Jannett [40] analyzed
the ABS intelligence considering the ability to compare alternatives with different levels
of complexity. In their research, an agent-based distributed sensor network system was
considered. The proposal was tested by comparing MIQs in diverse scenarios. Hernández-
Orallo and Dowe [41] proposed a general test called the universal anytime intelligence
test. That study considered that such a test should be able to measure the intelligence level,
which could be very low or very high in diverse situations. The presented approach was
based on the C-tests and compression-enhanced Turing tests developed in the late 1990s.
Different tests were discussed, highlighting their limitations, and some new ideas were
introduced and need to be studied for the development of a universal intelligence test.

ExtrIntDetect [42] represents a universal method that can be applied for the identifica-
tion of intelligent cooperative multiagent systems with extreme intelligence.

Legg and Hutter defined an intelligence measure [43], presuming that the performance
in easy environments counts less toward an agent’s intelligence than does the performance
in difficult environments. Hibbard [44] proposed a metric for intelligence measurement
based on a hierarchy of sets of increasingly difficult environments. Hibbard considers an
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agent’s intelligence measurement according to diverse considerations related to difficult-
problem-solving ability.

In [28], a novel metric called MetrIntComp for the comparison of two CMASs’ intel-
ligence was proposed. Intelligence measuring was considered based on the principle of
difficult-problem-solving abilities. MetrIntComp is able to make a differentiation in intel-
ligence between the two CMASs even if the numerical difference between the measured
intelligence values is low. MetrIntComp makes also a classification of the considered CMASs
based on their intelligence. According to this classification, two CMASs with the same
intelligence (from a statistical point of view) can be included in the same class.

Liu et al. [45] present a recent complex study regarding the analysis of the intelligence
quotient and the grade of artificial intelligence.

In [46], a metric that is able to compare the intelligence of a system with a reference
intelligence is presented. The designed metric is also able to measure the evolution in
intelligence of swarm systems.

In [47], a novel universal metric called MeasApplInt able to measure and compare
the real-life problem solving machine intelligence of two cooperative multiagent systems
systems at an application is proposed. The studied intelligent systems are classified in
intelligence classes. Systems classified in the same class can solve problems at the same
level of intelligence.

Usually, intelligence is required when the problems to be solved are characterized by
different kinds of difficulties. In this sense, the main purpose of endowing systems with
intelligence is to obtain improvements in solving difficult problems. Machine intelligence
must be considered based on difficult-problem-solving abilities. Measuring machine
intelligence is important to develop highly intelligent problem-solving approaches. At the
same time, it should enable the selection of the most appropriate systems, based on their
intelligence.

Each of the metrics/methods presented in the scientific literature is based on some
specific ideology of intelligence measuring. Based on this fact, most of them cannot be
compared. There is no standardization of intelligence measuring, nor is there a universal
vision on what an intelligence’s metric should measure. One type of difficult problem
could be solved by IABSs with a large diversity of architectures whose intelligence must
be measured. This motivates the necessity to design universal metrics. One of the main
drawbacks of actual metrics is their limitation in universality.

3. The Proposed MetrIntPairII Metric

In the following, we present a novel metric called Pairwise Machine Intelligence Measur-
ing and Comparison of Multiple Intelligent Systems (MetrIntPairII). The metric is described in
the form of an algorithm abbreviated as MetrIntPairII.

3.1. Description of the Proposed MetrIntPairII Metric

This subsection introduces the notion intelligence indicator of solving difficult prob-
lems. An intelligence indicator is established by an Ha in order to obtain a quantitative
measure of the type of problem-solving intelligence that represents interest.

The following notations are used: Coop = {Coop1, Coop2, . . . , Coopm} denotes the set
of CMASs to be compared; |Coop| = m represents the cardinality (number) of compared
CMASs; Int = {Int1, Int2, . . . , Intm}; Int1 = {In11, In12, . . . , In1k}, Int2 = {In21, In22, . . . ,
In2k}, . . . , Intm = {Inm1, Inm2, .., Inmk} denote the obtained intelligence indicators as a
result of intelligence measurements using a set of test problems Probl = {Prl1, Prl2, . . . , Prlk}.
Int1 represents the intelligence indicators for Coop1; . . . . Intm represents the intelligence
indicators for Coopm. Table 1 presents the structuring of the measured intelligence indicator
data. A line from Table 1, for instance, Prlh, In1h, In2h, . . . , Inmh, represents the measured
Prlh problem-solving intelligence measure for Coop1 Coop2, . . . , Coopm. In1h represents the
Prlh problem-solving intelligence measure for Coop1. . . . Inmh represents the Prlh problem-
solving intelligence measure for Coopm. The number of problems used with the purpose of
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intelligence measurements is represented by |Probl| = k; |Int1| = |Int2| = . . . = |Intm| =
k represents the cardinality of Int1, Int2, . . . , Intm.

Table 1. Results of the problem-solving intelligence evaluation.

Probl Int1 Int2 .. Intm Formed Pairs

Prl1 In11 In21 Inm1 In11- In21-. . . - Inm1
Prl2 In12 In22 Inm2 In12- In22-. . . - Inm2

. . . . . . . . . . . . . . . . . .
Prlk In1k In2k Inmk In1k- In2k-. . . - Inmk

MIQ1 MIQ2 MIQm

The number of problems used with the purpose of intelligence measurements is
represented by |Probl| = k; |Int1| = |Int2| = . . . = |Intm| = k represents the cardinality of
Int1, Int2, . . . , Intm.

A problem-solving intelligence measure is expressed as an intelligence indicator value.
Based on the intelligence indicator values of a CMAS, what we call the Machine Intelligence
Quotient (MIQ) can be obtained. This is an indicator of the central intelligence tendency.
The sequence MIQ1, MIQ2, . . . , MIQm denotes the machine intelligence quotients of the
Coop1, Coop2, . . . , Coopm obtained by the measurement of the problem-solving intelligence
using the set of test problems Probl. The MIQ of the Coop1, Coop2, . . . , Coopm calculus is
considered as the mean or the median of Int1, Int2, . . . , Intm. It is calculated as the mean
in the parametric case when all the intelligence indicator data Int1, Int2, . . . , Intm pass the
normality assumption. It is calculated as the median in the nonparametric case when not
all the intelligence indicator data Int1, Int2, . . . , Intm pass the normality assumption.

It must be noted that different sets of experimental intelligence evaluations could give
slightly different MIQ values. This phenomenon is similar to the case of human intelligence
tests, where a human obtains an evaluation result of his/her Intelligence Quotient (IQ),
but at another evaluation, a slightly different IQ could be obtained. The proposed metric
takes into consideration this aspect, which is called variability in intelligence. The central
intelligence tendency of an ICMAS is described by the MIQ value and some additional
indicators that include the mean, the standard deviation (SD), the confidence level of the
mean (CL) (the use of 95% CL is recommended in most cases, and even other values such
as 90% or 99% can be used), the lower confidence interval of the mean (LCI) and the upper
confidence interval of the mean (UCI), both of which are calculated at an established CL
level, and the coefficient of variation (CV) defined as CV = 100 × (SD/mean), expressed
as a percentage to be easier to interpret by an Ha. The previously introduced indicators
enable a statistical characterization of intelligence that allows for the formulation of diverse
conclusions. For instance, CV is used as an indicator of the homogeneity–heterogeneity,
and homogeneous intelligence means that there is not much significant variation in the
problem-solving intelligence.

The MetrIntPairII algorithm compares the intelligence of Coop on the Probl testing
problems set. It verifies whether the intelligence of Coop1, Coop2, . . . , Coopm is statistically
equal and makes a classification of the studied CMASs in intelligence classes. In the
following, the null hypothesis, denoted as HI0, is the statement that the intelligence of
Coop1, Coop2, . . . , Coopm is equal from a statistical point of view (the difference is not
statistically significant), meaning that all the analyzed CMASs should be included in the
same intelligence class. HI1 is denoted as the alternative hypothesis, which indicates that
the intelligence of Coop1, Coop2, . . . , Coopm are not all equal from a statistical point of view,
and there is a difference in intelligence between at least two of them. It can be concluded
that all analyzed CMASs cannot be included in the same class. MetrIntPairII uses as input
Int1, Int2, . . . , Intm. The “@” symbol specifies that the performance of a specific set of
processing’s. For example, “@Apply the Friedman test with the αMore significance level.”
specifies that the Friedman test is applied, as presented in the scientific literature, with the
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αMore significance level. Figure 1 briefly presents the main processing steps performed by
the MetrIntPairII: Intelligence Comparison Algorithm.

A dataset is called homogeneous if CV < CV1, relatively homogeneous if CV ∈ [CV1, CV2),
relatively heterogeneous if CV ∈ [CV2, CV3), and heterogeneous if CV ≥ CV3. Recommended
values include CV1 = 10, CV2 = 20, and CV3 = 30, as usually they are the most appropriate.

Some studies [48,49] compare the most frequently used tests for verification of the
normality assumption, such as the One-Sample Kolmogorov–Smirnov test (KS test), the Shapiro–
Wilk test (SW test), and the Lilliefors test (Lill test). The Lill test is an adaptation of the KS test.
The SW test was proved to have the most statistical power for significance from the studied
tests. It was noted in [48,49] that powerful normality tests could have disadvantages that
must also be considered in decisions. For instance, in the case of the SW test, it was proved
that it does not work well with many identical values.

 

IN 

• Int1; Int2; . . . ; Intm 

Step 1 +  

Step 2 + Step 3 

•Preliminary analysis; 

•Hybrid human-computing decision; 

•Measuring the intelligence of Coop1, . . . , Coopm.  

Step 4 

•Classification of Coop1, . . . , Coopm in intelligence classes 

Figure 1. Main processing performed by the Algorithm 1.

Algorithm 1. MetrIntPairII: Intelligence Comparison Algorithm

INPUT: Int1;Int2;. . . ; Intm;
OUTPUT: MIQ1; MIQ2;. . . ; MIQm;
DecInt; \\ Decision on classification.
Step 1. Preliminary analysis.
@Establish CL;@Makes a statistical analysis for Int1, Int2, . . . , Intm by obtaining the: mean;
LCI; UCI; minimum; maximum; median; SD; variance; CV;
@Analyze the homogeneity/heterogeneity of Int1, Int2, . . . , Intm based on the CV values.
@Verify if Int1, Int2, . . . , Intm pass the normality assumption.
Step 2. Hybrid human-computing system decision.
@Based on the Int1, Int2, . . . , Intm data homogeneity/heterogeneity and normality ask Ha
whether he/she decides for the application of an extreme detection test or the application
of a data transformation.
@Set the PreProcessing decision.
If (PreProcessing="YesOutl”) Then @Apply an outlier detection test;

ElseIf (PreProcessing="YesTransf”)
@Apply a transformation to intelligence indicators data.

EndIf
Step 3. Measuring the intelligence of Coop1, . . . , Coopm.
\\ Normality verification of Int1, Int2, . . . , Intm.
If(Int1 and Int2 . . . and Intm are normally distributed) Then

Passed:="Yes”;
Else Passed:="No”;

EndIf
@Choose the significance level αMore.
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\\ Calculate the MIQs as the mean or the median.
@Calculate MIQ1, MIQ2, . . . , MIQm.
Step 4. Classification based on the intelligence measurement.
If (Passed ="Yes") Then @Apply the Repeated Measure Anova with αMore. @Obtain p-value.

Else @Apply the Friedman test with αMore. @Obtain the p-value.
EndIf
If (p-value>αMore) Then @Accept HI0.

DecInt:="Coop1, Coop2, . . . , Coopm intelligences are equal”;
ElseIf((Passed= "Yes”) and (p-value<αMore)) Then
@Apply the Tukey–Kramer Multiple Comparisons test.
@Establish the decision on the classification of Coop1,
Coop2, . . . , Coopm based on their intelligence.

Else \\ Passed="No” and p-value < αMore.
@Apply the Dunn test.
@Make the decision on the classification of Coop1, Coop2, . . . , Coopm based on
their intelligence.

EndIf
EndMetrIntPairIIAlgorithm

In our algorithm, for the normality verification, we have chosen the KS test [50–52],
the Lill test [51–53], and the SW test [54]. The Quantile-Quantile plot (QQ plot) is a scatterplot
appropriate for the normality visual appreciation. From an interpretation point of view,
a QQ plot is a plotted reference line. In the case of normally distributed data, the points
should fall approximately along this reference line. The greater the departure from the
reference line, the greater the evidence is for the conclusion that the data fail the normality
assumption. The joint use of the QQ plot with the SW test is suggested for accurate
verification of the normality assumption.

In usual applications, it is sufficient to use the SW test jointly with the QQ plot. The
SW test is appropriate even in the case of a normality evaluation of smaller sets of data.

Step 2 of the algorithm includes a hybrid human–computing system decision. This is
based on the consideration that a human has some problem and domain-specific knowledge
that can help him/her in more efficient decisions in some situations than computing
systems. This step in some situations could be implemented as an automatic decision.

In the nonparametric case (the samples of at least one of the intelligence indicators
are not normally distributed), to obtain normally distributed data, an Ha could decide for
the elimination of extreme (outlier) intelligence indicator values. An intelligence indicator
sample could contain extreme intelligence values. It is called the extreme intelligence
indicator value, a very high or very low intelligence value, statistically significantly different
from other intelligence indicator values. For the detection of extreme values, we used a
statistical method called the Grubbs test for outlier detection, also called the ESD method
(extreme studentized deviate) [55–58]. The assumption of the Grubbs test is the expected
normality. The dataset can be reasonably approximated by a normal distribution. This
must be first verified or known before its application. It is proposed that the Grubbs test be
used with the significance level αGrubbs = 0.05, and other values can be considered, such
as 0.01 or 0.1. At first application, the Grubbs test can identify a single extreme if there are
any. If an extreme value is detected, then it is the statistically significantly most different
value from those other measured intelligence indicator values. If an extreme is detected,
one may consider applying the extreme detection test again. It can be applied recursively
several times until no further extremes are identified.

Whenever the Grubbs test detects an extreme intelligence indicator in an intelligence
indicator dataset, this value is removed together with the corresponding paired values
from the other intelligence indicators datasets. For instance, in the case of the problem
denoted Prlv, the corresponding intelligence indicator value In1v (from In1) is identified as
an extreme, and In2v, . . . , Inmv are then also removed from the samples In2, . . . , Inm.
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Alternately, if the sample intelligence data does not pass the normality assumption,
a transformation can be applied to obtain normally distributed data. Some of the most
commonly used normalizing transformations, are indicated in Table 2 [59]. IN denotes an
arbitrary dataset.

Table 2. Transformation to obtain normally distributed data.

IN Type - Distribution Normalizing Transformation

Poisson distribution SquareRoot(IN)
Time or Duration 1/IN

Lognormal distribution Log(IN)
Binomial distribution Arcsine(SquareRoot(IN))

At Step 1 of the algorithm, statistical analysis is performed, and the results are used to
make intermediary decisions on the intelligence indicator data and to decide on further
processing steps. It is also appropriate to make some additional characterizations of the
intelligence variability of the studied CMASs.

Step 4 of the algorithm performs the classification of the studied CMASs based on
their intelligence. For effective comparison of the intelligence of the CMASs, the Repeated
Measure Anova test [60,61] is used in the parametric case, when Int1, Int2, . . . .Intm pass the
normality assumption. In the nonparametric case, when not all of Int1, Int2, . . . .Intm are
normally distributed, the Friedman Two-Way Analysis of Variance by Ranks test (the Friedman
test) is used [62,63]. When using the Friedman test, it is important to use a sample size of
at least 12 in order to obtain an accurate p-value. In choosing each of the tests, the αMore
significance levels value should be established. It is suggested that a value of αMore = 0.05
be used (other values such as 0.01 and 0.1 can also be used), which is frequently the most
appropriate. αMore denotes the probability of making a type I error, signifying the rejection
of HI0 when it is true. As a motivation for choosing this significance level value, it must
be mentioned that the smaller the significance level is, the less likely it is to make a type I
error, and the more likely it is to make a type II error.

In the proposed MetrIntPairII metric algorithm, a p-value > αMore implies that HI0
can be accepted at the established significance level. In this case, it can be concluded that,
even if there is a numerical difference between the calculated MIQ1, MIQ2, . . . , MIQm
values, there is no statistical difference in the intelligence of the studied CMASs. The
numerical difference is the result of the variability in the intelligence of the CMASs. From
a classification point of view, Coop1, Coop2, . . . , Coopm can be classified in the same class
of intelligence, in the sense that they can solve the considered class of problems with the
same level of intelligence.

If HI1 is accepted, then it can be concluded that the intelligence level of MIQ1, MIQ2,
. . . , MIQm is statistically significantly different (there is a significant difference between
at least two of them). Accordingly, from the point of view of classification, Coop1, Coop2,
. . . , Coopm cannot be classified in the same intelligence class. To distribute Coop1, Coop2, . . . ,
Coopm into intelligence classes, the following post-tests are used: the Tukey–Kramer Multiple
Comparisons test [64,65] (in the parametric case, when all the samples from Int pass the
normality assumption) and the Dunn test [66,67] (in the non-parametric case, when not all
the samples from Int pass the normality assumption). Additional explanations related to
how the classification is accomplished based on the Tukey–Kramer post-test and the Dunn
post-test are provided at the end of the experimental study presented in the next section.
It is recommended that the application of both tests be at the significance level 0.05, and
other significance levels such as 0.01 and 0.1 can be applied as well.

Dunn’s test compares the difference in the sum of ranks between two intelligence
indicator sets with the expected average difference. For each pair of intelligence indicators,
the p-value is obtained.

The Tukey–Kramer post-test is a single-step multiple-comparison statistical test. It
can be used separately or in conjunction with, as a post-hoc of ANOVA, to find means that
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are significantly different from each other. It compares all possible pairs of means and is
based on a studentized range distribution.

3.2. Intelligence Indicator Calculus Based on More Intelligence Components Values

Choosing the most appropriate intelligence indicator is the responsibility of the Ha
who wishes to measure the intelligence and to compare the problem-solving intelligence
of two or more CMASs. He/she could choose the most preferable one based on what
he/she indicates as problem-solving intelligence, with respect to the type of intelligence
that he/she would like to measure.

3.2.1. An Illustrative Example for the Notion: Type of Intelligence

The scenario of an intelligent transporting agent being able to autonomously pilot a car with
a passenger.

In the considered Travelling Salesman (TSP) type of problem, a passenger starting
from a city located in a country with a certain number of cities would like to visit with the
help of a transporting agent each city once and return to the starting city with the smallest
cost. Some examples of intelligence types that the pilot agent could use are enumerated
below:

1. Type1: Communication intelligence. The capacity to communicate with the passenger
from the car. This may be implemented to work via voice commands.

2. Type2: Intelligence in avoiding static objects that might appear on the road.
3. Type3: Intelligence in avoiding collisions with other cars.
4. Type4: Intelligence in avoiding humans who cross the road irregularly.
5. Type5: Intelligence in avoiding animals that cross the road irregularly.
6. Type6: Intelligence in planning efficient routes.

In this scenario, the Ha should establish the type of intelligence that he/she would
like to measure at a specific moment of time. The Ha can choose, for instance, Type1, which
could be measured as the percentage of correctly recognized voice commands and the
accuracy of their execution. Type6 could be measured, for instance, based on the aspect of
how close the obtained route is to the shortest possible route.

A pilot agent AGI may be more intelligent based on a specific type of intelligence
than another pilot agent AGI I , while for another type of intelligence, the situation could
be vice versa. For instance, AGI could be more intelligent than AGI I in avoiding humans
that cross the road, while AGI I could be more intelligent than AGI in communication with
the passenger.

If necessary, the intelligence indicator value can be calculated as the weighted sum of
some components that characterize different aspects of the CMAS’s intelligence, using the
formula:

int = wgh1 ×mes1 + wgh2 ×mes2 + · · ·+ wghz ×mesz; wgh1 + wgh2 + · · ·+ wghz = 1 (1)

where z represents the number of considered components; mes1, mes2,..., mesz represent the
considered components at a specific problem-solving intelligence evaluation; wgh1, wgh2,
. . . , wghz represent the weights/importance of the components.

3.2.2. An Illustrative Example for the: Intelligence Components

The scenario of a hybrid CMAS composed of flying agent-based drones and terrestrial mobile
robotic ants.

The scenario of a CMAS composed of intelligent flying agent-based drones and intelli-
gent mobile robotic ants (who operate like agents) able to move on a certain type of land
is considered. The mobile robotic ants are specialized in collecting different types of soil
samples for analysis. The flying drones have a high altitude vision of the land that can
analyze it based on techniques such as image analysis. Using the available information
about the robotic ants (e.g., their position and motion), obtained by inspecting the land
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from the air, the drones can indicate to the robotic ants the most appropriate places to go in
order to efficiently collect representative (by diverse type) soil samples. The robotic ants are
also able to cooperate with each other during operation. For instance, a robotic ant might
find more soil samples than it can transport. Based on this issue, it can request the help of
another robotic ant that is nearby, which is able to transport a part of those samples. The
Ha should establish the most appropriate indicator of the intelligence, based on the types
of intelligence that represent his/her assignment and choose the intelligence components
that contribute to the considered intelligence measuring.

The Ha considers the following three (z = 3) components of the intelligence:

1. Comp1: new information. The added value of the new information obtained by pro-
cessing the data that can be extracted from the collected samples. The weight wgh1
corresponds to Comp1.

2. Comp2: used resources. The consumed fuel by the robotic agents. The weight wgh2
corresponds to Comp2.

3. Comp3: problem-solving time. The time to obtain all the samples. The weight wgh3
corresponds to Comp3.

If the added value of the obtained information and the time of collection are considered,
the added value component could be more important. It must have a higher weight
wgh1 > wgh3. The weights of the components should be established by the Ha. Sometimes
it may be necessary to apply a transformation to some components of the intelligence
measure (e.g., to its units) before performing the intelligence indicator calculus based on
them. The necessary types of transformations should be established by the Ha. For instance,
in the case of Comp2, a lower value is better; it is better if the resource consumption is lower.
In the case of Comp3, a lower value is better; it is better if the samples are collected in a
smaller amount of time. In the case of Comp1, a higher value is better; it is better if a higher
amount of new information is obtained.

4. The Performed Experimental Study
4.1. The Cooperative Multiagent Systems Used in the Study

Dorigo [68–71] introduced the concept of problem-solving based on simple computing
agents that mimic the generic behavior of natural ants. In an Ant System (AtS), initially, each
agent (artificial ant) is placed on some randomly chosen node. An agent agentk currently
at node i chooses to move to node j by applying the following probabilistic transition rule:

pk
ij(t) =


[τij(t)]α · [ηij ]

β

∑l∈Jk(i)
[τil(t)]α · [ηil ]

β if j ∈ Jk(i)

0 otherwise
, (2)

After each agent completes its tour, the pheromone amount on each path will be adjusted
as follows:

τij(t + 1) = (1− ρ)× τij(t) + ∆τij(t), (3)

∆τij(t) =
k=m

∑
k=1

∆τk
ij(t), (4)

∆τk
ij(t) =

{
Q
Lk

if (i, j) ∈ tour_per f ormed_by_agent_k
0 otherwise

, (5)

In Equations (2)–(5), ρ, α, and β are parameters whose values should be set. α and
β control the relative weights of the heuristic visibility and the pheromone trail. α and
β establish the necessary trade-off between edge length and pheromone intensity. ρ,
0 < ρ < 1 represents the evaporation factor. Q denotes an arbitrary constant, usually Q = 1.

The variables ηgh (ηgh = 1/dg ,h) stand for the heuristic visibility of the edge (g,h). dg ,h
represents the distance between the nodes g and h. The number of agents is denoted by m.
Lk stands for the length of the tour performed by the agentk.
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There are many types of cooperation in CMASs that could lead to intelligent behavior
at the systems’ level. A fundamental component of the cooperation is the communica-
tion. There are many types of communication that can be implemented in multiagent
systems. One example is the communication where a transmitted message does not have
a destinatary agent. It is received by all the agents that are nearby (at a certain distance).
The studied CMASs whose intelligence is compared in this study are composed of simple
computing software mobile agents (artificial ants) that mimic the operation of natural ants.
They are considered to have so-called Swarm Intelligence (SI). The expression of SI was
introduced by Beni and Wang [72]. The mobile agents operate in an environment repre-
sented by a graph of connected nodes. The agents are able to move in an environment from
node to node during problem-solving. The communication of the agents is realized using
signs, which is similar to the communication of natural ants using chemical pheromones.
Though this is a simple form of communication, it allows for efficient (efficiency in problem-
solving), robust (even if some agents fail, the problem can be successfully solved), and
scalable (the CMAS can be extended, if necessary, with new agents) cooperation in solving
the undertaken problems. Many of the CMASs that operate by mimicking natural ants are
considered intelligent in the scientific literature [73–75].

The Best-Worst Ant System (BWAS) was proposed in [76]. Coop1 operated as a BWAS [76–78].
The Min-Max Ant System (MMAS) was proposed by Stützle and Hoos [79]. Coop2 operated
as a MMAS [79,80]. The first modified version of the AtS consisted in the Ant Colony System
(ACS). The ACS was introduced by Dorigo and Gambardella [81]. Coop3 operated as an
ACS [69,70,81]. Coop1, and Coop2, and Coop3 were applied in solving the TSP [81].

TSP can be defined as follows: Given M cities (nodes of an undirected weighted
graph), a salesman who starts from a given node should visit each node exactly once
and then return to the starting node. The salesman would like to choose the route that
minimizes either the traveled distance, or the travelling time, or the travelling energy.

4.1.1. Presentation of the Coop1 Intelligent System’S Operation

In the operation of Coop1, (2) represents the solution construction, and (6) represents
the evaporation rule; ∀ i, and j, with ρ ∈ [0, 1], represent the pheromone decay parameter.

τij(t + 1) = (1− ρ)× τij(t), (6)

with only the best-to-date agent and worst-to-date agent updates of pheromones. The
best-to-date agent update is indicated in (7). τij

bs = Q/Lbs if the path ij is from Tbs. Tbs is
the best-to-date agent round trip; Lbs is the length of the performed trip.

τij(t + 1) = τij(t + 1) + ∆τbs
ij (t) (7)

On the paths of the round trip of the worst agent for the current iteration that are not in the
best-to-date solution has an additional evaporation, as indicated in (8).

τrs(t + 1) = τrs(t + 1)× (1− ρw), (8)

where ρw is a supplementary factor for all Lrs∈ Tw and Lrs /∈ Tw ∩TBS. Tw is the worst
solution for the given iteration. Tbs is the best-to-date solution.

4.1.2. Presentation of the Coop2 System’s Operation

Coop2 is based on a MMAS. MMAS differs from a conventional AtS in some aspects.
An MMAS gives dynamically evolving bounds on the pheromone trail intensities. This
is performed in such a way that the pheromone intensity on all paths is always within
a specified limit of the path with the greatest pheromone intensity. All the paths will
permanently have a non-trivial probability of being selected. This way, a wider exploration
of the search space is assured. MMAS uses lower and upper pheromone bounds to ensure
that all of the pheromone intensities are between these two bounds.
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In a MMAS, the solution construction is according to (2). There are variants in the
selection of the agents allowed to update pheromones: the best-for-current iteration, the
best-to-date agent, the best-after-latest-reset agent, or the best-to date-agent for even (or
odd) iterations. There are minimal and maximal pheromone limits to the quantity of
pheromone on the paths between nodes, denoted as τmin and τmax. The evaporation on the
graph can be expressed as (9). (10) denotes the pheromone update based on the selected
agent’s round trip.

τij(t) = max((1− ρ)× τij(t), τmin), (9)

τij(t + 1) = min(τij(t) + ∆τbs
ij (t), τmax), (10)

∆τij
bs(t) = Q/Lsel if the path ij ∈ Tsel , Tsel is the selected best-to-date agent’s round

trip. Lsel is the length of the trip. τ0 = 1/nc (nc denotes the number of cities). Another
possibility for τ0 initialization consists in τ0 = τmax. The decision of which of them is a
more appropriate initialization should be established experimentally.

4.1.3. Presentation of the Coop3 Intelligent System’s Operation

Coop3 is based on an AtS. The difference between ACS and AtS consists in the decision
rule used by the agents during their operation (solution construction process). The agents
in ACS use the following rule: the probability for an agent to move from node i to node j de-
pends on a random variable q uniformly distributed over [0, 1], and a parameter q0. If the
condition q0 ≥ q is satisfied, then, among the feasible edge, the edge that maximizes the
product τil × ηil is chosen. In alternative cases, the same equation as in AtS is used.

This is a kind of greedy rule, that favors the exploitation of pheromone information.
In order to counterbalance this, the local pheromone update is performed by all agents
after each construction process. Each agent applies it only to the last edge traversed:

τij(t) = (1− ϕ)× τij(t) + ϕ× τ0 (11)

In (11), the following notations are used: ϕ, ϕ ∈ (0,1]: the pheromone decay coefficient; τ0:
the initial value of the pheromone.

The local pheromone update intends to increase the chance of visiting promising
itineraries on the search performed by subsequent agents. The decrease of the pheromone
concentration on the edges as they are traversed during a single iteration has the effect of
indicating to subsequent agents that they should choose other edges that results in different
solutions. This makes it less probable that several agents obtain identical solutions during
a single iteration. Because of the local pheromone update, the minimum values of the
pheromone are limited.

Similarly with the AtS, in ACS, at the end of the construction process, a pheromone
update is realized. It is performed only by the agent that performed best. The best agent
updates the edges that it visited.

τij(t + 1) = (1− ρ)× τij(t) + ρ× ∆τbs
ij (t) (12)

In (12), the following notations are used: ∆τij
bs = 1/Lbs if the best agent traversed the

edge (i,j) in its tour; in alternative cases, ∆τij
bs = 0. For the calculus of the Lbs value, the

following is recommended: Lbs is considered the iteration best, and the length of the best
tour found in the current iteration or Lib is considered best-so-far, the best solution found
since the start of the problem-solving process.

4.2. Experimental Results

For intelligence measurement, a particular experimental setup was considered. Exper-
iments were performed using a computing system with a Quad Core I7 2.6 GHz processor
and 8 GB RAM. There were considered maps with nr = 100 randomly placed cities on the
map. The most appropriate parameter values were considered based on some experimental
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evaluations. As parameters, for all the CMASs, the following settings were considered:
number-of-steps = 1000; α = 1 (power of the pheromone); β = 1 (power of the distance/edge
weight); ρ = 0.1 (the evaporation factor). Table 3 presents a part of the obtained experi-
mental intelligence evaluation results. Figure 2 provides a graphic representation of Int1,
Int2, and Int3. In the simulations, the obtained best-to-date travel value at the end of the
problem-solving was considered as the intelligence indicator. A smaller value of the global-
best has the significance of higher intelligence. Probl = {Prl1, Prl2,...., Prl36} represents the
set of problems used in the problem-solving intelligence evaluations.

Table 3. Intelligence indicators for Coop1/Int1, Coop2/Int2, and Coop3/Int3.

Int1 Int2 Int3

In11(1748); In12(1841);2# ... In21(1130);In22(1181);2# ... In31(1278);In32(1322);2∗...
In17(1770);

In18(1700);In19(1920); In27(1191);In28(1091); In37(1646);In38(1271);

In110(1609)1#; ... In123(1839); In29(1152);In210(1147);1# ... In39(1277); In310(1262);...
... In223(1192); ... 1∗In323(1727);...

��
Figure 2. Graphical representation of Int1, Int2 and Int3.

Table 4 presents the results of the descriptive characterization of Int1, Int2, Int3 intelli-
gence indicators samples, where mean denotes the sample mean; sample size represents the
calculated sample size; LowerCI and UpperCI represent the lower and upper confidence
interval of the sample mean; SD denotes the sample standard deviation; CV represents the
coefficient of variation of the sample; variance represents the sample variance (calculated as
SD2); min represents the smallest value from the sample; max represents the largest value
of the sample; median represents the median of the sample.

Table 5 presents the results of the normality tests performed for Int1, Int2, Int3. Table 6
presents the results of the descriptive characterization of Int1∗, Int2∗, Int3∗ intelligence
indicators samples. Table 7 presents the results of the normality tests performed for Int1∗,
Int2∗, Int3∗. To check the normality of data, the KS, Lill, and SW tests were applied, all
of them at the significance level αNorm = 0.05. Tables 5 and 7 present, in the case of all
the performed normality tests, the obtained test statistic and the p-value. For effective
interpretation, only the p-value was used. The condition p-value > αNorm indicated the
passing of the normality assumption at the considered significance level.

Tables 4 and 5 present the results obtained by analyzing Int1, Int2, and Int3 data, where
Table 4 presents a descriptive characterization, and Table 5 presents the results of normality
testing. Not all the intelligence indicators’ data pass the normality assumption. Based
on this fact, the Friedman test is applied with the chosen significance level αMore = 0.05.
The obtained Friedman test p-value ≈ 0.0001 (Friedman Statistic Fr = 72 ), p-value < αMore,
indicates that there is a statistically significant difference among the intelligence of Coop1,
Coop2, and Coop3. This means that all three CMASs cannot be included in the same class
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of intelligence. For further processing, the Dunn test with the significance level αPost =
0.05 (Table 8, the column labeled “Dunn test”) was used to compare all pairs of CMASs.
For the interpretation of the results, the p-value of the Dunn test should be compared with
the αPost significance level. p-value ≤ αPost indicates a significant statistical difference
between a compared pair of CMASs. p-value≤ αPost means that the two compared CMASs
cannot be classified in the same class. The obtained results indicate that no couple of the
studied CMASs can be included in the same class. Henceforth, there are three identified
intelligence classes.

Applying the second approach of the MetrIntPairII algorithm, based on the fact that
Int3 does not pass the normality assumption, extremes were identified using the Grubbs
test on the Int3 intelligence indicator data. At the first application of the test, Int323 = 1727
corresponding to Pr23 was identified as an outlier. It was removed from Int3, Int3∗ = Int3
− {Int323}, removing at the same time the corresponding values from Int2 (Int223 = 1192),
Int2∗ = Int2 − {Int223} and Int1 (Int123 = 1839), Int1∗ = Int1 − {Int123}. The removal of Int223
and Int123 from Int2 and Int1, respectively, was based on the pairing property (they were
the intelligence indicators obtained as the Pr23 problem-solving intelligence evaluation by
Coop2 and Coop1). At the second application of the Grubbs test, Int37 = 1646 associated with
Pr7 was identified as the second extreme. It was removed from Int3, Int3∗ = Int3 − {Int37},
removing at the same time the corresponding values from Int2 (Int27 = 1191), Int2∗ = Int2
− {Int27} and Int1 (Int17 = 1770), Int1∗ = Int1 − {Int17}. The removal of Int27 from Int2
and Int17 from Int1 was based on the pairing property.

The obtained Int1∗, Int2∗, Int3∗ data passed the normality assumption (see Table 7 for
the obtained normality test results and Table 6 for the performed descriptive characteriza-
tion of intelligence indicators). QQ plots for Int1∗ (Figure 3), Int2∗ (Figure 4), Int3∗ (Figure 5)
were constructed. The visual interpretation of Figures 3–5 lead to the same conclusion that
Int1∗, Int2∗, Int3∗ passed the normality assumption (the points fall approximately along this
reference line).

Table 4. Results of the Int1, Int2, Int3 analysis.

Int1 Int2 Int3

mean/ sample size 1773.22/36 1152.56/36 1304.89/36
LowerCI/ UpperCI 1732.5/1814 1136.4/1168.7 1270.5/1339.3

SD/ CV 120.39/6.79 47.7/4.14 101.61/7.79
variance 14,493.95 2275.28 10,324.56
min/ max 1616/2004 1009/1262 1177/1727
median 1769 1149.5 1279

Table 5. Results of normality testing for Int1, Int2, Int3.

Int1 Int2 Int3

KS Stat/ p-value 0.067/ ≈ 0.1 0.087/ ≈ 0.1 0.30/0.001
Lill Stat/ p-value 0.67/ ≈ 0.2 0.86/ ≈ 0.2 0.302/0
SW Stat/ p-value 0.93/ ≈ 0.851 0.976/ ≈ 0.67 0.612/0

Normality passed Yes Yes No

Based on this fact, according to the MetrIntPairII algorithm, the application of the
Repeated Measure Anova test was considered with the significance level αMore = 0.05. The
obtained p-value ≈ 0.0001 (p-value < αMore) indicated that the intelligence of the three
studied CMASs present significant differences. Henceforth, Coop1, Coop2, and Coop3 cannot
be included in the same class of intelligence. The fact that the p-value < αMore and all
the intelligence indicators data Int1∗, Int2∗, Int3∗ passed the normality test justifies the
application of Tukey–Kramer Multiple Comparisons test with the significance level αPost =
0.05 for the comparison of all pairs of CMASs (Table 8, the column labeled “Tukey–Kramer
test”). If p-value < αPost, then the two compared CMASs cannot be classified in the same
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class of intelligence. The final decision based on the obtained results presented in Table 8
indicates that all three studied CMASs should be assigned to different classes.

Table 6. Results of the Int1∗, Int2∗, Int3∗ analysis.

Int1∗ Int2∗ Int3∗

mean/ sample size 1771.38/34 1150.26/34 1282.44/34
LowerCI/ UpperCI 1728.3/1814.5 1133.5/1167.1 1268.9/1296

SD/ CV 123.44/6.97 48.12/4.18 38.81/3.03
variance 15237.46 2315.84 1505.83
min/ max 1516/2004 1009/1262 1177/1278
median 1766 1148 1342

Table 7. Results of the normality testing Int1∗, Int2∗, Int3∗.

Int1∗ Int2∗ Int3∗

KS Stat/ p-value 0.063/ ≈ 0.1 0.096/ ≈ 0.1 0.1/ ≈ 0.1
Lill Stat/ p-value 0.63/ ≈ 0.2 0.968/ ≈ 0.2 0.1/≈ 0.2

SW Stat/ p-value 0.983/0.873
/see Figure 3

0.972/ ≈ 0.505
/see Figure 4

0.954/0.166/
see Figure 5

Normality passed Yes Yes Yes
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Figure 3. QQ plot of Int1∗.
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Figure 4. QQ plot of Int2∗.
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Table 8 indicates that the obtained results in both the parametric (applied Tukey–
Kramer test) and the non-parametric (applied Dunn test) cases were the same. Based on the
pairwise comparisons, it can be concluded that the difference in the intelligence of any two
of the studied three CMASs is statistically significant. Henceforth, Coop1, Coop2, and Coop3
should be assigned to separate classes of intelligence. Coop2 belongs to the most intelligent
class, denoted IntClass1. Coop3 belongs to the second intelligence class, denoted IntClass2.
Coop1 belongs to the third intelligence class, denoted IntClass3. The intelligence of CMASs
that belong to IntClass1 is higher than the intelligence of the CMASs that belong to IntClass2.
The intelligence of CMASs that belong to IntClass2 is higher than the intelligence of the
CMASs that belong to IntClass3.

Observed Value
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Figure 5. QQ plot of Int3∗.

Table 8. Results of the Dunn and Tukey–Kramer post-hoc tests, αpost = 0.05.

Dunn Test Tukey–Kramer Test
Rank Sum Difference p-Value Mean Difference Q p-Value

Int1 vs. Int2 72 <0.001 621.12 47.508 <0.001

Int1 vs. Int3 36 <0.001 488.94 37.398 <0.001

Int2 vs. Int3 −36 <0.001 −132.18 10.110 <0.001

5. Discussion

Frequently, in CMASs, the intelligence can be considered at the system’s level. Al-
though the intelligence of CMASs cannot be defined universally, it is useful to measure
it. This is similar to the nature of human intelligence. Nobody deeply understands what
human intelligence is, but even in this context, there are intelligence tests that can measure
it. The outcome of human intelligence tests are useful for applicative purposes, such as
the comparison of the effectiveness of two books used for learning by students taking
the same exam. Each of the students uses one of the two books for learning. If the IQ of
the students is taken into consideration in the comparison, more accurate results will be
obtained, in the sense that a more intelligent student can learn easier even from a poorly
written educational book.

There are few metrics presented in the scientific literature, where most of them is
based on a specific ideology. The different ideology of the intelligence measuring does
not allow a direct comparison of the metrics. In our study, intelligence measurement was
considered based on the ability to solve difficult problems. The designed MetrIntPairII
metric is appropriate for CMASs, where the intelligence indicator of the problem-solving
ability of each CMAS can be expressed as a single value. If necessary (in the case of highly
complex systems), this value can be computed as a weighted sum of other values that



Mathematics 2021, 9, 681 17 of 21

measure different aspects of the system’s intelligence. MetrIntPairII takes into consideration
the variability in the intelligence of the compared CMASs. A CMAS may have a different
value of intelligence in different situations. For a specific problem, the intelligence of a
CMAS may be higher or lower. Extreme intelligence of CMASs was also considered with
extreme high and low intelligence values. If such extreme intelligence indicator values are
taken into consideration in case of a CMAS, they might strongly influence the value of its
measured machine intelligence.

The MetrIntPairII algorithm, based on some mathematically grounded analysis, chooses
the application of either the parametric Single-Factor ANOVA test with replications [60,61] or
the nonparametric Friedman test [62,63]. Based on this fact, the principal properties of the
MetrIntPairII metric consist in accuracy and robustness in comparison and classification. In
the case of our metric, if the intelligence indicator data pass the normality assumption, then
the mean should be chosen as a representative statistical indicator of the central intelligence
tendency. If the intelligence indicator data do not pass the normality assumption, then the
median should be chosen as a representative statistical indicator of the central intelligence
tendency based on the fact that is more robust than the mean. The robustness can be
explained based on the fact that an extreme value (very high or very low) influences the
median value in a lower degree than the value of the mean.

Another strength of the MetrIntPairII metric consists in the reduced sample size of
necessary intelligence indicators, which is a result of using pairwise intelligence evaluations,
such as the two sample paired and unpaired tests for the verification of the null hypothesis,
which consists in the verification of equality of the means or medians of two samples. For
example, an application can be considered in the following context: tails = 2 (in statistical
analysis, the two-tailed test is almost always chosen instead the one-tailed test); α = 0.05; β
= 0.2, Power = 1 − β = 0.8; Effect size = 0.5. β is a type II error, the probability from failure to
reject a false null hypothesis. Generally speaking, a type I error is the detection of an effect
that is not present, while a type II error is failing to detect an effect that is present. An effect
size is a quantitative measure of the strength of a phenomenon. The power represents the
probability of detecting a true effect. Based on these data, using an a priori calculus (two
samples) in a parametric case (normally distributed data), in the case of matched pairs, the
sample size of each sample should be 34; in the case of non-matched pairs, the sample size
of each sample should be 64.

A comparable metric called MetrIntPair was presented in [27]. MetrIntPair uses
difficult-problem-solving intelligence measuring data. Based on that, it makes a mathemat-
ically grounded comparison of the intelligence of two CMASs at an application. Finally,
it can classify the compared systems into intelligence classes. MetrIntPair is based on the
same consideration for the pairwise measuring of difficult-problem-solving intelligence,
similar to the MetrIntPairII metric introduced in this paper. MetrIntPairII conserves the
properties of the MetrIntPair metric. The increased generality of the MetrIntPairII met-
ric versus the MetrIntPair metric is the fact that MetrIntPairII is able to simultaneously
compare and classify a large number of CMASs at an application. MetrIntPairII, at some
point, uses the One-way Repeated Measure ANOVA test, a generalization of the Two-sample
Paired T-test [60,61] (used by the MetrIntPair metric). The Repeated Measure ANOVA test
for two samples should yield results that are similar to the Two-sample Paired T-test for
two CMASs, considering that both tests are applied by taking into consideration all the
requested assumptions. Based on this fact, the p-value of the One-way Repeated Measure
ANOVA test is mathematically identical to the p-value of the Two-sample Paired T-test.

We applied the MetrIntPairII metric to the intelligence indicator data reported in [27].
The main purpose of the experimental comparison consisted in proving that the MetrInt-
PairII metric yields results that are similar to the MetrIntPair metric in the comparison
of the intelligence of two CMASs. In [27], two CMASs specialized in solving a class of
NP-hard problems were considered. One of them operated similarly to a Rank-Based Ant
System (RBAS) [80,82], and the other operated as a Min-Max Ant System(MMAS) [79,80]. The
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experimentally compared two metrics led to the same decision regarding the intelligence
of the studied CMASs.

The Family-wise error rate (FWER) is the probability of making one or more type I
errors when performing multiple hypotheses tests [29]. If m-independent comparisons are
performed, the FWER is calculated according to (13). αComp denotes the type I error of a
single comparison. αOv denotes the overall type I error as a result of m comparisons.

αOv = 1− (1− αComp)m (13)

MetrIntPair could be applied for the comparison of more than two CMASs, but this
approach would not be appropriate. The probability of making a type I error increases as
the number of tests increase. If the significance level is set at α, the probability of a type I
error can be obtained, regardless of the number of groups being compared. For instance, if
the probability of a type I error for the analysis is set at α = 0.05 and four two sample tests
(T-test for example) are performed, the overall probability of a type I error for the set of
tests αOv = 1 − 0.954 ≈ 0.186 (0.185494) substantially increases. In the case of MetrIntPairII
for the same four intelligence samples, the type I error does not change. Its value remains at
0.05. In the case of MetrIntPairII, the probability of making a type I error does not increase
as the number of compared systems increases.

The extension of the MetrIntPairII metric versus the MetrIntPair consists in using a
statistical non-parametric test for intelligence indicator data that do not pass the normality
assumption. In this case, it uses the Friedman test, which is known as a robust nonpara-
metric test [62,63]. MetrIntPairII based on the obtained intelligence indicators makes a
mathematically grounded analysis and applies the most appropriate statistical tests.

6. Conclusions

In this paper, a novel intelligence metric called MetrIntPairII was proposed. MetrInt-
PairII is able to make an effective measuring and comparison of the intelligence of several
CMASs. Based on their difficult-problem-solving intelligence, the studied CMASs are
classified into intelligence classes. MetrIntPairII is accurate and robust based on the fact
that it takes into account the variability in the intelligence of the compared CMAS and the
occurrence of extreme (low and high) intelligence measurement results. MetrIntPairII is a
generalization and extension of the metric called MetrIntPair, presented in the scientific
literature.

For validation purposes, we performed experimental difficult-problem-solving intelli-
gence evaluations for a set of CMASs. Each CMAS was composed of simple computing
agents specialized in solving an NP-hard problem, in that, at the systems’ level, increased
intelligence emerged.

The most important property of the proposed metric that suggests its applicability is
its universality. MetrIntPairII was presented as being applied for CMASs. This decision
was based on the fact that measuring the intelligence of a CMASs is usually more difficult
than measuring the intelligence of a system that operates individually. MetrIntPairII can
be applied to intelligent agent-based systems generally, even to systems that operate in
isolation without cooperating with other systems during problem-solving. Prospective
applications could include the intelligence measuring of robotics swarms. It can provide
a reliable comparison, for instance, of the intelligence of a set of agents with different
architectures that solve problems in isolation with the intelligence of a cooperative coalition
of agents in solving the same type of problem. Based on a comprehensive scientific
literature review performed in this study, the metric proposed in this paper is original, and
we estimate that it will represent the foundation for the intelligence measuring of IABSs in
many future studies.
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