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Abstract: The use of fuzzy partial differential equations has become an important tool in which
uncertainty or vagueness exists to model real-life problems. In this article, two numerical techniques
based on finite difference schemes that are the centered time center space and implicit schemes
to solve fuzzy wave equations were used. The core of the article is to formulate a new form of
centered time center space and implicit schemes to obtain numerical solutions fuzzy wave equations
in the double parametric fuzzy number approach. Convex normalized triangular fuzzy numbers
are represented by fuzziness, based on a double parametric fuzzy number form. The properties of
fuzzy set theory are used for the fuzzy analysis and formulation of the proposed numerical schemes
followed by the new proof stability thermos under in the double parametric form of fuzzy numbers
approach. The consistency and the convergence of the proposed scheme are discussed. Two test
examples are carried out to illustrate the feasibility of the numerical schemes and the new results are
displayed in the forms of tables and figures where the results show that the schemes have not only
been effective for accuracy but also for reducing computational cost.

Keywords: finite difference schemes; double parametric form of fuzzy number; fuzzy partial differ-
ential equations; fuzzy wave equation

1. Introduction

One of the effective ways of modelling ambiguity and imprecision in certain quantities
for certain real-life problems are fuzzy partial differential equations (FPDEs). FPDEs
were recently utilised in a number of areas, including physics, biology, chemistry and
engineering [1–5].

The analytical solution of the PDEs is often impractical to obtain due to the complex-
ity of the model. So, there is increasing interest in obtaining numerical solutions using
numerical methods. The finite difference methods are some of the important forms of
numerical methods. These methods have been used by many mathematicians for solving
FPDEs. Nemati and Matinfar [6] developed an implicit finite difference scheme for solving
some fuzzy partial differential equations. The stability analysis of the proposed implicit
scheme was studied. Numerical experiments involving parabolic partial differential equa-
tions were presented to illustrate the capability and feasibility of the proposed method.
An explicit numerical solution of fuzzy hyperbolic and parabolic equations was presented
by Allahviranloo and Kermani [7]. The existence and stability of the presented scheme
were examined to show that the scheme is conditionally stable. Two numerical examples
were presented to illustrate the capability of the proposed scheme. The FTCS also was
applied by Zureigat and Izani [8] to obtain a numerical solution for fuzzy heat equations
under two different types of fuzzifications. The effect on the numerical solutions for both
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types of fuzzifications was discussed. It was found that the solution of the fuzzy heat
equation with a small fuzzy number area provides more accurate results than the large area.
Abdi and Allahviranloo [9] implemented the finite difference method to solve the fuzzy
Poisson’s equation with Dirichlet boundary conditions. The convergence of the proposed
method was investigated and a numerical example was solved for more illustration of the
proposed approach.

A second-order FPDE for the explanation of such a wave equation involving uncer-
tainty is the fuzzy wave equation (FEW). It may be present in the areas of electromagnetism,
acoustics and fluid dynamics [10–14]. Some authors have recently researched the FWE
approximate and numerical solutions in the single parametric form of fuzzy numbers.
In solving FWEs in one and two dimensions, Allaahviranloo et. al and Chadil et al. used
the variational iteration method (VIM) in [15,16] and it was found that the approach to
solving FWEs is very efficient and easy. Moreover, the presented method was found to be
convenient, clear and straightforward for the approximation of the successive approach.
Hashemi and Malekinagad used the homotopy analysis method (HAM) to solve some
FPDEs which were classified as an approximate analytical method that can be used to
obtain a series solutions of different types of linear and nonlinear equations. It was found
that the HAM is a promising tool for solving FWEs [17]. For the numerical solution of
initial boundary value problems involving FWEs, Aylin Bayrak suggested and analyzed a
numerical approach based on the finite difference methods which showed accuracy and
capability [18].

The n × n fuzzy differential equation system is transformed from a single parametric
form of a fuzzy number in the 2n × 2n crisp differential equation system. The n × n fuzzy
differential equation system is transformed to a crisp system of the same order for the
double parameter form of a fuzzy number. This approach has been proposed to solve fuzzy
fractional parabolic partial differential equations under the double parameter form of a
fuzzy number by utilizing a single parametric form of fuzzy numbers to convert the FPDEs
into an interval-based fuzzy partial differential equation via an implicit finite difference
scheme [19]. The double parametric form technique has been discovered to be general and
not complicated and requires less calculation than the single form.

From the above literature, the obtained results show that some research was conducted
with approximate and numerical methods that also involved finite difference schemes for
solving FWEs in single parameter form. Therefore, the aim of this work is to reformulate
the standard finite difference methods to obtain new forms of the cantered time centre
space and implicit schemes and prove the stability thermos for the numerical solution
of the FWE under the double parametric form of fuzzy numbers for the first time. We
would also like to point out that this paper focuses on computational and formal issues;
discussion can also be retrieved in [20] on the physical significance of fading solutions to
partial differential equations.

This work is organized as follows—in Section 2 the fuzzy wave equation with nec-
essary fuzzy analysis on double parametric form of fuzzy number details is recalled.
A description of the centre time centre space (CTCS) scheme formula for solving a fuzzy
wave equation is given in Section 3. Section 4 is focused on the implicit scheme to obtain a
numerical solution of a fuzzy wave equation followed by fuzzy stability analysis and theo-
rem for the CTCS scheme in Section 5. In Section 6, two numerical examples are presented
to show the method efficiency under a new approach to the fuzzy number. Finally, there is
a short summary of this work. It should be noted that some of the fuzzy sets concepts and
definitions not given in this work are standard. Notions of fuzzy level sets, fuzzy numbers,
fuzzy functions, fuzzy Zadeh expansion theory and fuzzy H-derivatives can be checked
from the literature, e.g., [20–24].
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2. The FEW in General From

Consider the FWE with the indicated initial conditions [15]:

∂2ũ(x, t)
∂t2 = D̃

∂2ũ(x, t)
∂x2 + g̃(x), 0 < x< l, t >0 (1)

ũ(x, 0) = f̃1(x),
∂u
∂t

(x, 0) = f̃2(x), ũ(0, t) = ṽ, ũ(l, 0) = ỹ,

where ũ(t, x) is the fuzzy function of the crisp independent variables t and x and the

nonhomogeneous term g̃(x) is a fuzzy function of crisp variable x. The ∂2ũ(x,t)
∂t2 and ∂2ũ(x,t)

∂x2

are the second order fuzzy partial generalized derivatives [25]. Furthermore, in Equation
(1) the fuzzy initial conditions are ũ(0, x), ∂u

∂t (x, 0) and f̃1(x) and f̃2(x) are fuzzy functions
of x.The boundary conditions in fuzzy form are ũ(0, t) and ũ(l, 0) and are equal to the
fuzzy convex numbers ṽ and ỹ, respectively.

The FWE in this section is defuzzified via the double parametric approach of fuzzy
number as presented in [18]. We may write Equation (1) in single parametric form of the
fuzzy number. The following may be written:

The generalized differentiability which is used in this paper is defined as follows [25,26]:
Let be F : a, b→ Fn and t0ε(a, b), we say that F is differentiable at t0 if:

(1) It exists an element f′(t0) εFn such that, for all h > 0 sufficiently near to 0, there are
F(t0 + h)− F(t0), F(t0)− F(t0 − h) and the limit

lim
h→0+

F(t0 + h)− F(t0)

h
= lim

h→0+

F(t0)− F(t0 − h)
h

= F′(t0)

or
(2) It exists an element f′(t0) εFn such that, for all h < 0 sufficiently near to 0, there are

F(t0 + h)− F(t0), F(t0)− F(t0 − h) and the limit

lim
h→0−

F(t0 + h)− F(t0)

h
= lim

h→0−

F(t0)− F(t0 − h)
h

= F′(t0) (2)

Based on the generalized differentiability that are defined in [25,26] there are four
cases that we can classify into two cases, the first case by definition of standard difference
that the following equations must hold:

First case: by definition of standard difference that the following equations must hold[
∂2u(x, t, β; r)

∂t2 ,
∂2u(x, t, β; r)

∂t2

]
=
[

D(x, r), D(x, r)
][∂2ui,n(x, t; r)

∂x2 ,
∂2ui,n(x, t; r)

∂x2

]
+
[

g(x, t; r), g(x, t; r)
]
, (3)

subjected to the fuzzy initial and boundary conditions

[u(x, t; r, β), u(x, t; r, β)] =
[

f1(x, t; r, β), f1(x, t; r, β)
]
,[

ut(x, t; r, β), ut(x, t; r, β)
]
= [ f2(x, t; β, r), f2(x, t; r, β),

[u(0, t; r, β), u(0, t; r, β)] = [v(0, t; r, β), v(0, t; r, β)],

[u(l, t; r, β), u(l, t; r, β)] =
[
y(l, t; r, β), y(l, t; r, β)

]
.

Now, according to the definition of fuzzy double parametric in [19], Equation (3) is as follows:
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{
β
(

∂2u(x,t;β,r)
∂t2 − ∂2u(x,t;β,r)

∂t2

)
+ ∂2u(x,t;β,r)

∂t2

}
=
{

β
(

D(x; r)− D(x; r)
)
+ D(x; r)

}{
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
+
{

β
(

g(x, t; r)− g(x, t; r)
)
+ g(x, t; r)

}
,

(4)

subjected to the fuzzy initial and boundary conditions

{β(u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)} =
{

β
(

f1(x, r)− f1(x, r)
)
+ f1(x, r)

}
,

{β
(
ut(x, 0; r)− ut(x, 0; r)

)
+ ut(x, 0; r)

}
=
{

β
(

f2(x, r)− f2(x, r)
)
+ f2(x, r)

}
,

{β(u(0, t; r)− u(0, t; r)) + u(0, t; r)} = {β(v(x, r)− v(x, r)) + v(x, r)},

{β(u(1, t; r)− u(1, t; r)) + u(1, t; r)} =
{

β
(

y(x, r)− y(x, r)
)
+ y(x, r)

}
,

where β ∈ [0, 1]. Now we write:

∂2ũ(x,t;β,r)
∂t2 =

{
β
(

∂2u(x,t,α;r)
∂t2 − ∂2u(x,t,α;r)

∂t2

)
+ ∂2u(x,t,α;r)

∂t2

}
,

D̃(x) ∂2ũ(x,t;β,r)
∂x2 =

{
β
(

D(x; r)− D(x; r)
)
+ D(x; r)

}{
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
,

g̃(x, t; β, r) =
{

β
(

g(x, t; r)− g(x, t; r)
)
+ g(x, t; r)

}
,

ũ(x, 0; β, r) = {β(u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)},

f̃ (x; β, r) =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

ũ(0, t; β, r) = {β(u(0, t; r)− u(0, t; r)) + u(0, t; r)},

g̃(x, ; β, r) = {β(v(x; r)− v(x; r)) + v(x; r)},

ũ(1, t, ; β, r) = {β(u(1, t; r)− u(1, t; r)) + u(1, t; r)},

ỹ(x; β, r) =
{

β
(

y(x; r)− y(x; r)
)
+ y(x; r)

}
.

Substituting these into Equation (1) gives:

∂2ũ(x,t;r,β)
∂t2 = D̃(x) ∂2ũ(x,t;r,β)

∂x2 + g̃(x, t, β), 0 < x< l, t >0

ũ(x, 0, β) = f̃1(x, r, β), ∂u
∂t (x, 0, β) = f̃2(x, r, β), ũ(0, t, β) = ṽ, ũ(l, t, β) = ỹ.

(5)

Second case: by definition the standard difference of the following equations must hold:[
∂2u(x, t, β; r)

∂t2 ,
∂2u(x, t, β; r)

∂t2

]
=
[
D(x, r), D(x, r)

][∂2ui,n(x, t; r)
∂x2 ,

∂2ui,n(x, t; r)
∂x2

]
+
[

g(x, t; r), g(x, t; r)
]
, (6)

subjected to the fuzzy initial and boundary conditions

[u(x, t; r, β), u(x, t; r, β)] =
[

f1(x, t; r, β), f1(x, t; r, β)
]
,[

ut(x, t; r, β), ut(x, t; r, β)
]
= [ f2(x, t; β, r), f2(x, t; r, β),

[u(0, t; r, β), u(0, t; r, β)] = [v(0, t; r, β), v(0, t; r, β)],

[u(l, t; r, β), u(l, t; r, β)] =
[
y(l, t; r, β), y(l, t; r, β)

]
.
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Now, according to the definition of fuzzy double parametric in [19], Equation (3) is
as follows:{

β
(

∂2u(x,t;β,r)
∂t2 − ∂2u(x,t;β,r)

∂t2

)
+ ∂2u(x,t;β,r)

∂t2

}
=
{

β
(

D(x; r)− D(x; r)
)

+D(x; r)
}{

β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
+
{

β
(

g(x, t; r)− g(x, t; r)
)
+ g(x, t; r)

}
,

(7)

subjected to the fuzzy initial and boundary conditions

{β(u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)} =
{

β
(

f1(x, r)− f1(x, r)
)
+ f1(x, r)

}
,{

β
(
ut(x, 0; r)− ut(x, 0; r)

)
+ ut(x, 0; r)

}
=
{

β
(

f2(x, r)− f2(x, r)
)
+ f2(x, r)

}
,

{β(u(0, t; r)− u(0, t; r)) + u(0, t; r)} = {β(v(x, r)− v(x, r)) + v(x, r)},

{β(u(1, t; r)− u(1, t; r)) + u(1, t; r)} =
{

β
(

y(x, r)− y(x, r)
)
+ y(x, r)

}
,

where β ∈ [0, 1]. Now we write:

∂2ũ(x,t;β,r)
∂t2 =

{
β
(

∂2u(x,t,α;r)
∂t2 − ∂2u(x,t,α;r)

∂t2

)
+ ∂2u(x,t,α;r)

∂t2

}
,

D̃(x) ∂2ũ(x,t;β,r)
∂x2 =

{
β
(

D(x; r)− D(x; r)
)
+ D(x; r)

}{
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
,

g̃(x, t; β, r) =
{

β
(

g(x, t; r)− g(x, t; r)
)
+ g(x, t; r)

}
,

ũ(x, 0; β, r) = {β(u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)},

f̃ (x; β, r) =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

ũ(0, t; β, r) = {β(u(0, t; r)− u(0, t; r)) + u(0, t; r)},

g̃(x, ; β, r) = {β(v(x; r)− v(x; r)) + v(x; r)},

ũ(1, t, ; β, r) = {β(u(1, t; r)− u(1, t; r)) + u(1, t; r)},

ỹ(x; β, r) =
{

β
(

y(x; r)− y(x; r)
)
+ y(x; r)

}
.

Substituting these into Equation (1) gives:

∂2ũ(x,t;r,β)
∂t2 = D̃(x) ∂2ũ(x,t;r,β)

∂x2 + g̃(x, t, β), 0 < x< l, t >0

ũ(x, 0, β) = f̃1(x, r, β), ∂u
∂t (x, 0, β) = f̃2(x, r, β), ũ(0, t, β) = ṽ, ũ(l, t, β) = ỹ.

(8)

To obtain the lower and upper bounds of the solutions in the single parametric form
under generalized differentiability [25], assume β = 0 and β = 1, respectively, which may
be presented as

ũ(x, t; r, 0) = u(x, t; r) and ũ(x, t; r, 1) = u(x, t; r)

3. CTCS Scheme for Solving the FWE

This section adapts and uses a double parametric form of fuzzy number with a central
difference approximation for both the second order time derivative and the second order

space derivative to solve the FWE. The partial time derivative ∂2ũ(x,t;β;r)
∂t2 is discretised as

follows:

∂2ũ(x, t; r; β)

∂t2 =
ũi,n+1(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi,n+1(x, t; r, β)

k2 (9)
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Similarly, the partial spatial derivative ∂2ũ(x,t;β;r)
∂x2 is defined as follows:

∂2ũ(x, t; β, r)
∂x2 =

ũi+1,n(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi−1,n(x, t; r, β)

h2 . (10)

Now substitute Equations (9) and (10) in Equation (8) to obtain:

ũi,n+1(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi,n−1(x, t; r, β)

k2 = D̃(x; r, β)
ũi+1,n(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi−1,n(x, t; r, β)

h2 + g̃(x; r, β). (11)

Now assume that p̃ = D̃(x;r) k
h and from Equation (11), for all r ∈ [0, 1], we have:

ũi,j+1(x, t; r, β) = p̃2(ũi+1,j(x, t; r, β) + ũi−1,j(x, t; r, β)
)
+
(

2− 2 p̃2
)

ũi,j(x, t; r, β)− ũi,j−1(x, t; r, β) + k2g. (12)

This is the general formulation of the double parametric form of the fuzzy of the CTCS
scheme for the FWE.

4. General Implicit Scheme for Solving FEW

The implicit scheme is adapted and used with the double parametric and used with
the central differential approach for the second order space derivative at (j− 1), (j + 1)
levels for the average for the numerical solution of the few, which is presented in this

section. The second partial time derivative ∂2ũ(x,t;β;r)
∂t2 is discretised as follows:

∂2ũ(x, t; β, r)
∂t2 =

ũi,n+1(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi,n+1(x, t; r, β)

k2 (13)

Also, the second partial spatial derivative ∂2ũ(x,t;β;r)
∂x2 is defined using central difference

approximation based on average of (j− 1), (j + 1) time levels as follows:

∂2ũ(x, t; β, r)
∂x2 =

1
2h2 [[ũi−1,n−1 − 2ũi,n−1 + ũi+1,n−1] + [ũi−1,n+1 − 2ũi,n+1 + ũi+1,n+1]]. (14)

Now substitute Equations (13) and (14) in Equation (5), respectively, to obtain the following:

ũi+1,n − 2ũi,n + ũi−1,n =
k2

2h2 [[ũi−1,n−1 − 2ũi,n−1 + ũi+1,n−1] + [ũi−1,n+1 − 2ũi,n+1 + ũi+1,n+1]]. (15)

By simplifying Equation (15):

− 2p̃2ũi−1,j+1 +
(

1 + 4 p2
)

ũi,j+1 − 2p̃2ũi+1,j+1 = 2p̃2ũi−1,j−1 −
(

1 + 4p̃2
)

ũi,j−1 + 2p̃2ũi+1,j−1 + 2ũi,j. (16)

This is the general formula of the implicit scheme for the FWE in double parametric
form of the fuzzy number.

5. Fuzzy Stability Analysis

The von Neumann or Fourier method [27,28] can be used to investigate the stability
of the finite difference schemes discussed earlier for the FWE in double parametric from of
the fuzzy number.

5.1. The Stability of CTCS for Fuzzy Wave Equation

Theorem 1. The CTCS Scheme in Equation (12) for FWE is stable under the condition p ≤ 1.

Proof. E ven though the proof is for the crisp wave equation and is quite standard, we
describe it for the FWE for completeness.

Let ε̃0
i represent the fuzzy error of the discretization of initial condition.
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Let ũ0
i = ´̃u0

i − ε̃0
i , ũn

i and ´̃un
i refer to numerical solution of Equation (12) in terms to

the initial data f̃ 0
i and ´̃f 0

i , respectively.
Let [ũn

i+1(x, t; α)]r = β[u(r)− u(r)] + u(r)], where β, r ∈ [0, 1].
The fuzzy absolute error is established by the following form:
The fuzzy error equations for Equation (12) are:

[ε̃n
i ]r =

[
´̃un
i − ũn

i

]
r
, n = 1, 2, . . . . . . X×M, i = 1, 2, . . . , X− 1. (17)

ε̃i,j+1 = p̃2(ε̃i+1,j + ε̃i−1,j
)
+
(

2− 2p̃2
)

ε̃i,j − ε̃i,j−1, (18)

ε̃n
0 = ε̃n

X = 0, n = 1, 2, . . . , T ×M. Let ε̃n
i = [ε̃n

1, ε̃n
2, . . . . . . , ε̃n

X−1
]
, and introduce the follow-

ing fuzzy norm:

‖ε̃n‖2 =

√√√√X−1

∑
i=1

h
∣∣ε̃n

i

∣∣2.

Such that we get

‖ε̃n‖2
2 =

X−1

∑
i=1

h |ε̃n
i |

2. (19)

Suppose that ε̃n
i can be expressed in the form

ε̃n
i = λ̃n e

√
−θi , where θ̃i = qih. (20)

Substituting Equation (20) into Equation (12) to obtain:

λ̃n+1 e
√
−θi = p̃2

(
λ̃n e
√
−θi+1 + λ̃n e

√
−θi−1

)
+
(

2− 2 p̃2
)

λ̃n e
√
−θi − λ̃n−1 e

√
−θi (21)

Divide Equation (21) on λ̃n e
√
−θi to obtain:

λ̃ +
1
λ̃
= p̃2

(
e
√
−θi + e−

√
−θi
)
+
(

2− 2p̃2
)

, (22)

λ̃ +
1
λ̃
= p̃2

(
2− 4 sin2

(
θ

2

))
+
(

2− 2p̃2
)

. (23)

By simplifying Equation (23) we obtain:

λ̃ +
1
λ̃
= 2− 4p̃2 sin2

(
θ

2

)
(24)

By writing s = 2− 4p̃2 sin2
(

θ
2

)
we obtain:

λ̃2 − sλ̃ + 1 = 0

The roots of the last quadratic equation are:

λ̃ =
s∓
√

s2 − 4
2

,

s2 − 4 ≥ 0 or − 2 ≤ s ≤ 2,

− 2 ≤ 2− 4p̃2 sin2
(

θ

2

)
≤ 2.

Since the maximum of sin2
(

θ
2

)
= 1, we obtain p̃2 < 1. �
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Using the same approach, we can show that the implicit scheme in Equation (15) is
unconditionally stable, i.e., there is no stability condition for the time step.

5.2. The Consistency and Convergence of CTCS for Fuzzy Wave Equation

Theorem 2: The principal truncation error T(x, t) of the CTCS scheme for FWE in Equation (8) is
O
(
∆t2 + ∆x2).

Proof. According to Equation (8),

ũi,n+1(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi,n−1(x, t; r, β)

k2 = D̃(x; r, β)
ũi+1,n(x, t; r, β)− 2ũi,n(x, t; r, β) + ũi−1,n(x, t; r, β)

h2 (25)

Let us denote k = ∆t and h = ∆x. Using Taylor expansions we can expand the
following:

Expand ũ(xi, tn+1) about (xi, tn) to obtain:

ũ(xi, tn+1) = ũ(xi, tn) + k
(

∂u
∂t

)
x=xi ,t=tn

+
k2

2

(
∂2u
∂t2

)
x=xi , t=tn

+
k3

3!

(
∂3u
∂t3

)
x=xi , t=tn

+
k4

4!

(
∂4u
∂t4

)
x=xi , t=tn

+ . . . (26)

Expand ũ(xi, tn−1) about (xi, tn) to obtain:

ũ(xi, tn+1) = ũ(xi, tn)− k
(

∂u
∂t

)
x=xi ,t=tn

+
k2

2

(
∂2u
∂t2

)
x=xi , t=tn

− k3

3!

(
∂3u
∂t3

)
x=xi , t=tn

+
k4

4!

(
∂4u
∂t4

)
x=xi , t=tn

+ . . . (27)

Expand ũ(xi+1, tn) about (xi, tn) to obtain:

ũ(xi+1, tn) = ũ(xi, tn) + h
(

∂u
∂x

)
x=xi ,t=tn

+
h2

2

(
∂2u
∂x2

)
x=xi , t=tn

+
h3

3!

(
∂3u
∂x3

)
x=xi , t=tn

+
h4

4!

(
∂4u
∂x4

)
x=xi , t=tn

+ . . . (28)

Expand ũ(xi−1, tn) about (xi, tn) to obtain

ũ(xi−1, tn) = ũ(xi, tn)− h
(

∂u
∂x

)
x=xi ,t=tn

+
h2

2

(
∂2u
∂x2

)
x=xi , t=tn

− h3

3!

(
∂3u
∂x3

)
x=xi , t=tn

+
h4

4!

(
∂4u
∂x4

)
x=xi , t=tn

− . . . (29)

Substitute Equations (26)–(29) expansions in Equation (25) to get:

1
k2 [(ũ(xi, tn) +k

(
∂u
∂t

)
x=xi ,t=tn

+ k2

2

(
∂2u
∂t2

)
x=xi , t=tn

+ k3

3!

(
∂3u
∂t3

)
x=xi , t=tn

+ k4

4!

(
∂4u
∂t4

)
x=xi , t=tn

+ . . .
)
− 2ũ(xi, tn)

+

(
ũ(xi, tn)− k

(
∂u
∂t

)
x=xi ,t=tn

+ k2

2

(
∂2u
∂t2

)
x=xi , t=tn

− k3

3!

(
∂3u
∂t3

)
x=xi , t=tn

+ k4

4!

(
∂4u
∂t4

)
x=xi , t=tn

+ . . .
)]

=
D̃(x;r,β)

h2

[(
ũ(xi, tn) + h

(
∂u
∂x

)
x=xi ,t=tn

+ h2

2

(
∂2u
∂x2

)
x=xi , t=tn

+ h3

3!

(
∂3u
∂x3

)
x=xi , t=tn

+ h4

4!

(
∂4u
∂x4

)
x=xi , t=tn

+ . . .)− 2ũ(xi, tn)

+

(
ũ(xi, tn)− h

(
∂u
∂x

)
x=xi ,t=tn

+ h2

2

(
∂2u
∂x2

)
x=xi , t=tn

− h3

3!

(
∂3u
∂x3

)
x=xi , t=tn

+ h4

4!

(
∂4u
∂x4

)
x=xi , t=tn

− . . .
)
]

(30)

By simplifying Equation (30) we obtain:
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1
k2

[
k2
(

∂2u
∂t2

)
x=xi , t=tn

+ k4

12

(
∂4u
∂t4

)
x=xi , t=tn

+ . . .
]
= D̃(x;r,β)

h2

[
h2
(

∂2u
∂x2

)
x=xi , t=tn

+

h4

12

(
∂4u
∂x4

)
x=xi , t=tn

+ . . .
][ (

∂2u
∂t2

)
x=xi , t=tn

+ k2

12

(
∂4u
∂t4

)
x=xi , t=tn

+ . . .
]
=

D̃(x; r, β)

[ (
∂2u
∂x2

)
x=xi , t=tn

+ h2

12

(
∂4u
∂x4

)
x=xi , t=tn

+ . . .
]

(
∂2u
∂t2

)
x=xi ,t=tn

− D̃(x; r, β)
(

∂2u
∂x2

)
x=xi , t=tn

= 0 since
(

∂2u
∂t2

)
x=xi ,t=tn

=

D̃(x; r, β)
(

∂2u
∂x2

)
x=xi , t=tn

Thus, the principal part of T(x, t) is

k2

12

(
∂4u
∂t4

)
x=xi , t=tn

− D̃(x; r, β) h2

12

(
∂4u
∂x4

)
x=xi , t=tn

The principal part of the truncation error of the CTCS scheme for FWE is said to
be O

(
∆t2 + ∆x2). Thus, the CTCS scheme is consistent since the principal part of the

truncation error tends to zero as h, k→ 0 .
From Section 5.1, we know the scheme is stable under the condition and it has now

been established that it is consistent. Hence, convergence follows from the Lax- equivalence
theorem. �

6. Numerical Examples and Solution Analysis

The implementation and review of Equation (1) numerical solutions through our
proposed methods from Sections 3 and 4 is discussed and compared in terms of accuracy
with the exact solution, such that we defined the following two examples:

Example 6.1:

Consider the homogenous FWE [25]

∂2ũ(x, t)
∂t2 = 4

∂2ũ(x, t)
∂x2 , 0 < x< 1, t >0. (31)

where ũ(0, t) = ũ(1, t) = 0 are boundary conditions and ũ(x, 0) = α̃ Sin(πx), ut(x, 0) = 0
are the initial conditions of Equation (31) for

α̃(r) = [r− 1, 1− r]

For rε[0, 1], it is clear that the partial derivative ∂2ũ(x,t)
∂t2 and ∂2ũ(x,t)

∂x2 follows the second
case of generalized differentiability where the exact solution of Equation (31) is represented
by the following equation and figures [25,29]:

ũ(x, t; r) = α̃(r)Sin(πx)Cos(2πt). (32)

According to double parametric form of the fuzzy number, the exact solution of
Equation (31) for all r, β ∈ [0, 1] is as follows:

ũ(x, t; r; β) = ((β(2− 2r)) + r− 1)Sin(πx)Cos(2πt)

The numerical results in double parametric form that are obtained by CTCS at
∆x = h = 0.1 and ∆t = k = 0.01 to get p = ∆t2

∆x2 = 0.012

0.12 are presented in the next tables and
figure for different values of r and β.

Tables 1 and 2, Figures 1 and 2 clearly illustrate that both of the CTCS schemes have
good results compared with the exact solution of Equation (31) at t = 0.05, x = 0.9 for all
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r, β ∈ [0, 1]. In addition, the results obtained satisfy the characteristics of double parametric
numbers by achieving a triangular fuzzy number shape and followed the second case
of generalized differentiability. As shown in Figure 3, the implicit schemes tend to yield
significantly more reliable results than CTCS. The transformation from uncertain to crisp
has made it simple and effective to apply double parametric forms. In addition, it can be
found that the results are more precise at points close to the inflection point β = 0.5, as
shown in Figure 4.

Table 1. Numerical solution of Equation (31) by CTCS and implicit at t = 0.05 and x = 0.9 for r, β ∈ [0, 1].

CTCS Implicit

β r ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β) ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β)

Lower β = 0

0 −0.30897918419461035 1.14671× 10−4 −0.3088657654966003 1.25235× 10−6

0.2 −0.247183347355688 9.17368× 10−5 −0.24709261239728061 1.00188× 10−6

0.4 −0.1853875105167659 6.88026× 10−5 −0.1853194592979603 7.51413× 10−7

0.6 −0.123591673677844 458684× 10−5 −0.12354630619864031 5.00942× 10−7

0.8 −0.06179583683892198 2.29342× 10−5 −0.06177315309932013 2.50471× 10−7

1 0 0 0 0

Upper β = 1

0 0.30897918419461035 1.14671× 10−4 0.3088657654966003 1.25235× 10−6

0.2 0.247183347355688 9.17368× 10−5 0.24709261239728061 1.00188× 10−6

0.4 0.1853875105167659 6.88026× 10−5 0.1853194592979603 7.51413× 10−7

0.6 0.123591673677844 458684× 10−5 0.12354630619864031 5.00942× 10−7

0.8 0.06179583683892198 2.29342× 10−5 0.06177315309932013 2.50471× 10−7

1 0 0 0 0

Table 2. Numerical solution of Equation (31) by CTCS and implicit at t = 0.05 and x = 0.9 for r, β ∈ [0, 1].

CTCS Implicit

β r ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β) ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β)

β = 0.4

0 −0.06179583683892198 2.29342× 10−5 −0.06177315309932013 2.50471× 10−7

0.2 −0.04943666947113756 1.83474× 10−5 −0.0494185224794561 2.00377× 10−7

0.4 −0.0370775021033532 1.37605× 10−5 −0.03706389185959205 1.50283× 10−7

0.6 −0.02471833473556878 9.17368× 10−6 −0.02470926123972805 1.00188× 10−7

0.8 −0.012359167367784408 4.58684× 10−6 −0.012354630619864042 5.00942× 10−8

1 0 0 0 0

β = 0.6

0 0.06179583683892198 2.29342× 10−5 0.06177315309932013 2.50471× 10−7

0.2 0.04943666947113756 1.83474× 10−5 0.0494185224794561 2.00377× 10−7

0.4 0.0370775021033532 1.37605× 10−5 0.03706389185959205 1.50283× 10−7

0.6 0.02471833473556878 9.17368× 10−6 0.02470926123972805 1.00188× 10−7

0.8 0.012359167367784408 4.58684× 10−6 0.012354630619864042 5.00942× 10−8

1 0 0 0 0
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Example 6.2:

Consider the FWE involving variable coefficient [30]:

∂2ũ(x, t)
∂t2 =

1
2

x2 ∂2ũ(x, t)
∂x2 , 0 < x< 1, t >0 (33)

where the boundary conditions are ũ(0, t) = t, ũ(1, t) = 1 + sinht and the initial fuzzy
conditions ũ(x, 0) = α̃ x, ut(x, 0) = x2 of Equation (33) for α̃ = [r− 1, 1− r].

For rε[0, 1], it is clear that the partial derivative ∂2ũ(x,t)
∂t2 and ∂2ũ(x,t)

∂x2 follows the first
case of the generalized differentiability where the exact solution of Equation (33) was given
in [30] (see Figures 5 and 6) such that:
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ũ(x, t; r) = α̃(r)
(

x + x2sinh t
)

(34)

The numerical results in double parametric form that are obtained by ∆x = h = 0.1
and ∆t = k = 0.01 to get p = ∆t2

∆x2 = 0.012

0.12 are presented in the next tables and figure for
different values of r and β.

Similarly to example 6.1, Tables 3 and 4, Figures 5 and 6 clearly illustrate the of
both the CTCS schemes have good results compared with the exact solution of Equation
(27) at t = 0.05, x = 0.9 for all r, β ∈ [0, 1]. In addition, the results obtained satisfy the
characteristics of double parametric numbers by achieving a triangular fuzzy number
shape and followed the first case of generalized differentiability. Implicit schemes tend to
yield significantly more reliable results than CTCS. The transformation from uncertain to
crisp has made it simple and effective to apply double parametric forms. In addition, it can
be found that the results are more precise at points close to the inflection point β = 0.5 as
shown in Figure 7.

Table 3. Numerical solution of Equation (33) by CTCS and implicit at t = 0.05 and x = 0.9 for r, β ∈ [0, 1].

CTCS Implicit

β r ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β) ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β)

Lower β = 0

0 −0.30553524551329963 1.635507× 10−2 −0.2940107401726 1.4547205× 10−4

0.2 −0.23535441946397 9.0580554× 10−3 −0.2352085921381 1.157764× 10−4

0.4 −0.1833535114597978 6.85104× 10−3 −0.1764064884410 8.853232× 10−5

0.6 −0.12513322097319855 4.544027× 10−3 −0.117604296069 5.858821× 10−5

0.8 −0.0651351048659927 2.247013× 10−3 −0.058802148034 2.954411× 10−5

1 0 0 0 0

Upper β = 1

0 0.30513524329963 1.143507× 10−2 0.2940107401726 1.457205× 10−4

0.2 0.2441946397 9.408054× 10−3 0.2352085921381 1.175764× 10−4

0.4 0.183145597978 6.8163404× 10−3 0.1764064884410 8.83232× 10−5

0.6 0.1220957319855 4.54027× 10−3 0.117604296069 5.88821× 10−5

0.8 0.0610548659927 2.2705413× 10−3 0.058802148034 2.94411× 10−5

1 0 0 0 0
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Table 4. Numerical solution of Equation (33) by CTCS and implicit at t = 0.05 and x = 0.9 for r, β ∈ [0, 1].

CTCS Implicit

β r ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β) ũ(0.9, 0.5; r, β) Ẽ(0.9, 0.5; r, β)

β = 0.4

0 −0.06145361048659927 2.270113× 10−3 −0.05880796628017 2.94411× 10−5

0.2 −0.041566514588389279421.8154611× 10−3 −0.04704637302416 2.35528× 10−5

0.4 −0.0513536629195956 1.34656208× 10−3 −0.0354545628477976810 1.76646× 10−5

0.6 −0.0251564419463971 9.0458054× 10−4 −0.02354654552318651207 1.17764× 10−5

0.8 −0.01531532209731985 4.54027× 10−4 −0.01176159325603 5.88821× 10−6

1 0 0 0 0

β = 0.6

0 0.061051548659927 2.27013× 10−3 0.05880796628017 2.94411× 10−5

0.2 0.048838927942 1.81611× 10−3 0.04704637302416 2.35528× 10−5

0.4 0.0365445629195956 1.3654208× 10−3 0.0355428477976810 1.764646× 10−5

0.6 0.02441549415463971 9.0854054× 10−4 0.02345652318651207 1.14567764× 10−5

0.8 0.012204559731985 4.544027× 10−4 0.01154576159325603 5.8468821× 10−6

1 0 0 0 0
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7. Summary

In this paper, a new extension of finite difference schemes was suggested to solve
general FWEs in terms of the double parametric form of fuzzy number. The schemes
incorporating the double parametric form of fuzzy number were formulated and ana-
lyzed to obtain the numerical solution for the FWE. The implicit scheme tends to yield
significantly more accurate results than the CTCS scheme. Stability analysis is illustrated
followed by the proof of stability theorem for CTCS under the double parametric form
of fuzzy numbers and has accuracy in the order of O

(
∆t2 + ∆x2). The results obtained

from two numerical examples indicated good agreement with the exact solution and follow
the properties of triangular fuzzy numbers. The proposed method can be extended for
neutrosophic statistics [31,32] as future research and this will be investigated in detail at a
later stage.
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