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Abstract: The motive of this paper is to discuss the local convergence of a two-step Newton-type
method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed
that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e., L-average
condition. Also, some results on convergence of the same method in Banach spaces are established
under the assumption that the derivative of the operators satisfies the radius or center Lipschitz
condition with a weak L-average particularly it is assumed that L is positive integrable function but
not necessarily non-decreasing. Our new idea gives a tighter convergence analysis without new
conditions. The proposed technique is useful in expanding the applicability of iterative methods.
Useful examples justify the theoretical conclusions.

Keywords: banach space; nonlinear problem; local convergence; lipschitz condition; L-average;
convergence ball
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1. Introduction

Consider a nonlinear operator t : Ω ⊆ X → Y such that X and Y are two Banach
spaces, Ω is a non-empty open convex subset and t is Fréchet differentiable nonlinear
operator. Nonlinear problems has so many applications in the field of chemical engineering,
transportation, operational research etc. which can be seen in the form of

t(x) = 0. (1)

To find the solution of Equation (1), Newton’s method defined as

xk+1 = xk − [t′(xk)]
−1t(xk), k ≥ 0, (2)

is being preferred though its speed of convergence is low. Newton’s method [1], is a well
known iterative method which converges quadratically, which was initially studied by
Kantorovich [2] and then scrutinized by Rall [3].

Some Newton-type methods with third-order convergence that do not require the
computation of second order derivatives have been developed in the refs [4–7]. While the
methods of higher R-order of convergence are generally not executed frequently despite
having fast speed of convergence because the operational cost is high. However, the
method of higher R-order of convergence can be used in the problems of stiff system [2]
where fast convergence is required.
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From the numerical point of view, the convergence domain plays a crucial role for the
stable behaviour of an iterative scheme. Research about the convergence study of Newton
methods involves two types: semilocal and local convergence analysis. The semilocal
convergence study is based on the information around an initial point to give criteria
ensuring the convergence of iterative methods; meanwhile, the local one is, based on
the information around a solution, to find estimates for the radii of the convergence balls.
Numerous researchers studied the local convergence analysis for Newton-type, Jarratt-type,
Weerakoon-type, etc. in Banach space setting in the articles [8–14] and reference therein.
In most of articles, the local convergence have been discussed using the hypotheses of
Lipschitz, Hölder or w-continuity conditions but sometimes, we will come across that
the nonlinear problems do not fulfilled any of these three conditions which limits the
applicability of nonlinear equations, but satisfy the generalized Lipschitz condition. Also,
the notable feature is that all these three are a particular case of the generalized Lipschitz
or L-average condition.

Here, we discuss the local convergence of the classical third-order modification of
two-step Newton’s method [15] under the L-average condition which is expressed as:

yk = xk − [t′(xk)]
−1t(xk),

xk+1 = yk − [t′(xk)]
−1t(yk), k ≥ 0. (3)

The important characteristic of the method (3) is that: it is simplest and efficient
third-order iterative method, per jth iteration it requires two evaluations of the function tj,
one of the first derivative t′j and no evaluations of the second derivative t′′j hence makes
it computationally efficient. We find, in the literature, several studies on the weakness
and/or extension of the hypotheses made on the underlying operators.

For re-investigating the local convergence of Newton’s method, generalized Lipschitz
conditions was constructed by Wang [16], in which a non-decreasing positive integrable
function was used instead of usual Lipschitz constant. Furthermore, Wang and Li [17] de-
rived some results on convergence of Newton’s method in Banach spaces when derivative
of the operators satisfies the radius or center Lipschitz condition but with a weak L-average.
Shakhno [18] have studied the local convergence of the two step Secant-type method [2],
when the first-order divided differences satisfy the generalized Lipschitz conditions.

As a motivational example let X = Y = R3, D = V(0, 1) and X∗ = (0, 0, 0)T . Define
function t on D for w = (x, y, z)T by

t(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet derivative is

t′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

. (4)

Hence, L = e
2 , L0 = e−1

2 and L0 < L (see definitions (5) and (6)). Therefore, replacing
L by L0 at the denominator gives the benefits. If L and L0 are not constants then we can

take L(u) = eu
2 , L0(u) =

(e−1)u
2 and L(u) = e

1
(e−1) u

2 (see definitions (7), (8) and (110)).
Next, the intriguing question strikes out that whether the radius Lipschitz condition

with L-average and the non-decreasing of L are necessary for the convergence of the third-
order modification of Newton’s method. Motivated and inspired by the above mentioned
research works in this direction in the present paper, we derived some theorems for scheme
(3). In the first result generalized Lipschitz conditions has been used to study the local
convergence which is important to enlarge the convergence region without additional
hypotheses along with an error estimate. In the second theorem, the domain of uniqueness
of solution has been derived under center Lipschitz condition. In the last two theorems,
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weak L-average has been used to derive the convergence result of the considered third-
order scheme. Also, few corollaries are stated.

The rest part of this paper is structured as follows: Section 2 contains the definitions
related to L-average conditions. The local convergence and its domain of uniqueness is
mentioned in Sections 3 and 4, respectively. Section 5 deals with the improvement in
assumption that the derivative of t satisfies the radius and center Lipschitz condition with
weak L-average namely L and L0 is assumed to belong to some family of positive integrable
functions that are not necessarily non-decreasing for convergence theorems. Numerical
examples are presented to justify the significance of the results.

2. Generalized Lipschitz Conditions

Here, we denote by V(x∗, r) = {x : ||x− x∗|| < r} a ball with radius r and center x∗.
The condition imposed on the function t

||t′(x)− t′(yτ)|| ≤ L(1− τ)(||x− x∗||+ ||y− x∗||), ∀ x, y ∈ V(x∗, r), (5)

where yτ = x∗ + τ(y− x∗), 0 ≤ τ ≤ 1, is usually called radius Lipschitz condition in the
ball V(x∗, r) with constant L. Sometimes, if it is only required to satisfy

||t′(x)− t′(x∗)|| ≤ 2L0||x− x∗||, ∀ x ∈ V(x∗, r). (6)

We call it the center Lipschitz condition in the ball V(x∗, r) with constant L0 where
L0 ≤ L. Replacing L by L0 in case L0 < L leads to wider choice of initial guesses (larger
radius of convergence than in traditional studies) and fewer iterates to achieve an error
tolerance and the uniqueness of the solution x∗ is also extended in this case [8,12]. Further-
more, L and L0 in the Lipschitz conditions do not necessarily have to be constant but can be
a positive integrable function. In this case, conditions (5)–(6) are respectively, replaced by

||t′(x)− t′(yτ)|| ≤
∫ ρ(x)+ρ(y)

τ(ρ(x)+ρ(y))
L(u)du, ∀ x, y ∈ V(x∗, r), 0 ≤ τ ≤ 1 (7)

and

||t′(x)− t′(x∗)|| ≤
∫ 2ρ(x)

0
L0(u)du, ∀ x ∈ V(x∗, r), (8)

where ρ(x) = ||x− x∗|| and we have L0(u) ≤ L(u). At the same time, the corresponding
‘Lipschitz conditions’ is referred as to as having the L-average or generalized Lipschitz
conditions. Next, we start with the following lemmas, which will be used later in the
main theorems.

Lemma 1. Suppose that t has a continuous derivative in V(x∗, r) and [t′(x∗)]−1 exists.
(i) If [t′(x∗)]−1t′ satisfies the radius Lipschitz condition with the L-average:

||[t′(x∗)]−1(t′(x)− t′(yτ))|| ≤
∫ ρ(x)+ρ(y)

τ(ρ(x)+ρ(y))
L(u)du, ∀ x, y ∈ V(x∗, r), 0 ≤ τ ≤ 1, (9)

where yτ = x∗ + τ(y− x∗), ρ(x) = ||x− x∗|| and L is non-decreasing, then we have

∫ 1

0
||[t′(x∗)]−1(t′(x)− t′(yτ))||ρ(y)dτ ≤

∫ ρ(x)+ρ(y)

0
L(u)

u
ρ(x) + ρ(y)

ρ(y)du. (10)

(ii) If [t′(x∗)]−1t′ satisfies the center Lipschitz condition with the L0-average:

||[t′(x∗)]−1(t′(xτ)− t′(x∗))|| ≤
∫ 2τρ(x)

0
L0(u)du, ∀ x ∈ V(x∗, r), 0 ≤ τ ≤ 1, (11)
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where ρ(x) = ||x− x∗|| and L0 is non-decreasing, then we have

∫ 1

0
||[t′(x∗)]−1(t′(xτ)− t′(x∗))||ρ(x)dτ ≤

∫ 2ρ(x)

0
L0(u)

(
ρ(x)− u

2

)
du. (12)

Proof. The Lipschitz conditions (9) and (11), respectively, imply that

∫ 1

0
||[t′(x∗)]−1(t′(x)− t′(yτ))||ρ(y)dτ ≤

∫ 1

0

∫ ρ(x)+ρ(y)

τ(ρ(x)+ρ(y))
L(u)duρ(y)dτ

=
∫ ρ(x)+ρ(y)

0
L(u)

u
ρ(x) + ρ(y)

ρ(y)du.

∫ 1

0
||[t′(x∗)]−1(t′(xτ)− t′(x∗))||ρ(x)dτ ≤

∫ 1

0

∫ 2τρ(x)

0
L0(u)duρ(x)dτ

=
∫ 2ρ(x)

0
L0(u)

(
ρ(x)− u

2

)
du.

where xτ = x∗ + τ(x− x∗) and yτ = x∗ + τ(y− x∗).

Lemma 2. [17] Suppose that L is positive integrable. Assume that the function La defined by
relation (62) is non-decreasing for some a with 0 ≤ a ≤ 1. Then, f or each b ≥ 0, the function ϕb,a
defined by

ϕb,a( f ) =
1

f a+b

∫ f

0
ubL(u)du (13)

is also non-decreasing.

3. Local Convergence of Newton Type Method (3)

In this section, we state existence theorem under radius Lipschitz condition for
Newton-type method (3).

Theorem 1. Suppose that t(x∗) = 0, t has a continuous derivative in V(x∗, r), [t′(x∗)]−1 exists
and [t′(x∗)]−1t′ satisfies (7) and (8), L0 and L are non-decreasing. Let r satisfy the relation

∫ 2r

0
L0(u)du ≤ 1 and

∫ 2r
0 L(u)udu

2r(1−
∫ 2r

0 L0(u)du)
≤ 1. (14)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
≤ q1

ρ(x0)
ρ(xn)

2, (15)

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn) ≤

q2q1
ρ(x0)ρ(y0)

ρ(xn)
3, (16)

where the quantities

q1 =

∫ 2ρ(x0)
0 L(u)udu

2ρ(x0)(1−
∫ 2ρ(x0)

0 L0(u)du)
, q2 =

∫ ρ(x0)+ρ(y0)
0 L(u)udu

(ρ(x0) + ρ(y0))(1−
∫ 2ρ(x0)

0 L0(u)du)
(17)

are less than 1. Furthermore,

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, · · · , C = q1
ρ(x0)

ρ(y0)
. (18)
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Proof. Since L(u) is a positive integrable function and non-decreasing monotonically in
[0, r], we achieve(

1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
L(u)udu =

(
1
t2
2

∫ t2

t1

+

(
1
t2
2
− 1

t2
1

) ∫ t1

0

)
L(u)udu

≥ L(t1)

(
1
t2
2

∫ t2

t1

+

(
1
t2
2
− 1

t2
1

) ∫ t1

0

)
udu

= L(t1)

(
1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
udu = 0,

for 0 < t1 < t2. Thus, 1
t2

∫ t
0 L(u)udu is non-decreasing with respect to t. Next, on arbitrarily

choosing x0 ∈ V(x∗, r) and using the non-decreasing property of 1
t2

∫ t
0 L(u)udu and the

inequality (14), it follows that

q1 =

∫ 2ρ(x0)
0 L(u)udu

2ρ(x0)2(1−
∫ 2ρ(x0)

0 L0(u)du)
ρ(x0)

≤
∫ 2r

0 L(u)udu

2r2(1−
∫ 2r

0 L0(u)du)
ρ(x0) ≤

||x0 − x∗||
r

< 1, (19)

Similarly,

q2 =

∫ ρ(x0)+ρ(y0)
0 L(u)udu

(ρ(x0) + ρ(y0))2(1−
∫ 2ρ(x0)

0 L0(u)du)
(ρ(x0 + ρ(y0))

≤
∫ 2r

0 L(u)udu

2r2(1−
∫ 2r

0 L0(u)du)
(ρ(x0) + ρ(y0)) ≤

||x0 − x∗||+ ||y0 − x∗||
2r

< 1,

Thus, q1 and q2, defined according to Equation (17) are less than 1. Obviously, if
x ∈ V(x∗, r), then using center Lipschitz condition with the L-average (11), we have

||[t′(x∗)]−1[t′(x)− t′(x∗)]|| ≤
∫ 2ρ(x)

0
L0(u)du ≤

∫ 2r

0
L0(u)du ≤ 1, (20)

then taking into account the Banach Lemma and the below equation

||I − ([t′(x∗)]−1t′(x)− I)||−1 = ||[t′(x)]−1t′(x∗)||,

we come to following inequality by using the relation (20)

||[t′(x)]−1t′(x∗)|| ≤ 1

1−
∫ 2ρ(x)

0 L0(u)du
. (21)

Now, if xn ∈ V(x∗, r) then we may write from expression (3)

yn − x∗ = xn − x∗ − [t′(xn)]
−1t(xn)

= [t′(xn)]
−1t′(xn)(xn − x∗)− [t′(xn)]

−1[t(xn) + t(x∗)]

= [t′(xn)]
−1[t′(xn)(xn − x∗)− t(xn) + t(x∗)]. (22)
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Expanding t(xn) along x∗ from Taylor series expansion, we attain

t(xn) = t(x∗) + t′(xn)(xn − x∗) + t′(x∗)
∫ 1

0
[t′(x∗)]−1t′(xτ

n)− [t′(xn)]dτ(xn − x∗)

= t′(x∗)
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ(xn − x∗). (23)

On substituting Equation (23) in (22), we get

yn − x∗ = [t′(xn)]
−1t′(x∗).

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ.(xn − x∗). (24)

Also, taking the norm on both the sides of Equation (24), we get

||yn − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||.||

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ||.||(xn − x∗)||. (25)

Next, from the definition of radius Lipschitz given in the inequality (9) and using the
inequality (21), it can written as

||yn − x∗|| ≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

∫ 1

0

∫ 2ρ(xn)

2τρ(xn)
L(u)duρ(xn)dτ. (26)

In view of Lemma 1 and the above inequality, we can obtain

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
, (27)

which is the first inequality of expression (15). By similar analogy and using the last
sub-step of the scheme (3), we can write

xn+1 − x∗ = yn − x∗ − [t′(xn)]
−1t(yn)

= [t′(xn)]
−1t′(xn)(yn − x∗)− [t′(xn)]

−1[t(yn) + t(x∗)]

= [t′(xn)]
−1[t′(xn)(yn − x∗)− t(yn) + t(x∗)]. (28)

Expanding t(yn) along x∗ from Taylor series expansion, we attain

t(yn) = t(x∗) + t′(xn)(yn − x∗) + t′(x∗)
∫ 1

0
[t′(x∗)]−1t′(yτ

n)− [t′(xn)]dτ(yn − x∗)

or

t(x∗)− t(yn) + t′(xn)(yn − x∗) = t′(x∗)
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

y )]dτ(yn − x∗). (29)

On substituting Equation (29) in (28), we get

xn+1 − x∗ = [t′(xn)]
−1t′(x∗).

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(yτ

n)]dτ.(yn − x∗). (30)

Also, taking the norm on both the sides of Equation (30), we get

||xn+1 − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||.||

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(yτ

n)]dτ||.||(yn − x∗)||. (31)
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Next, from the definition of radius Lipschitz given in the inequality (9) and using the
inequality (21), it can written as

||xn+1 − x∗|| ≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

∫ 1

0

∫ ρ(xn)+ρ(yn)

τ(ρ(xn)+ρ(yn))
L(u)duρ(yn)dτ. (32)

Using Lemma 1 and the above expression, we can get

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn), (33)

which is the first inequality of expression (16). Furthermore, ρ(xn) and ρ(yn) are decreasing
monotonically, therefore for all n = 0, 1, ..., we have

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)

≤
∫ 2ρ(x0)

0 L(u)udu

2ρ(x0)2(1−
∫ 2ρ(xn)

0 L0(u)du)
2ρ(xn)

2 ≤ q1

ρ(x0)
ρ(xn)

2. (34)

Also, by using second inequality of expression (15), we have

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))2(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn).[ρ(xn) + ρ(yn)]

≤ q2
ρ(x0) + ρ(y0)

[ρ(x0)ρ(yn) + ρ(yn)
2] ≤ q2q1

ρ(x0)ρ(y0)
ρ(xn)

3. (35)

Hence, we have the complete inequalities of expressions (15) and (16). Also, it can be
seen that inequality (18) may be easily derived from the expression (35).

4. The Uniqueness Ball for the Solution of Equations

Here, we derived uniqueness theorem under center Lipschitz condition for Newton-
type method (3).

Theorem 2. Suppose that t(x∗) = 0, t has a continuous derivative in V(x∗, r), [t′(x∗)]−1 exists
and [t′(x∗)]−1t′ satisfies (8). Let r satisfy the relation∫ 2r

0 L0(u)(2r− u)du
2r

≤ 1. (36)

Then, the equation t(x) = 0 has a unique solution x∗ in V(x∗, r).

Proof. On arbitrarily choosing y∗ ∈ V(x∗, r), y∗ 6= x∗ and considering the iteration, we get

||y∗ − x∗|| = ||y∗ − x∗ − [t′(x∗)]−1t(y∗)||
= ||[t′(x∗)]−1[t′(x∗)(y∗ − x∗)− t(y∗) + t(x∗)]||. (37)

Expanding t(y∗) along x∗ from Taylor’s expansion, we have

t(x∗)− t(y∗) + t′(x∗)(y∗ − x∗) =
∫ 1

0
[t′(x∗)]−1[t′(y∗τ)− t′(x∗)]dτ(y∗ − x∗). (38)
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Following the expression (11) and combining the inequalities (37) and (38), we
can write

||y∗ − x∗|| ≤ ||[t′(x∗)]−1t′(x∗)||.||
∫ 1

0
[t′(x∗)]−1[t′(y∗τ)− t′(x∗)]dτ||.||(y∗ − x∗)||.

≤
∫ 1

0

∫ 2τρ(y∗)

0
L0(u)duρ(y∗)dτ. (39)

In view of Lemma (1) and expression (39), we obtain

||y∗ − x∗|| ≤ 1
2ρ(y∗)

∫ 2ρ(y∗)

0
L0(u)[2ρ(y∗)− u]du(y∗ − x∗)

≤
∫ 2r

0 L0(u)(2r− u)du
2r

ρ(y∗) ≤ ||y∗ − x∗||. (40)

However, this contradicts our assumption. Thus, we see that y∗ = x∗. This completes
the proof of the theorem.

In particular, assuming that L and L0 are constants, we obtain the following Corollaries 1
and 2 from Theorems 1 and 2, respectively.

Corollary 1. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies (5) and (6). Let r satisfy the relation

r =
1

2L0 + L
. (41)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤ q1

ρ(x0)
ρ(xn)

2, (42)

||xn+1 − x∗|| ≤ q2q1

ρ(x0)ρ(y0)
ρ(xn)

3, (43)

where the quantities

q1 =
Lρ(x0)

1− 2L0ρ(x0)
, q2 =

L(ρ(x0) + ρ(y0))

2(1− 2L0ρ(x0))
, (44)

are less than 1. Moreover

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, ...; C = q1
ρ(x0)

ρ(y0)
. (45)

Corollary 2. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies the assumption (6). Let r fulfill the condition

r =
1
L0

. (46)

Then, the equation t(x) = 0 has a unique solution x∗ in V(x∗, r). Moreover, the ball radius r
depends only on L0.

Next, we will apply our main theorems to some special function L and immediately
obtain the following corollaries.
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Corollary 3. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ s satisfies (9), (11) where given fixed positive constants γ, L > 0
and L0 > 0 with L(u) = γ + Lu and L0(u) = γ + L0u i.e.,

||[t′(x∗)]−1(t′(x)− t′(yτ))|| ≤ γ(1− τ)(||x− x∗||+ ||y− x∗||)

+
L
2
(1− τ2)(||x− x∗||+ ||y− x∗||)2 (47)

and

||[t′(x∗)]−1(t′(x)− t′(x∗))|| ≤ 2||x− x∗||(γ + L0||x− x∗||), (48)

∀ x, y ∈ V(x∗, r), 0 ≤ τ ≤ 1, where yτ = x∗ + τ(y− x∗), ρ(x) = ||x − x∗||. Let r satisfy
the relation

r =
−3γ +

√
9γ2 + (16/3)L + 8L0

8/3L + 4L0
and 9γ2 + (16/3)L + 8L0 ≥ 0. (49)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤ q1

ρ(x0)
ρ(xn)

2, (50)

||xn+1 − x∗|| ≤ q2q1

ρ(x0)ρ(y0)
ρ(xn)

3, (51)

where the quantities

q1 =
ρ(x0)[γ + 4/3Lρ(x0)]

[1− 2γρ(x0)− 2L0ρ(x0)2]
, (52)

q2 =
ρ(x0) + ρ(y0)[γ/2 + L/3(ρ(x0) + ρ(y0)]

[1− 2γρ(x0)− 2L0ρ(x0)2]
(53)

are less than 1. Moreover

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, ...; C = q1
ρ(x0)

ρ(y0)
. (54)

Corollary 4. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies (11) where given fixed positive constants γ and L0 > 0
with L0(u) = γ + L0u i.e.,

||[t′(x∗)]−1(t′(x)− t′(x∗))|| ≤ 2||x− x∗||(γ + L0||x− x∗||), ∀ x ∈ V(x∗, r), (55)

where ρ(x) = ||x− x∗||. Let r satisfy the relation

r =
2γ−

√
4γ2 − (16/3)L0

(8/3)L0
and 4γ2 − (16/3)L0 ≥ 0. (56)

Then, the equation t(x) = 0 has a unique solution x∗ in V(x∗, r). Moreover, the ball radius r
depends only on L0 and γ.

5. Convergence under Weak L-Average

This section contains the results on re-investigation of the conditions and radius of
convergence of considered scheme already presented in the first theorem but L is not taken
as non-decreasing function. It has been noticed that the convergence order decreases. The
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second theorem of this section gives a similar result to Theorem 1 but under the assumption
of center Lipschitz condition.

Theorem 3. Suppose that t(x∗) = 0, t has a continuous derivative in V(x∗, r), [t′(x∗)]−1 exists
and [t′(x∗)]−1t′ satisfies the assumptions (7) and (8), L0 and L are positive integrable. Let r satisfy∫ 2r

0
L0(u)du ≤ 1 and

∫ 2r

0
(L(u) + L0(u))du ≤ 1. (57)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
≤ q1ρ(xn), (58)

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn) ≤ q2q1ρ(xn), (59)

where the quantities

q1 =

∫ 2ρ(x0)
0 L(u)du

1−
∫ 2ρ(x0)

0 L0(u)du
, q2 =

∫ ρ(x0)+ρ(y0)
0 L(u)du

1−
∫ 2ρ(x0

0 L0(u)du
(60)

are less than 1. Moreover,

||xn − x∗|| ≤ (q1q2)
n||x0 − x∗||, n = 1, 2, .... (61)

Furthermore, suppose that the function La is defined by

La( f ) = f 1−aL( f ) (62)

is non-decreasing for some a with 0 ≤ a ≤ 1 and r satisfies

1
2r

∫ 2r

0
(2rL0(u) + uL(u))du ≤ 1. (63)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||xn − x∗|| ≤ C(1+2a)n−1||x0 − x∗||, n = 1, 2, · · · , C = Q1
ρ(x0)

ρ(y0)
, (64)

where the quantity

Q1 =

∫ 2ρ(x0)
0 L(u)udu

2ρ(x0)(1−
∫ 2ρ(x0)

0 L0(u)du)
, (65)

is less than 1.

Proof. On arbitrarily choosing x0 ∈ V(x∗, r), using the property of L(u) as a positive
integrable function and the inequality (57), it follows that

q1 =

∫ 2ρ(x0)
0 L(u)du

1−
∫ 2ρ(x0)

0 L0(u)du
≤

∫ 2r
0 L(u)du

1−
∫ 2r

0 L0(u)du
< 1. (66)
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Similarly,

q2 =

∫ ρ(x0)+ρ(y0)
0 L(u)du

1−
∫ 2ρ(x0)

0 L0(u)du
≤

∫ 2r
0 L(u)du

1−
∫ 2r

0 L0(u)du
< 1,

which proves that the quantities q1 and q2 defined by Equation (60) are less than 1.
Obviously, if x ∈ V(x∗, r), then using center Lipschitz condition with the L average,

we have

||[t′(x∗)]−1[t′(x)− t′(x∗)]|| ≤
∫ 2ρ(x)

0
L0(u)du ≤

∫ 2r

0
L0(u)du ≤ 1, (67)

then taking into account the Banach Lemma and the below equation

||I − ([t′(x∗)]−1t′(x)− I)||−1 = ||[t′(x)]−1t′(x∗)||,

we come to following inequality using the relation (67)

||[t′(x)]−1t′(x∗)|| ≤ 1

1−
∫ 2ρ(x)

0 L0(u)du
. (68)

Hence, if xn ∈ V(x∗, r), then we may write from first sub-step of scheme (3)

yn − x∗ = xn − x∗ − [t′(xn)]
−1t(xn)

= [t′(xn)]
−1t′(xn)(xn − x∗)− [t′(xn)]

−1[t(xn) + t(x∗)]

= [t′(xn)]
−1[t′(xn)(xn − x∗)− t(xn) + t(x∗)]. (69)

Expanding t(xn) along x∗ from Taylor series expansion, we attain

t(xn) = t(x∗) + t′(xn)(xn − x∗) + t′(x∗)
∫ 1

0
[t′(x∗)]−1t′(xτ

n)− [t′(xn)]dτ(xn − x∗)

or

t(x∗)− t(xn) + t′(xn)(xn − x∗) = t′(x∗)
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ(xn − x∗). (70)

On substituting Equation (70) in (69), we get

yn − x∗ = [t′(xn)]
−1t′(x∗).

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ.(xn − x∗). (71)

Also, taking the norm on both the sides of Equation (71), we get

||yn − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||.||

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ||.||(xn − x∗)||. (72)

Next, from the definition of radius Lipschitz given in the inequality (9) and using the
inequality (68), it can written as

||yn − x∗|| ≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

∫ 1

0

∫ 2ρ(xn)

2τρ(xn)
L(u)duρ(xn)dτ. (73)

In view of Lemma (1) and the above inequality, we can obtain

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
, (74)



Mathematics 2021, 9, 669 12 of 20

which is the first inequality of expression (58). By similar analogy and using the last
sub-step of the scheme (3), we can write

xn+1 − x∗ = yn − x∗ − [t′(xn)]
−1t(yn)

= [t′(xn)]
−1t′(xn)(yn − x∗)− [t′(xn)]

−1[t(yn) + t(x∗)]

= [t′(xn)]
−1[t′(xn)(yn − x∗)− t(yn) + t(x∗)]. (75)

Expanding t(yn) along x∗ from Taylor series expansion, we attain

(yn) = t(x∗) + t′(xn)(yn − x∗) + t′(x∗)
∫ 1

0
[t′(x∗)]−1t′(yτ

n)− [t′(xn)]dτ(yn − x∗)

or

t(x∗)− t(yn) + t′(xn)(yn − x∗) = t′(x∗)
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

y )]dτ(yn − x∗). (76)

On substituting Equation (76) in (75), we get

xn+1 − x∗ = [t′(xn)]
−1t′(x∗).

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(yτ

n)]dτ.(yn − x∗). (77)

Also, taking the norm on both the sides of Equation (77), we get

||xn+1 − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||.||

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(yτ

n)]dτ||.||(yn − x∗)||. (78)

Next, from the definition of radius Lipschitz given in the inequality (9) and using the
inequality (68), it can written as

||xn+1 − x∗|| ≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

∫ 1

0

∫ ρ(xn)+ρ(yn)

τ(ρ(xn)+ρ(yn))
L(u)duρ(yn)dτ. (79)

Using Lemma 1 and the above expression, we can get

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn), (80)

which is the first inequality of expression (59). Furthermore, ρ(xn) and ρ(yn) are decreasing
monotonically, therefore for all n = 0, 1, ..., we have

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
≤

∫ 2ρ(x0)
0 L(u)du

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(xn) ≤ q1ρ(xn).

Using the second inequality of expression (58), we arrive at

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn)

≤
∫ ρ(x0)+ρ(y0)

0 L(u)du

(1−
∫ 2ρ(x0)

0 L0(u)du)
ρ(yn) ≤ q2q1ρ(xn). (81)

Also, the inequality (61) may be easily derived from the expression (81). Furthermore,
if the function La defined by the relation (62) is non-decreasing for some a with 0 ≤ a ≤ 1
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and r is determined by inequality (63), it follows from the first inequality of expression (58)
and Lemma (2) that

||yn − x∗|| ≤ ϕ1,a(2ρ(xn))2a

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(xn)

a+1

≤ ϕ1,a(2ρ(x0))2a

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(xn)

a+1 =
Q1

ρ(x0)a ρ(xn)
a+1.

Moreover, from the first inequality of (59) and Lemma 2, we can write

||xn+1 − x∗|| ≤ ϕ1,a(ρ(xn) + ρ(yn))(ρ(xn) + ρ(yn))a

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn)

≤ ϕ1,a(ρ(x0) + ρ(y0))(ρ(xn) + ρ(yn))a

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn)

=
Q2Q1

ρ(x0)aρ(y0)a ρ(xn)
2a+1.

Next, using the nondecreasing property of 1
t2

∫ t
0 L(u)udu and from the definition of r

in the relation (63), it follows that

Q1 =

∫ 2ρ(x0)
0 L(u)udu

2ρ(x0)(1−
∫ 2ρ(x0)

0 L0(u)du)
≤

∫ 2r
0 L(u)udu

2r2(1−
∫ 2r

0 L0(u)du)
ρ(x0) ≤

||x0 − x∗||
r

< 1, (82)

which shows Q1 < 1 and by the same reason we can say Q2 =
∫ ρ(x0)+ρ(y0)

0 L(u)udu

(ρ(x0)+ρ(y0))(1−
∫ 2ρ(x0)

0 L0(u)du)
< 1.

Also, the inequality (64) may be easily derived and hence xn converges to x∗. Thus, the
proof is completed.

Theorem 4. Suppose that t(x∗) = 0, t has a continuous derivative in V(x∗, r), [t′(x∗)]−1 exists
and [t′(x∗)]−1t′ satisfies the assumption (8) and L0 is positive integrable function. Let r satisfy∫ 2r

0
L0(u)du ≤ 1

3
. (83)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
2
∫ 2ρ(xn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(xn) ≤ q1ρ(xn),

||xn+1 − x∗|| ≤
∫ 2ρ(xn)

0 L0(u)du +
∫ 2ρ(yn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(yn) ≤ q2q1ρ(xn), (84)

where the quantities

q1 =
2
∫ 2ρ(x0)

0 L0(u)du

(1−
∫ 2ρ(x0)

0 L0(u)du)
, q2 =

∫ 2ρ(x0)
0 L0(u)du +

∫ 2ρ(y0)
0 L0(u)du

(1−
∫ 2ρ(x0)

0 L0(u)du)
(85)

are less than 1. Moreover,

||xn − x∗|| ≤ (q1q2)
n||x0 − x∗||, n = 1, 2, ... (86)
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Furthermore, suppose that the function La defined by the relation (62) is non-decreasing for
some a with 0 ≤ a ≤ 1, then

||xn − x∗|| ≤ C(1+2a)n−1||x0 − x∗||, n = 1, 2, · · · , C = q1
ρ(x0)

ρ(y0)
. (87)

and q1 is given by the first expression of Equation (85).

Proof. Let x0 ∈ V(x∗, r) and xn be the sequence generated by two-step Newton-type
method given in (3). Next, on arbitrarily choosing x0 ∈ V(x∗, r), using the property of
L(u) as a positive integrable function and the inequality (83), it follows that

q1 =
2
∫ 2ρ(x0)

0 L0(u)du

1−
∫ 2ρ(x0)

0 L0(u)du
≤

2
∫ 2r

0 L0(u)du

1−
∫ 2r

0 L0(u)du
< 1.

Similarly,

q2 =

∫ 2ρ(x0)
0 L0(u)du +

∫ 2ρ(y0)
0 L0(u)du

1−
∫ 2ρ(x0)

0 L0(u)du
≤

2
∫ 2r

0 L0(u)du

1−
∫ 2r

0 L0(u)du
< 1.

Assume that xn ∈ V(x∗, r), then

||yn − x∗|| = ||yn − x∗ − [t′(xn)]
−1t(xn)||

= ||[t′(xn)]
−1[t′(xn)(xn − x∗)− t(xn) + t(x∗)]||. (88)

Expanding t(xn) along x∗ from Taylor series expansion, we have

t(x∗)− t(xn) + t′(xn)(xn − x∗) = t′(x∗)
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(xτ

n)]dτ(xn − x∗). (89)

Following the hypothesis (11) of the theorem and using Equations (88) and (89), it
can be written as

||yn − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||.||

∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(x∗) + t′(x∗)− t′(xτ

n)]dτ||

.||(xn − x∗)||

≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

{ ∫ 1

0

∫ 2τρ(xn)

0
L0(u)duρ(xn)dτ

+
∫ 1

0

∫ 2ρ(xn)

0
L0(u)duρ(xn)dτ

}
. (90)

In view of Lemma (1), the above inequality becomes

||yn − x∗|| ≤
2
∫ 2ρ(xn)

0 L0(u)duρ(xn)− 1
2

∫ 2ρ(xn)
0 L0(u)udu

1−
∫ 2ρ(xn)

0 L0(u)du

≤
2
∫ 2ρ(xn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(xn) = q1ρ(xn),
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which is same as first inequality of (84). By similar analogy and form the final sub-step of
the scheme (3), we can write

||xn+1 − x∗|| ≤ ||[t′(xn)]
−1t′(x∗)||

{
||
∫ 1

0
[t′(x∗)]−1[t′(xn)− t′(x∗)]dτ||.||(yn − x∗)||

+||
∫ 1

0
[t′(x∗)]−1[t′(x∗)− t′(yτ

n)]dτ||.||(yn − x∗)||
}

≤ 1

1−
∫ 2ρ(xn)

0 L0(u)du

{ ∫ 1

0

∫ 2τρ(yn)

0
L0(u)duρ(yn)dτ

+
∫ 1

0

∫ 2ρ(xn)

0
L0(u)duρ(yn)dτ

}
. (91)

By virtue of Lemma 1, the above expression becomes

||xn+1 − x∗|| ≤
∫ 2ρ(xn)

0 L0(u)duρ(yn) +
∫ 2ρ(yn)

0 L0(u)duρ(yn)− 1
2
∫ 2ρ(yn)

0 L0(u)udu

1−
∫ 2ρ(xn)

0 L0(u)du

≤
∫ 2ρ(xn)

0 L0(u)duρ(yn) +
∫ 2ρ(yn)

0 L0(u)duρ(yn)

1−
∫ 2ρ(xn)

0 L0(u)du
= q2q1ρ(xn),

where q1 < 1 and q2 < 1 are determined by the relation (83). Also, it can be seen that
inequality (86) may be easily derived from the second expression (84) and hence xn
converges to x∗.

Furthermore, if the function La defined by the relation (62) is non-decreasing for
some a with 0 ≤ a ≤ 1 and r is determined by the inequality (83), it follows from the first
inequality of the expression (84) and Lemma 2 that

||yn − x∗|| ≤ 2ϕ0,a(2ρ(xn))2a

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(xn)

a+1

≤ 2ϕ0,a(2ρ(x0))2a

(1−
∫ 2ρ(x0)

0 L0(u)du)
ρ(xn)

a+1 =
q1

ρ(x0)a ρ(xn)
a+1.

Moreover, from the second inequality of expression (84) and Lemma 2, we get

||xn+1 − x∗|| ≤ ϕ0,a(2ρ(xn)) + ϕ0,a(2ρ(yn)).(2ρ(xn))a.ρ(yn)

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn)

≤ ϕ0,a(2ρ(x0)) + ϕ0,a(2ρ(y0)).(2ρ(xn))a.ρ(yn)

(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn)

=
q2.q1

ρ(x0)aρ(y0)a ρ(xn)
2a+1.

Hence, it can be seen that inequality (87) may be easily derived and hence xn converges
to x∗.

Next, we will apply our newly improved theorems to some special functions L and
results from Theorems 3 and 4 are recaptured.

Corollary 5. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies (9), (11) with L(u) = caua−1 and L0(u) = c0aua−1 i.e.,

||[t′(x∗)]−1(t′(x)− t′(yτ))|| ≤ c.(1− τa)(||x− x∗||+ ||y− x∗||)a (92)
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and

||[t′(x∗)]−1(t′(x)− t′(x∗))|| ≤ c02a||x− x∗||a, (93)

∀ x, y ∈ V(x∗, r), 0 ≤ τ ≤ 1, where yτ = x∗ + τ(y− x∗), ρ(x) = ||x− x∗||, 0 < a < 1, c > 0
and c0 > 0. Let r satisfy

r =
(

a + 1
2a(c0(a + 1) + ca)

) 1
a
. (94)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
∫ 2ρ(xn)

0 L(u)udu

2(1−
∫ 2ρ(xn)

0 L0(u)du)
≤ q1ρ(xn), (95)

||xn+1 − x∗|| ≤
∫ ρ(xn)+ρ(yn)

0 L(u)udu

(ρ(xn) + ρ(yn))(1−
∫ 2ρ(xn)

0 L0(u)du)
ρ(yn) ≤ q2q1ρ(xn), (96)

where the quantities

q1 =
ca2aρ(x0)

a

(1 + a)[1− 2ac0ρ(x0)a]
, q2 =

ca(ρ(x0) + ρ(y0))
a

(a + 1)(1− 2ac0ρ(x0)a)
(97)

are less than 1. Furthermore,

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, ..., C = q1
ρ(x0)

ρ(y0)
. (98)

Corollary 6. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies (11) with L0(u) = c0aua−1 i.e.,

||[t′(x∗)]−1(t′(x)− t′(x∗))|| ≤ c02a||x− x∗||a, ∀ x ∈ V(x∗, r), (99)

where ρ(x) = ||x− x∗||, 0 < a < 1 and c0 > 0. Let r satisfy

r =
(

1
3c02a

) 1
a
. (100)

Then, the two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
2
∫ 2ρ(xn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(xn) ≤ q1ρ(xn),

||xn+1 − x∗|| ≤
∫ 2ρ(xn)

0 L0(u)du +
∫ 2ρ(yn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(yn) ≤ q2q1ρ(xn), (101)

where the quantities

q1 =
c02a+1ρ(x0)

a

[1− 2ac0ρ(x0)a]
, q2 =

c02a(ρ(x0)
a + ρ(y0)

a)

(1− 2ac0ρ(x0)a)
(102)

are less than 1. Furthermore,

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, ..., C = q1
ρ(x0)

ρ(y0)
. (103)
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Corollary 7. Suppose that x∗ satisfies t(x∗) = 0, t has a continuous derivative in V(x∗, r),
[t′(x∗)]−1 exists and [t′(x∗)]−1t′ satisfies (11) with L0(u) =

2γc0
(1−γu)3 i.e.,

||[t′(x∗)]−1(t′(x)− t′(x∗))|| ≤ c0

(1− 2γρ(x))2 − c0, ∀ x ∈ V(x∗, r) (104)

where ρ(x) = ||x− x∗||, γ > 0 and c0 > 0. Let r satisfy

r =
3c0 + 1−

√
3c0(3c0 + 1)

2γ(3c0 + 1)
. (105)

Then, two-step Newton-type method (3) is convergent for all x0 ∈ V(x∗, r) and

||yn − x∗|| ≤
2
∫ 2ρ(xn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(xn) ≤ q1ρ(xn),

||xn+1 − x∗|| ≤
∫ 2ρ(xn)

0 L0(u)du +
∫ 2ρ(yn)

0 L0(u)du

1−
∫ 2ρ(xn)

0 L0(u)du
ρ(yn) ≤ q2q1ρ(xn), (106)

where the quantities

q1 =
2c0 − 2c0(1− 2γρ(x0))

2

[1− 2γρ(x0)]2(1 + c0)− c0
, (107)

q2 =
[c0 − c0(1− 2γρ(x0))

2](1− 2γρ(y0))
2) + [c0 − c0(1− 2γρ(y0))

2](1− 2γρ(x0))
2)

([1− 2γρ(x0)]2(1 + c0)− c0)(1− 2γρ(y0))2)
(108)

are less than 1. Furthermore,

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, ..., C = q1
ρ(x0)

ρ(y0)
. (109)

Remark 1. (a) If L0 = L, then our results specialize to earlier ones [5,10,15–17]. However, if
L0 < L, then the benefits stated in the abstract and the introduction are obtained (see also Example 1
and Example 2).
(b) A further extension can be achieved as follows. Suppose (6) holds and equation 2L0(u)u− 1 = 0
has a minimal positive zero r. Define Ṽ= V(x∗, r) ∩V(x∗, r). Moreover, suppose

||t(x)− t(yτ)|| ≤
∫ ρ(x)+ρ(y)

τ(ρ(x)+ρ(y))
L(u)du, (110)

where ∀ x, y ∈Ṽ, 0 ≤ τ ≤ 1, and L is as L. Then, we have

L(u) ≤ L(u) f or all u ∈ [0, min{r, r}].

Then, in view of the proofs L can replace L in all results with L. However, if

L(u) < L(u)

the benefits stated in the introduction are extended even further. In the case of the motivational
example, we have

L0 < L =
e

1
(e−1)

2
< L.
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6. Numerical Examples

Example 1. Let X = Y = R, the reals. Define

t(x) =
∫ x

0

(
1 + 2x sin

π

x

)
dx, ∀x ∈ R.

Then

t′(x) =

{
1 + 2x sin π

x , x 6= 0,
1, x = 0,

Obviously, x∗ = 0 is a zero of t and t′ satisfies that

||[t′(x∗)]−1(t′(x)− t′(x∗))|| =
∣∣∣2x sin

π

x

∣∣∣ ≤ 2|x− x∗|, ∀ x ∈ R.

It follows from Theorem 4 that for any x0 ∈ V(x∗, 1/6)

||xn − x∗|| ≤ C3n−1||x0 − x∗||, n = 1, 2, · · · , C =

(
4|x0|2

1− 2|x0||y0|

)
.

However, there is no positive integrable function L such that the inequality (7) is satisfied. In
fact, notice that

||[t′(x∗)]−1(t′(x)− t′(yτ))|| =
∣∣∣∣2x sin

π

x
− 2yτ sin

π

yτ

∣∣∣∣ = 4
2k + 1

,

for x = 1/k, y = 1/k, τ = 2k
2k+1 and k = 1, 2, · · · Thus, if there was a positive integrable function

L such that the inequality (7) holds on V(x∗, r) for some r > 0, it follows that there exists some
n0 > 1 such that

∫ 2r

0
L(u)du ≥

+∞

∑
k=n0

∫ 2
k

4
2k+1

L(u)du ≥
+∞

∑
k=n0

4
2k + 1

= +∞,

which is a contradiction. This example shows that Theorem 4 is a crucial improvement of Theorem 3
if the radius of the convergence ball is ignored.

Example 2. Let X = Y = R3, D = V(0, 1) and X∗ = (0, 0, 0)T . Define a function t on D for
w = (x, y, z)T by

t(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet derivative is

t′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

. (111)

Using (14) and t′(x∗) = (1, 1, 1)T , we have:
Old case L0(u) = L(u) = e

2 gives

r0 = 0.245253.

Case L0(u) = e−1
2 and L(u) = e

2 gives

r1 = 0.324947.
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Case L0(u) = e−1
2 and L(u) = e

1
(e−1)

2 gives

r2 = 0.382692.

Notice that r0 < r1 < r2.

Example 3. Choose X = Y = C[0, 1], Ω = V(0, 1) and x∗ = 0. Then, define t on Ω as

t(h)(x) = h(x)−
∫ 1

0
xτh(τ)3dτ.

Therefore,

t′(h(p))(x) = p(x)− 3
∫ 1

0
xτh(τ)2 p(τ)dτ f or all p ∈ Ω.

Then, we get

L0(u) = 1.5u < L(u) = L(u) = 3u.

Hence, again we obtain the same benefits as in Example 2 by solving (14).

7. Conclusions

A new technique is developed in view of which we achieve a tighter local convergence
analysis compared with earlier studies, without additional hypothesis. The technique is
quite general. That means that the same benefits appear on the study of other iterative
methods. The third and fourth sections in this paper analyzed the local convergence of a
two-step Newton-type method of order three when applied under generalized Lipschitz
conditions, in which instead of Lipschitz constants some non-decreasing integrable func-
tions are being used. It turns out that although the conditions are more general, they are
also more flexible, leading to some advantages, without any additional computational
effort. The examples also demonstrate our benefits. All results are obtained without ad-
ditional requirements. Hence, we have extended the applicability of modified Newton’s
method in cases not covered before. Our approach paves the way for future research to
improve local results for Newton-type methods, and other iterative procedures.
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