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Abstract: With the particular interest of being implemented in cryptography, the recognition and
analysis of image patterns based on Latin squares has recently arisen as an efficient new approach
for classifying partial Latin squares into isomorphism classes. This paper shows how the use of a
Computer Algebra System (CAS) becomes necessary to delve into this aspect. Thus, the recognition
and analysis of image patterns based on these combinatorial structures benefits from the use of
computational algebraic geometry to determine whether two given partial Latin squares describe
the same affine algebraic set. This paper delves into this topic by focusing on the use of a CAS to
characterize when two partial Latin squares are either partial transpose or partial isotopic.
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1. Introduction

An n× n array is said to be a partial Latin square of order n if each one of its cells either
is empty or contains an element of a finite set of n symbols so that each symbol occurs at
most once in each row and at most once in each column. If there are no empty cells, then
the array is called a Latin square. Latin squares play a relevant role in cryptography [1–3].
Of particular interest for the aim of this paper, the generation of scramblers in symmet-
ric cryptography by means of encryption–decryption processes having Latin squares as
cryptographic keys is remarkable [4–8]. The exponential growth of Latin squares [9–11]
ensures the robustness of these symmetric-key algorithms against brute force and statistical
attacks. In addition, appropriate choices of Latin squares produce effective symmetric-key
algorithms with high period growths [12]. In this regard, the distribution of Latin squares
into isomorphism classes play a fundamental role. It is so that pseudo-random sequences
derived from non-isomorphic Latin squares give rise to certain image patterns [13,14],
whose algebraic and geometrical properties enable one to distinguish between fractal and
non-fractal Latin squares [15,16].

Distributing (partial) Latin squares into isomorphism classes indeed constitutes a main
problem in the theory of (partial) Latin squares. Currently, only the number of isomorphism
classes of Latin squares of order n ≤ 11 is known [9–11], as well as that of partial Latin
squares of order n ≤ 6 [17,18]. To obtain these last values, the computation of reduced
Gröbner bases of ideals associated to partial Latin squares has played a relevant role. Such
a computation is, however, extremely sensitive to the number of involved variables and
the length and degree of the corresponding generators [19–22]. Thus, although distinct
techniques concerning computational algebraic geometry have been implemented since
the original work of Bayer [23] for solving the classical problems of counting, enumerating
and classifying partial Latin squares [17,18,24–29] and solving related problems such as
completing sudokus [30–32], their computational cost makes it very difficult to deal with
partial Latin squares of high orders.
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The study of new invariants concerning partial Latin square isomorphisms has turned
out to be an optimal approach to reduce this computational cost [33–35]. This paper
delves in particular into those invariants that are related to affine algebraic sets associ-
ated to the partial Latin squares under consideration. In this regard, let us recall that
the affine algebraic set in a multivariate polynomial ring K[{x1, . . . , xn}] of a partial
Latin square L = (li,j) of order n, with set of symbols [n] := {1, . . . , n}, was defined by
Falcón, R.M. et al [36] as the set of zeros of the binomial ideal

I(L) :=
〈

xixj − xli,j : 1 ≤ i, j, li,j ≤ n
〉

. (1)

Isomorphic partial Latin squares give rise to isomorphic affine algebraic sets. Thus,
Gröbner bases have played a relevant role for distinguishing, in a computationally fast
way, image patterns arisen from non-isomorphic Latin squares. In any case, the study of
affine algebraic sets associated to Latin squares is still in the very initial stage. Thus, for
instance, their distribution into isomorphism classes is only known for n ≤ 3 [36]. To deal
with higher orders, it is necessary to delve into two new ways of classifying partial Latin
squares. More specifically, it is necessary to characterize when two partial Latin squares
are partial transpose and/or partial isotopic. In both cases, the partial Latin squares under
consideration may give rise to the same affine algebraic set.

The paper is organized as follows. Section 2 deals with some preliminary concepts
and results on partial Latin squares and computational algebraic geometry that are used
throughout the paper. In Section 3, the notion of standard set of image patterns associated
to a Latin square is introduced, which may constitute a fast computational way for dis-
tinguishing non-isomorphic Latin squares. To this end, the use of a new affine algebraic
set associated to each of these image patterns is proposed. Finally, two new ideals are
described in Section 4, whose respective affine algebraic sets are uniquely identified with
the set of partial Latin squares that are partial transpose of another given partial Latin
square, and the set of partial isotopisms between two given partial Latin squares of the
same order and weight.

2. Preliminaries

Let us review some basic concepts and results on partial Latin squares and computa-
tional algebraic geometry that are used throughout the paper. We refer the reader to the
monographs of [37,38] for more details on both topics.

2.1. Partial Latin Squares

Let Ln be the set of partial Latin squares of order n having the already mentioned set
[n] as set of symbols. Every partial Latin square L = (li,j) ∈ Ln is determined by its set
of entries

Ent(L) := {(i, j, li,j) : i, j, li,j ∈ [n]}.

Therefore, the cardinality of this set coincides with the number of non-empty cells
within the partial Latin square L. It is termed the weight of L. From here on, let Ln;m denote
the subset of partial Latin squares in the set Ln of weight m.

Let Sn denote the symmetric group on the set [n]. Every triple θ = ( f , g, h) ∈ S3
n

preserves the set Ln;m. It constitutes an isotopism of partial Latin squares, where the
bijections f , g and h correspond, respectively, to a permutation of rows, a permutation of
columns and a permutation of symbols of the partial Latin square under consideration.
More specifically, the isotopism θ acts on any given partial Latin square L ∈ Ln;m by giving
rise to its isotopic partial Latin square Lθ ∈ Ln;m, where

Ent(Lθ) = {( f (i), g(j), h(k)) : (i, j, k) ∈ Ent(L)}.

If f = g = h, then the isotopism θ constitutes an isomorphism. In such a case, the partial
Latin squares L and Lθ are said to be isomorphic. Throughout this paper, the computation
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of isotopisms and isomorphisms among partial Latin squares is done by making respective
use of the procedures isot and isom of the library pls.lib, available online

at http://personales.us.es/raufalgan/LS/pls.lib (accessed on 28 February 2021), for
the open Computer Algebra System (CAS) for polynomial computations SINGULAR [39].

Isotopic and isomorphic are equivalence relations among partial Latin squares. The
distribution into such classes is known for order n ≤ 11 in the case of dealing with Latin
squares [9–11] and for order n ≤ 6 in the case of dealing with partial Latin squares [17,18].
Partial transpose are partial isotopic are two other binary relations among partial Latin
squares of the same order and weight, whose study is still in teh very initial stage. Although
the original definitions were established by Falcón, R.M. et al [36] as equivalence relations,
it is not so. In what follows, we particularize both definitions in order to obtain two new
equivalence relations among partial Latin squares of the same order and weight. To this
end, let us consider two partial Latin squares L1 and L2 in Ln;m.

We say that L2 is partial transpose of L1 if and only if the following two conditions hold.

1. For each entry (i, j, k) ∈ Ent(L2) \ Ent(L1), we have that (j, i, k) ∈ Ent(L1).
2. For each entry (i, j, k) ∈ Ent(L1) \ Ent(L2), we have that (j, i, k) ∈ Ent(L2).

Being partial transpose generalizes, therefore, the classical concept of being transpose.
Notice that the second condition that we have just described was not explicitly indicated by
Falcón, R.M. et al [36]. Nevertheless, as is illustrated in the following example, this
condition is mandatory in order to obtain a symmetric relation.

Example 1. The partial Latin squares

L1 ≡

1 2 3
4 3

4 1
2

and L2 ≡

1 2 4
2
3 4 1

2

,

both of them in L4;8, satisfy the first described condition in order to ensure that L2 is partial
transpose of L1. Nevertheless, such a condition is not satisfied for ensuring that L1 is partial
transpose of L2, because the entry (2, 4, 3) ∈ Ent(L1) \ Ent(L2) and (4, 2, 3) 6∈ Ent(L2).

Now, let P ⊆ Ent(L1) ∩ Ent(L2). We say that L2 is P-partial isotopic to L1 if there exists
an isotopism ( f , g, h) ∈ S3

n such that

Ent(L2) \ P = {( f (i), g(j), h(k)) : (i, j, k) ∈ Ent(L1) \ P}.

In such a case, we say that the triple ( f , g, h) is a P-partial isotopism (a partial isotopism,
when there is no place for confusion) from L1 to L2. The just described binary relation of
being P-partial isotopic constitutes an equivalence relation among partial Latin squares of
the same order and weight, as well as containing the subset P in their respective sets of
entries. Further, if two partial Latin squares are isotopic, then they are ∅-partial isotopic.
More specifically, every isotopism from L1 to L2 is also a partial isotopism between such
partial Latin squares.

The subset P ⊆ Ent(L1) ∩ Ent(L2) was not established as an essential part of the
original definition of being partial isotopic introduced by Falcón, R.M. et al. [36]. Neverthe-
less, if it is not considered as such, then the resulting binary relation is intransitive. The
following example illustrates this fact. In this example, and from now on, to make much
clearer the understanding of the subset P associated to any given partial isotopism in S3

n,
we denote L(P) the partial Latin square of order n satisfying that Ent(L(P)) = P.

http://personales.us.es/raufalgan/LS/pls.lib
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Example 2. The Latin squares

L1 ≡

1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2

and L2 ≡

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

are isotopic (and, hence, ∅-partial isotopic) by means of the isotopism ((34), Id, Id) ∈ S3
4, that is,

by switching their third and fourth rows. It is readily verified that the Latin square L2 is P-partial
isotopic to

L3 ≡

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

where P = Ent(L2) ∩ Ent(L3). That is,

L(P) ≡

1 2 3 4
2 3
3 2
4 3 2 1

To this end, it is enough to consider, for instance, the partial isotopism ((23), Id, Id) ∈ S3
4. Never-

theless, as shown in Example 8, no partial isotopism exists from L1 to L3.

The following example illustrates all the previous definitions in case of dealing with
partial Latin squares with empty cells.

Example 3. The partial Latin squares

L1 ≡

1 2 3
4 3

4 1
2

and L2 ≡

1 2 4

3 4 1
3 2

,

both of them in the set L4;8, are partial transpose of each other. Notice, for instance, that the first
condition of the definition holds because

Ent(L2) \ Ent(L1) = {(1, 3, 4), (3, 1, 3), (3, 2, 4), (4, 2, 3)}

and
{(3, 1, 4), (1, 3, 3), (2, 3, 4), (2, 4, 3)} ⊂ Ent(L1).

The second condition holds similarly. In addition, one can find a partial isotopism between
both partial Latin squares L1 and L2. To this end, it is enough to consider the isotopism θ =
((1423), (1324), Id) ∈ S3 and the subset P = Ent(L1) ∩ Ent(L2). That is,

L(P) ≡

1 2

1
2

∈ L4;4
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In particular,

L(Ent(L1) \ P)θ = L(Ent(L2) \ P) ≡

4

3 4
3

∈ L4;4.

Notice that both partial Latin squares L1 and L2 are neither transpose nor isotopic of each other.

Let us finish this subsection by focusing on the description of the image patterns based
on a given Latin square. To this end, let us recall that every Latin square in the set Ln;n2

constitutes the multiplication table of a quasigroup ([n], ·), where the set [n] is endowed
with a binary operation · so that the equations a · x = b and y · a = b have unique solutions
for x and y in [n], for all a, b ∈ [n]. Equivalently, the set [n] is endowed with a left-division \
and a right-division /, so that x = a\b in the first equation, and y = b/a in the second one.

Let T = t1t2 . . . tm be a plaintext, with ti ∈ [n], for all i ≤ m. For each positive integer
s ≤ n, it is defined [6–8] the encrypted string

Es(T) := e1e2 . . . em,

where

ei :=

{
s · t1, if i = 1,
ei−1 · ti, otherwise.

The resulting string can be desencrypted by means of a decryption map Ds based on
the already mentioned left-division. More specifically,

ti =

{
s\e1, if i = 1,
ei−1\ei, otherwise.

The sequential implementation of the just described encryption may give rise to image
patterns with certain fractal properties [13–16]. More specifically, if S = (s1, . . . , sr−1) is an
(r− 1)-tuple of positive integers such that si ≤ n, for all i < r, then the r×m image pattern
PS,T(L) = (pi,j) is defined as the r×m array satisfying that, for each positive integer j ≤ m,
we have that

pi,j :=


tj, if i = 1,
si−1 · pi−1,1, if i > 1 and j = 1,
pi,j−1 · pi−1,j, otherwise.

(2)

The image patterns arisen from the set of Latin squares of a given order only depend
on the distribution of the latter into isomorphism classes. More specifically, the following
result is known.

Lemma 1 ([36]). Let L1 and L2 be two Latin squares in Ln;n2 that are isomorphic by means of
an isomorphism ( f , f , f ) ∈ S3

n. Let S = (s1, . . . , sr−1) and f (S) = ( f (s1), . . . , f (sr−1)) be two
(r − 1)-tuples of positive integers, such that si ≤ n, for all i < r, and let T = t1 . . . tm and
f (T) = f (t1) . . . f (tm) be two plaintexts, with ti ∈ [n], for all i ≤ m. Then, the r × m image
patterns PS,T(L1) = (pi,j) and P f (S), f (T)(L2) = (p′i,j) coincide up to permutation of symbols.
More specifically, p′i,j = f (pi,j), for all positive integers i ≤ r and j ≤ m.
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2.2. Computational Algebraic Geometry

From here on, let K[X] denote the multivariate polynomial ring over a field K that
is defined on a finite set X of n variables. A point P ∈ Kn is a zero of a set S ⊆ K[X]
if f (P) = 0, for all f ∈ S. The set of all these zeros constitutes an affine algebraic set in
Kn. It is irreducible if it cannot be decomposed into two nonempty proper affine algebraic
sets. The dimension dim(V) of an affine algebraic set V is the maximal number of its
irreducible components minus one. Further, two affine algebraic sets V1 and V2 in Kn are
isomorphic if there exists a bijective map φ : V1 → V2 such that φ(P) = ( f1(P), . . . , fn(P))
and φ−1(Q) = (g1(Q), . . . , gn(Q)), for all (P, Q) ∈ V1 × V2, where fi, gi ∈ K[X], for all
i ≤ n. The map φ constitutes an isomorphism from V1 to V2. An isomorphism invariant of
affine algebraic sets is any property of the latter that is preserved by isomorphisms.

An ideal of the multivariate polynomial ring K[X] is a subset I ⊆ K[X] such that 0 ∈ I;
p + q ∈ I, for all p, q ∈ I; and p · q ∈ I, for all p ∈ I and q ∈ K[X]. It is said to be generated
by a set of polynomials {p1, . . . , pk} ⊆ K[X] if it is defined as

〈 p1, . . . , pk〉 :=

{
k

∑
i=1

qi · pi : qi ∈ K[X]

}
.

It is binomial if all its generators are. Further, it is radical if p ∈ I, for all p ∈ K[X] such
that pm ∈ I, for some positive integer m. Finally, it is zero-dimensional if dim(VK(I)) = 0,
where VK(I) is the affine algebraic set in Kn formed by all the zeros of the polynomials
within I. This dimension can be obtained from the reduced Gröbner basis of the ideal
I [40–42]. Let us recall in this regard that the leading monomial of a polynomial is its largest
monomial with respect to a given multiplicative well-ordering whose smallest element is
the constant monomial 1. Then, a Gröbner basis of an ideal I is any subset within I whose
leading monomials generate the so-called initial ideal, which is generated in turn by all the
leading monomials of the non-zero polynomials of I. If the ideal I is zero-dimensional and
radical, then the number of monomials that are not contained in its initial ideal coincides
with the cardinality of VK(I). Further, a Gröbner basis is reduced if all its polynomials are
monic and no monomial of its polynomials is generated by the leading monomials of the
rest of polynomials. The reduced Gröbner basis of an ideal is unique. It can always be
computed from Buchberger’s algorithm [43]. Arisen from this algorithm, one can find
the more efficient direct methods described by the algorithms F4 and F5 [44,45] and the
algorithm slimgb [46].

Throughout this paper, all the computations concerning Gröbner bases are carried
out on an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz processor and 8 GB of RAM,
with a maximum running time of less than 1 s. All of them are done by making use of
the algorithm slimgb that is implemented in the CAS SINGULAR. As multiplicative well-
ordering, it has been chosen the degree reverse lexicographical ordering. Finally, all the
computations are done on either the field Q of rational numbers or the field C of complex
numbers. In the first case, the following result holds.

Theorem 1 ([22]). The arithmetic complexity of computing the reduced Gröbner basis of a
zero-dimensional ideal I = 〈 p1, . . . , pm 〉 ⊂ Q[{x1, . . . , xn}] is bounded above by the value

max
{

∑m
i=1 nhi(

n+di
n ),

(
1
m ∑m

i=1 di

)n}
, where hi denotes the maximum size of the coefficients of

the generator pi, and di denotes its maximum degree, for all i ≤ m.

The following example focuses on the computation of the affine algebraic set of a
partial Latin square, which is described in the Introduction.

Example 4. Let us consider the partial Latin square L1 ∈ L4;8 described in Example 3. To compute
the affine algebraic set in the multivariate polynomial ring Q[{x1, x2, x3, x4}] of L1, we obtain from
Definition 1 the binomial ideal I(L1) defined as
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〈
x2

1 − x1, x1x2 − x2, x1x3 − x3, x2x3 − x4, x2x4 − x3, x1x3 − x4, x2
3 − x1, x3x4 − x2

〉
.

A reduced Gröbner basis of this binomial ideal is the subset{
x1 − x2, x3 − x4, x2

2 − x2, x2x4 − x3, x2
4 − x1

}
⊂ I(L1).

Hence, the ideal I(L1) is zero-dimensional. Its associated affine algebraic set is

VQ(I(L1)) = {(0, 0, 0, 0), (1, 1, 1, 1), (1, 1,−1,−1)}.

Being partial transpose and being P-partial isotopic, for some P ⊂ [n]× [n]× [n], are
two equivalence relations in the set Ln;m that give rise to identical affine algebraic sets.
Concerning the first of them, the following direct result is known.

Lemma 2 ([36]). If two partial Latin squares of the same order and weight are partial transpose of
each other, then their related affine algebraic sets coincide.

Nevertheless, some assumptions are required for the second equivalence relation. In
this regard, let us recall that the binomial ideal I(L) associated to a partial Latin square
L ∈ Ln determines the following partition of the set [n].

Part(L) := {{k ∈ [n] : xm − xk ∈ I(L)} : m ∈ [n]}

Then, the following result holds.

Proposition 1 ([36]). Let L1, L2 ∈ Ln;m be P-partial isotopic, for some subset P ⊆ Ent(L1) ∩
Ent(L2). If Part(L1) = Part(L2), then VK(L1) = VK(L2), whatever the field K is.

Example 5. Let us consider again the multivariate polynomial ring Q[{x1, x2, x3, x4}]. Since the
partial Latin squares L1 and L2 described in Example 3 are partial transpose of each other, Lemma 2
implies that VQ(I(L2)) = VQ(I(L1)), which is described in Example 4. Now, let us consider the
following three partial Latin squares in L4;8.

L′2 ≡

2 3
4 3

4 1
1 2

L′′2 ≡

3 4 1
2 1

2 3
4

L′′′2 ≡

4 3
4 1
1 2 3

2

Notice that L′2 is P-partial isotopic to L1 by means of the isotopism ((14), Id, Id) ∈ S3
4 and

the subset P ⊂ Ent(L1) ∩ Ent(L′2) such that Ent(L1) \ P = {(1, 1, 1)}. Further, L′′2 and L′′′2
are both isotopic (and, hence, ∅-partial isotopic) to L1 by means, respectively, of the isotopisms
(Id, Id, (13)(24)) and ((132), Id, Id) in S3

4.
A simple computation enables us to ensure that the reduced Gröbner basis of the binomial

ideals I(L1) and I(L′2) coincide and, hence, VQ(I(L′2)) = VQ(I(L1)). This equality also holds
from Proposition 1 and the fact that P(L1) = P(L′2) = {{1, 2}, {3, 4}}, which derives straight-
forwardly in any case from the mentioned coincidence of reduced Gröbner bases.

Proposition 1 also enables us to ensure that VQ(I(L′′2 )) = VQ(I(L1)), but, here, the reduced
Gröbner basis of the binomial ideal I(L′′2 ) differs from that one of I(L1). More specifically, the
reduced Gröbner basis of I(L′′2 ) is the subset{

x1 − x2, x3 − x4, x2x4 − x1, x2
2 − x3, x2

4 − x4

}
⊂ I(L′′2 ).
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Finally, the reduced Gröbner basis of the binomial ideal I(L′′′2 ) is the subset{
x1 − x2, x2 − x4, x3 − x4, x2

4 − x4

}
⊂ I(L′′2 ).

Hence, P(L′′′2 ) = {{1, 2, 3, 4}} 6= P(L1) and V(L′′′2 ) = {(0, 0, 0, 0), (1, 1, 1, 1)}.

3. Standard Image Patterns Associated to Latin Squares

Lemma 1 establishes the existing relationship among image patterns arisen from Latin
squares and the distribution into isomorphism classes of the latter. This section focuses
on a particular subset of image patterns, which may enable one to determine, even from a
visual way, whether two Latin squares are not isomorphic. In this regard, let m, n, r and
s be four positive integers such that s ≤ n. We define the s-standard r × m image pattern
associated to a Latin square L ∈ Ln;n2 as Pr,m;s(L) := PS,T(L), where S is the constant
(r− 1)-tuple (s, . . . , s) and T is the constant plaintext s . . . s of length m. We call it constant
if all its entries coincide. In addition, we term the set {Pr,m;s : s ∈ [n]} the standard set of
r×m image patterns associated to L. From Lemma 1, if the standard sets of r×m image
patterns associated to two Latin squares do not coincide up to permutation of symbols,
then these Latin squares are not isomorphic. As such, the analysis of standard sets turns
out to be of particular interest for distinguishing non-isomorphic Latin squares even from
a simple visual way.

To illustrate this fact, let us focus on the standard 90× 90 image patterns associated
to each one of the 35 isomorphism classes in which the set of Latin squares of order
n = 4 is distributed. (The case n = 3 was already analyzed by Falcón, R.M. et al. [36].)
A representative of each one of these classes is described in Figure 1. Their respective
standard image patterns are shown in Figure 2. It is formed by four collages in form of
7× 5 arrays. They were created by means of the commands Colorize and ImageAssemble
in WOLFRAM MATHEMATICA [47]. Each standard image pattern is represented as a pixel
array so that each symbol is uniquely replaced by a color within a given palette of four
colors. Each cell within any of these arrays constitutes the corresponding standard image
pattern that is associated to the Latin square described at the same position within Figure 1.
The union of the four standard images patterns associated to such a Latin square constitutes
its standard set of 90× 90 image patterns.

These standard sets can be distributed according to the following classification.

1. Constant standard image patterns.
A simple observation of the monochromatic cells in Figure 2 enables us to determine
this type of standard image patterns. Notice that the s-standard image pattern of a
Latin square L = (li,j) is constant if and only if ls,s = s.

2. Fractal standard image patterns.
From a simple visual inspection, one can observe that some of the cells in Figure 2
have a fractal character. It is the case, for instance, of the 2-standard image pattern
associated to the Latin square L4.1.

3. Non-fractal standard image patterns.
The remaining cells do not have a clear fractal character. Their spectrum goes from
what one may label as a chaotic behavior (see, for instance, the 2-standard image
pattern associated to L4.30) to a shadow of fractal behavior (see, for instance, the
2-standard image pattern related to L4.11). In any case, we do not distinguish in this
paper the fractal gradation of the image patterns under consideration.
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1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2

1 2 3 4
2 3 4 1
4 1 2 3
3 4 1 2

1 2 3 4
3 1 4 2
4 3 2 1
2 4 1 3

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

L4.1 L4.2 L4.3 L4.4 L4.5
1 2 4 3
2 1 3 4
3 4 1 2
4 3 2 1

1 2 4 3
2 1 3 4
3 4 2 1
4 3 1 2

1 2 4 3
2 1 3 4
4 3 1 2
3 4 2 1

1 2 4 3
2 1 3 4
4 3 2 1
3 4 1 2

1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

L4.6 L4.7 L4.8 L4.9 L4.10
1 2 4 3
2 3 1 4
4 1 3 2
3 4 2 1

1 2 4 3
3 1 2 4
2 4 3 1
4 3 1 2

1 2 4 3
3 1 2 4
4 3 1 2
2 4 3 1

1 2 4 3
3 4 1 2
2 1 3 4
4 3 2 1

1 2 4 3
3 4 2 1
2 1 3 4
4 3 1 2

L4.11 L4.12 L4.13 L4.14 L4.15
1 2 4 3
3 4 2 1
2 3 1 4
4 1 3 2

1 2 4 3
3 4 2 1
4 1 3 2
2 3 1 4

1 2 4 3
3 4 2 1
4 3 1 2
2 1 3 4

1 3 4 2
2 1 3 4
3 4 2 1
4 2 1 3

1 3 4 2
2 1 3 4
4 2 1 3
3 4 2 1

L4.16 L4.17 L4.18 L4.19 L4.20
1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3

1 3 4 2
2 4 3 1
4 2 1 3
3 1 2 4

1 3 4 2
3 1 2 4
4 2 1 3
2 4 3 1

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

2 1 3 4
1 3 4 2
3 4 2 1
4 2 1 3

L4.21 L4.22 L4.23 L4.24 L4.25
2 1 3 4
1 3 4 2
4 2 1 3
3 4 2 1

2 1 3 4
3 4 1 2
1 2 4 3
4 3 2 1

2 1 3 4
3 4 2 1
1 2 4 3
4 3 1 2

2 1 3 4
3 4 2 1
1 3 4 2
4 2 1 3

2 1 3 4
3 4 2 1
4 2 1 3
1 3 4 2

L4.26 L4.27 L4.28 L4.29 L4.30
2 1 3 4
3 4 2 1
4 3 1 2
1 2 4 3

2 3 1 4
1 4 2 3
3 2 4 1
4 1 3 2

2 3 1 4
4 1 3 2
3 2 4 1
1 4 2 3

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

L4.31 L4.32 L4.33 L4.34 L4.35

Figure 1. Isomorphism classes of Latin squares of order four.
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1-standard image patterns 2-standard image patterns

3-standard image patterns 4-standard image patterns

Figure 2. Standard 90× 90 image patterns associated to the 35 representatives of isomorphism classes
of Latin squares of order four described in Figure 1.

Table 1 shows the values ]csi and ]fsi corresponding, respectively, to the number of
constant and fractal standard image patterns within the standard set of 90× 90 image
patterns of the Latin square L4.i in Figure 1, for every positive integer i ≤ 35. As intro-
duced above, the number of its non-fractal standard image patterns would be, therefore,
4− ]csi − ]fsi. Notice that the first parameter characterizes the isomorphism classes having
L4.17 and L4.24 as representatives, which are the only ones containing respectively three
and four constant standard image patterns.

In addition, the representative L4.11 is the only one that is associated to two constant
and two non-fractal standard image patterns. The remaining standard sets are not easy
to distinguish visually, particularly those ones containing non-fractal standard image
patterns. An alternative approach to deal with these cases consists of making use of
different techniques concerning computational algebraic geometry [36].
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Table 1. Number of constant (]csi), fractal (]fsi) and non-fractal (]nfsi) 90 × 90 standard image
patterns associated to the 35 representatives (L4.i) described in Figure 1.

i ]csi ]fsi i ]csi ]fsi i ]csi ]fsi

1 1 3 13 1 0 25 0 0
2 1 3 14 2 1 26 0 0
3 1 0 15 2 2 27 0 0
4 1 1 16 1 0 28 0 4
5 1 3 17 3 0 29 0 0
6 1 3 18 2 2 30 0 0
7 1 3 19 1 1 31 0 4
8 1 3 20 1 0 32 0 4
9 1 3 21 1 3 33 0 4
10 1 0 22 2 2 34 1 3
11 2 0 23 1 3 35 1 3
12 2 1 24 4 0

Let us define the affine algebraic set associated to the s-standard r × m image pat-
tern Pr,m;s(L) = (pi,j) of a Latin square L ∈ Ln;n2 in the multivariate polynomial ring
Q[{x1, . . . , xn}] as the set of zeros of the binomial ideal

I(Pr,m;s(L)) := 〈 xpi,j−1 xpi−1,j − xpi,j : 1 < i ≤ r, 1 < j ≤ m 〉.

From (1) and (2), it is I(Pr,m;s(L)) ⊆ I(L) and hence, VQ(I(L)) ⊆ VQ(I(Pr,m;s(L))).

Example 6. Let us consider the Latin square L4.12 described in Figure 1 and the multivariate
polynomial ring C[{x1, x2, x3, x4}]. The reduced Gröbner basis associated to the binomial ideal
I(L4.12) is the subset {

x1 − x4, x2 − x4, x3 − x4, x2
4 − x2

}
⊂ I(L4.12),

whereas that one associated to the ideal I(P90,90;4(L4.12)) is the subset{
x1 − x2, x3 − x4, x2

2 − x2, x2x4 − x4, x2
4 − x2

}
⊂ I(P90,90;4(L)).

Hence, both ideals are zero-dimensional. Their associated affine algebraic sets are

VC(I(L4.12)) = {(0, 0, 0, 0), (1, 1, 1, 1)}

and
VC(I(P90,90;4(L4.12))) = {(0, 0, 0, 0), (1, 1, 1, 1), (1, 1,−1,−1)}.

Of course, if the standard sets of r×m image patterns associated to two Latin squares
of the same order n coincide, up to permutation of symbols, then the multisets formed
by the respective cardinalities of each one of the n affine algebraic sets related to their
standard image patterns must also coincide. In particular, from Lemma 1, these multisets
coincide for any two isomorphic Latin squares. To illustrate these aspects, Table 2 shows
all these cardinalities for the standard image patterns described in Figure 2. It is so that
there exist ten isomorphism classes of Latin squares of order four that are related to the
multiset {2, 2, 2, ∞}, nine classes to {2, 2, 2, 2}, six classes to {3, 3, ∞, ∞}, four classes
to {2, 2, ∞, ∞}, two classes to {2, 3, ∞, ∞} and another two classes to {∞, ∞, ∞, ∞}.
Moreover, there are two isomorphism classes that are characterized by their respective
multisets. Their representatives are the Latin squares L4.17 and L4.35, which are, respectively,
associated to the multisets {2, ∞, ∞, ∞} and {5, 5, ∞, ∞}. In addition, notice that the
combination of Tables 1 and 2 characterizes the isomorphism class having the Latin square
L4.34 as its representative.
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Table 2. Cardinalities (]Vi,s) of the affine algebraic set VQ(I(P90,90;s(L4.i))), for all positive integers
i ≤ 35 and s ≤ 4.

i ]Vi,1 ]Vi,2 ]Vi,3 ]Vi,4 i ]Vi,1 ]Vi,2 ]Vi,3 ]Vi,4

1 ∞ ∞ 3 3 19 ∞ 2 2 2
2 ∞ ∞ 3 3 20 ∞ 2 2 2
3 ∞ 2 2 2 21 ∞ 2 2 2
4 ∞ 2 2 2 22 ∞ 2 2 ∞
5 ∞ 2 2 2 23 ∞ 2 2 2
6 ∞ ∞ 3 3 24 ∞ ∞ ∞ ∞
7 ∞ ∞ 3 3 25 2 2 2 2
8 ∞ ∞ 3 3 26 2 2 2 2
9 ∞ ∞ 3 3 27 2 2 2 2

10 ∞ 2 2 2 28 2 2 2 2
11 ∞ 2 ∞ 2 29 2 2 2 2
12 ∞ 2 ∞ 3 30 2 2 2 2
13 ∞ 2 2 2 31 2 2 2 2
14 ∞ 3 ∞ 2 32 2 2 2 2
15 ∞ 2 ∞ 2 33 2 2 2 2
16 ∞ 2 2 2 34 ∞ ∞ ∞ ∞
17 ∞ 2 ∞ ∞ 35 ∞ ∞ 5 5
18 ∞ 2 2 ∞

To facilitate the recognition and analysis of similar standard sets for distinguishing
non-isomorphic Latin squares of the same order n, even from a simple visual observation,
one may focus on those ones having exactly the same positive number of fractal standard
image patterns, as well as the same number of constant standard image patterns and the
same multisets of cardinalities of their related affine algebraic sets. Let us illustrate this fact
with the case n = 4, by means of the values in Tables 1 and 2 concerning the standard sets
described in Figure 2.

• The standard sets of both Latin squares L4.4 and L4.19 are the only ones having exactly
one constant and one fractal standard image patterns. To prove that they are indeed
non-isomorphic, it is enough to focus on their fractal standard image patterns. In
both cases, they correspond to their respective 4-standard image patterns, for which a
simple visual observation of Figure 2 enables us to ensure that they are not coincident,
even after a permutation of colors.

• A similar reasoning may be done for the standard sets of the Latin squares L4.15, L4.18
and L4.22, which are the only ones having two constant and two fractal standard image
patterns. A simple observation of Figure 2 enables us to ensure that their respective
sets of fractal standard image patterns are pairwise distinct, even after a permutation
of colors.

• The same happens with the four Latin squares L4.28, L4.31, L4.32 and L4.33.
• A more interesting case is that one concerning the eleven isomorphism classes whose

respective standard sets contain exactly one constant and three fractal standard image
patterns. Table 2 partitions them into four disjoint subsets. Two of them have already
been characterized by these parameters. They correspond to the Latin squares L4.34
and L4.35. The other two subsets are the following ones.

– The subset formed by the three Latin squares L4.5, L4.21 and L4.23. Similarly to the
previous cases, their standard sets are visually characterized in a simple way.

– The subset formed by the six Latin squares L4.1, L4.2, L4.6, L4.7, L4.8 and L4.9. Here,
the visual distinction of their fractal standard image patterns in Figure 2 is not
so evident. It is so that all their 2-standard image patterns coincide and a much
more detailed observation of their 3- and 4-standard sets is required for ensuring
that their standard sets are pairwise distinct.
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• A detailed observation is also required for distinguishing visually the standard sets of
the Latin squares L4.12 and L4.14, both of them containing exactly two constant and one
fractal standard image pattern. More specifically, it may be checked (either visually
or by making use of Definition 2) that the second row of the fractal standard image
pattern of L4.12 contains all the four colors or symbols under consideration, whereas
that one of L4.14 only contains two of them.

None of the standard sets of the remaining ten isomorphism classes contains fractal
standard image patterns, which makes much more difficult their visual distinction. Ac-
cording to their respective parameters, they can be partitioned into the following two sets.

• The subset formed by the five Latin squares L4.3, L4.10, L4.13, L4.16 and L4.20. Their
standard sets contains exactly one constant standard image patterns. Notice that L4.3
and L4.13 are respective transpose of L4.10 and L4.20.

• The subset formed by the five Latin squares L4.25, L4.26, L4.27, L4.29 and L4.30. None of
their standard sets contain constant standard image patterns.

A possible approach to analyze the non-fractal standard image patterns of both subsets
is reducing their dimension, which is equivalent to zoom in to the left upper corner of the
original standard image patterns. Based on this approach, it is simply verified from the
results in Figures 3 and 4 that the standard sets of 3× 3 image patterns associated to these
two subsets are pairwise distinct, even allowing a possible permutation of symbols.

i P3,3;1(L4.i) P3,3;2(L4.i) P3,3;3(L4.i) P3,3;4(L4.i)

3

10

13

16

20

Figure 3. Standard 3× 3 image patterns associated to L4.3, L4.10, L4.13, L4.16 and L4.20.
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i P3,3;1(L4.i) P3,3;2(L4.i) P3,3;3(L4.i) P3,3;4(L4.i)

25

26

27

29

30

Figure 4. Standard 3× 3 image patterns associated to L4.25, L4.26, L4.27, L4.29 and L4.30.

4. A Computational Algebraic Geometry Approach to Deal with Being Either Partial
Transpose or Partial Isotopic

We show in Section 3 how the computation of isomorphism invariants concerning
affine algebraic sets based on a set of Latin squares plays a fundamental role in the recogni-
tion and analysis of their related image patterns. Apart from these invariants, the existence
of certain equivalence relations among partial Latin squares of the same order and weight is
also known [36], which give rise to the same or isomorphic affine algebraic sets. It is the case
of being partial transpose and being P-partial isotopic, for some subset P ⊂ [n]× [n]× [n]
(see Lemma 2 and Proposition 1). Let us finish this paper by showing how computational
algebraic geometry is also an interesting approach to deal with both equivalence relations.
To this end, let us introduce a pair of ideals within a multivariate polynomial ring, whose
respective affine algebraic sets are respectively identified with the set of partial Latin
squares that are partial transpose of another given partial Latin square, and the set of
partial isotopisms between two partial Latin squares.

Firstly, for each positive integer n, we consider the set of n3 variables

XPT
n := {xijk : 1 ≤ i, j, k ≤ n}.

Then, for each positive integer m ≤ n2, it is known [18] (see also [27,29] for a pair of first
approaches in this regard) that the set Ln;m is uniquely identified with the set of zeros of
the affine algebraic set of the following ideal in Q[XPT

n ].

In;m :=
〈

x2
ijk − xijk : 1 ≤ i, j, k ≤ n

〉
+
〈

xijkxi′ jk : 1 ≤ i, i′, j, k ≤ n, i < i′
〉

+
〈

xijkxij′k : 1 ≤ i, j, j′, k ≤ n, j < j′
〉

+
〈

xijkxijk′ : 1 ≤ i, j, k, k′ ≤ n, k < k′
〉

+

〈
m−

n

∑
i,j,k=1

xijk

〉
.
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Let us recall here that the sum of two ideals I and J is the ideal I + J = {i+ j : i ∈ I, j ∈
J}. Each addend constitutes a subideal of the resulting ideal. Hence, our ideal In is the sum
of four subideals. The first one implies that any zero of In is of the form (a111, . . . , annn) ∈
{0, 1}n3

. The remaining subideals imply that this zero is uniquely identified with a partial
Latin square L = (li,j) ∈ Ln;m such that li,j = k ∈ [n] if and only if aijk = 1.

Now, for each partial Latin square L ∈ Ln;m, let us define the following ideal in the
multivariate polynomial ring Q[XPT

n ].

IPT(L) := In;m+
〈
(xijk − 1) · (xjik − 1) : (i, j, k) ∈ Ent(L)

〉
〈

xijk, xjik : {(i, j, k), (j, i, k)} ∩ Ent(L) = ∅, 1 ≤ i, j, k ≤ n
〉

.

Lemma 3. The set of partial Latin squares that are partial transpose to a partial Latin square
L ∈ Ln;m is uniquely identified with the affine algebraic set of the ideal IPT(L).

Proof. Let (a111, . . . , annn) ∈ {0, 1}n3
be a zero of the ideal IPT(L). In particular, it must

be a zero of the ideal In;m and, hence, it is uniquely identified with a partial Latin square
L′ ∈ Ln;m such that (i, j, k) ∈ Ent(L′) if and only if aijk = 1. From the subideal〈

(xijk − 1) · (xjik − 1) : (i, j, k) ∈ Ent(L)
〉

,

we have that, if (i, j, k) ∈ Ent(L), then either aijk = 1 or ajik = 1. As a consequence, if
(i, j, k) ∈ Ent(L) \ Ent(L′), then (j, i, k) ∈ Ent(L′).

Now, let (i, j, k) ∈ Ent(L′) \ Ent(L). In particular, it must be aijk = 1. If (j, i, k) 6∈
Ent(L), then the last subideal describing IPT(L) implies that aijk = 0, which is a contra-
diction. Hence, (j, i, k) ∈ Ent(L). Therefore, the partial Latin squares L and L′ are partial
transpose of each other.

Example 7. Let us consider the partial Latin square

L ≡
1 2
3 1
2 3

∈ L3;5.

The reduced Gröbner basis of the ideal IPT(L) ⊂ Q[XPT
3 ] is the subset

{x2
321 − x321, x2

312 − x312, x231 + x321 − 1, x213 − x312, x212 + x312 − 1}
∪ {x132 + x312 − 1, x123 + x312 − 1, x122 − x312, x333 − 1, x111 − 1, x332, x331, x323}
∪ {x322, x313, x311, x233, x232, x223, x222, x221, x211, x133, x131, x121, x113, x112} ⊂ IPT(L).

Hence, the affine algebraic set of the ideal IPT(L) is formed by four points that are uniquely associated
to L and the following three partial Latin squares.

1 3 2
2 1

3

1 3 2
2

1 3

1 2
3
2 1 3

From Lemma 3, computational algebraic geometry can be used for distributing partial
Latin squares of the same order n according to the equivalence relation of being partial
transpose. The following result establishes the computational cost that is required to this
end in case of being n ≥ 2. (The case n = 1 is trivial.)

Theorem 2. Let L ∈ Ln, with n ≥ 2. The arithmetic complexity of computing the reduced
Gröbner basis of the ideal IPT(L) over the field Q is bounded above by



Mathematics 2021, 9, 666 16 of 26

(
2
(
3n3 − 3n2 + 9n + |Ent(L)|

)
+ α1 + 2α2 + 1

3n3 − 3n2 + 9n + |Ent(L)|+ α1 + 2α2 + 1

)n3

< 2n3
,

where
α1 := |{(i, i, k) 6∈ Ent(L) : 1 ≤ i, k ≤ n}|

and

α2 := |{(i, j, k) : {(i, j, k), (j, i, k)} ∩ Ent(L) = ∅, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}|.

Proof. The ideal IPT(L) is zero-dimensional, because VQ(IPT(L)) ⊂ {0, 1}n3
. Thus, the

result holds from Theorem 1 and the generators of this ideal, whose coefficients have all of
them size one. To see it, Table 3 shows the maximum degree of each one of these generators,
together with the number of generators of each type. Then, the result follows because,
from Theorem 1, the required arithmetic complexity is bounded above by the maximum
value between

n3
((

3n3 − 3n2 + 9n + |Ent(L)|
)(n3 + 2

n3

)
+ (α1 + 2α2 + 1)(n3 + 1)

)
and (

2
(
3n3 − 3n2 + 9n + |Ent(L)|

)
+ α1 + 2α2 + 1

3n3 − 3n2 + 9n + |Ent(L)|+ α1 + 2α2 + 1

)n3

.

Table 3. Study of the generators of the ideal IPT(L).

Generator Type Maximum Degree Number of Generators

x2
ijk − xijk 2 3n
xijkxi′ jk 2 n3 − n2 + 2n
xijkxij′k 2 n3 − n2 + 2n
xijkxijk′ 2 n3 − n2 + 2n

m−∑n
i,j,k=1 xijk 1 1

(xijk − 1) · (xjik − 1) 2 |Ent(L)|
xiik 1 α1

xijk (with i 6= j) 1 2α2

A computational algebraic geometry approach can also be described in the case of
dealing with the equivalence relation of being P-partial isotopic, for some subset P ⊂
[n]× [n]× [n]. It follows similarly to the approach concerning the equivalence relation of
being isotopic, which was described in (Theorem 13, [18]). To this end, for each positive
integer n, let us consider the set of 3n2 variables

XPI
n :=

{
xij, yij, zij : 1 ≤ i, j ≤ n

}
.
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Then, for each pair of partial Latin squares L1 = (li,j) and L2 = (l′i,j) in the set Ln;m,

let us define the following ideal in the multivariate polynomial ring Q[XPI
n ].

IPI(L1, L2) :=
〈

x2
ij − xij, y2

ij − yij, z2
ij − zij : 1 ≤ i, j ≤ n

〉
+

〈
1−

n

∑
j=1

xij, 1−
n

∑
j=1

xji : 1 ≤ i ≤ n

〉

+

〈
1−

n

∑
j=1

yij, 1−
n

∑
j=1

yji : 1 ≤ i ≤ n

〉

+

〈
1−

n

∑
j=1

zij, 1−
n

∑
j=1

zji : 1 ≤ i ≤ n

〉

+

〈
xii′yjj′(zli,j l′i′ ,j′

− 1) : 1 ≤ i, i′, j, j′, li,j, l′i′ ,j′ ≤ n, with li,j 6= l′i,j

〉
+
〈

xii′yjj′ : 1 ≤ i, i′, j, j′ ≤ n, li,j = ∅ 6∈
{

l′i,j, l′i′ ,j′
}〉

+
〈

xii′yjj′ : 1 ≤ i, i′, j, j′ ≤ n, li,j = l′i,j = ∅ 6= l′i′ ,j′
〉

+
〈

xii′yjj′ : 1 ≤ i, i′, j, j′ ≤ n, li,j 6= ∅ = l′i′ ,j′ and li,j 6= l′i,j
〉

.

Lemma 4. Two partial Latin squares L1 and L2 in the set Ln;m are P-partial isotopic, for some
subset P ⊂ [n]× [n]× [n], if and only if the affine algebraic set of the ideal IPI(L1, L2) is non-empty.

Proof. Let us suppose the existence of a zero (a11, . . . , ann, b11, . . . , bnn, c11, . . . , cnn) ∈
{0, 1}3n2

of the ideal IPI(L1, L2). The first three subideals describing this ideal imply
that this zero is uniquely related to an isotopism ( f , g, h) ∈ S3

n such that, for each pair of
positive integers i, j ≤ n, the following assertions hold.

• f (i) = j if and only if aij = 1.
• g(i) = j if and only if bij = 1.
• h(i) = j if and only if cij = 1.

The fourth subideal implies that this isotopism constitutes a one-to-one map from
Ent(L1) \ Ent(L2) to Ent(L2). The fifth one implies that, if the cell (i, j) is empty in L1 but
not in L2, then the former cannot be mapped to a non-empty cell in L2. Further, the sixth
subideal implies that, if the cell (i, j) is empty in both L1 and L2, then it cannot be mapped
to a non-empty cell in L2. Finally, the last subideal implies that, if the cell (i, j) contains
distinct symbols in L1 and L2, then it cannot be mapped to an empty cell in L2. Under such
assumptions, it is readily verified that the zero under consideration is uniquely identified
with a P-partial isotopism from L1 to L2, where P ⊆ Ent(L1) ∩ Ent(L2).

Example 8. Let us consider the Latin squares L1 and L3 in Example 2. The reduced Gröbner basis
of the ideal IPI(L1, L3) ⊂ Q[XPI

4 ] is the subset {1} ⊂ IPI(L1, L3). Thus, the related affine algebraic
set is empty and hence, no partial isotopism exists between L1 and L3.

Example 9. Let us consider the partial Latin square L1 and L2 described in Example 3. The reduced
Gröbner basis of the ideal IPI(L1, L2) ⊂ Q[XPI

4 ] is the subset

{z2
22 − z22, z21 + z22 − 1, z12 + z22 − 1, z11 − z22, z44 − 1, z43, z42, z41, z34, z33 − 1}

∪ {z32, z31, z24, z23, z14, z13, y44, y43, y42, y41 − 1, y34, y33, y32 − 1, y31, y24 − 1, y23}
∪ {y22, y21, y14, y13 − 1, y12, y11, x44, x43, x42 − 1, x41, x34, x33, x32, x31 − 1, x24}
∪ {x23 − 1, x22, x21, x14 − 1, x13, x12, x11} ⊂ IPI(L1, L2).
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Hence, the affine algebraic set of the ideal IPI(L1, L2) is formed by two points that are uniquely
associated to the isotopisms ((1423), (1324), (12)) and ((1423), (1324), Id) in S3

4. Both of them
constitute P-partial isotopisms from L1 to L2, where P = Ent(L1) ∩ Ent(L2).

From Lemma 4, computational algebraic geometry can be used for distributing partial
Latin squares according to the equivalence relation of being P-partial isotopic, for some
subset P ⊂ [n]× [n]× [n]. The following result establishes the computational cost that is
required to this end in case of being n > 2. (The case n = 1 is trivial.)

Theorem 3. Let L1 and L2 be two partial Latin squares in Ln, with n ≥ 2. The arithmetic
complexity of computing the reduced Gröbner basis of the ideal IPI(L1, L2) over the field Q is
bounded above by (

3β1 + 2(3n2 + β2 + β3 + β4) + 6n
3n2 + 6n + β1 + β2 + β3 + β4

)3n2

< 33n2
,

where

β1 :=
∣∣∣{(i, i′, j, j′) ∈ [n]× [n]× [n]× [n] : li,j, l′i′ ,j′ ∈ [n], li,j 6= l′i′ ,j′

}∣∣∣,
β2 :=

∣∣∣{(i, i′, j, j′) ∈ [n]× [n]× [n]× [n] : li,j = ∅ 6∈
{

l′i,j, l′i′ ,j′
}}∣∣∣,

β3 :=
∣∣∣{(i, i′, j, j′) ∈ [n]× [n]× [n]× [n] : li,j = l′i,j = ∅ 6= l′i′ ,j′

}∣∣∣
and

β4 :=
∣∣∣{(i, i′, j, j′) ∈ [n]× [n]× [n]× [n] : li,j 6= ∅ = l′i′ ,j′ and li,j 6= l′i,j

}∣∣∣
Proof. The ideal IPI(L1, L2) is zero-dimensional, because VQ(IPI(L)) ⊂ {0, 1}3n2

. Then,
similarly to the proof of Theorem 2, the result holds from Theorem 1 and the generators
of this ideal, whose coefficients have all of them size one. To see it, Table 4 shows the
maximum degree of each one of these generators, together with the number of generators
of each type. Then, the result holds because, from Theorem 2, the required arithmetic
complexity is bounded above by the maximum value between

3n2
(

β1

(
3n2 + 3

3n2

)
+ (3n2 + β2 + β3 + β4)

(
3n2 + 2

3n2

)
+ 6n(3n2 + 1)

)
.

and (
3β1 + 2(3n2 + β2 + β3 + β4) + 6n

3n2 + 6n + β1 + β2 + β3 + β4

)3n2

.
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Table 4. Study of the generators of the ideal IPI(L1, L2).

Generator Type Maximum Degree Number of Generators

x2
ij − xij 2 n2

y2
ij − yij 2 n2

z2
ij − zij 2 n2

1−∑n
j=1 xij 1 n

1−∑n
j=1 xji 1 n

1−∑n
j=1 yij 1 n

1−∑n
j=1 yji 1 n

1−∑n
j=1 zij 1 n

1−∑n
j=1 zji 1 n

xii′yjj′ (zli,j l′i′ ,j′
− 1) 3 β1

xii′yjj′ 2 β2 + β3 + β4

5. Conclusions and Further Work

In this paper, we show the relevant role that computational algebraic geometry plays
in the recognition and analysis of image patterns associated to Latin squares. To this
end, we introduce the concepts of standard image pattern and standard set of a given
Latin square. Moreover, a new affine algebraic set associated to any such image pattern is
described, whose isomorphism invariants can be used for distinguishing different standard
sets and hence, for determining in a computationally fast way (even visually) whether two
Latin squares are not isomorphic.

The main limitation of the methodology here proposed is the exponential complexity
for computing Gröbner bases, which is highly dependent on the number of underlying
variables. This number coincides in our case with the order of the Latin square under
consideration. Due to it, this limitation is not an inconvenience at all for dealing with the
smallest orders for which no results on the distribution of Latin squares into isomorphism
classes is known (n ≥ 12). In fact, this computational approach turns out to be an efficient
way for dealing with Latin squares of much higher orders. To illustrate this fact, let us
consider the Latin square of order 256 that is represented by colors in Figure 5. It was
randomly constructed by following Algorithm 1 in [48], which gives rise to random Latin
squares with possible implementation in cryptography. Notice in any case that every Latin
square generated in this way is isotopic to a diagonally cyclic Latin square [49]. Figure 6
shows the running time required by an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz
processor and 8 GB of RAM for computing both the reduced Gröbner basis of the binomial
ideal associated to the s-standard 90× 90 image pattern of this Latin square described in
Figure 5, for every positive integer s ≤ 256, together with the cardinality of its related
affine algebraic set. The maximum running time was 3.45 s, which is reached for s = 101.
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Figure 5. Latin square of order 256 represented by colors.

Figure 6. Running time (in seconds) required for computing the cardinality of the set
VC(I(P90,90;s(L))), with 1 ≤ s ≤ 256, and L being the Latin square described in Figure 5.

It is remarkable that the methodology here described may be particularized in order
to make more efficient the computation of group isomorphisms. Let us recall in this regard
that every associative quasigroup constitutes a group. To illustrate this fact, let us consider
both the dihedral and the abelian groups of order six, whose respective multiplication
tables are the Latin squares

D6 ≡

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 1 3 2
5 4 6 2 1 3
6 5 4 3 2 1

and Z6 ≡

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

.

Their respective standard sets of 90× 90 image patterns are shown in the 2× 6 collage
of Figure 7. Both standard sets are formed by a constant and five fractal standard image
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patterns. It is readily verified from a visual way that the standard set of the dihedral group
(top row of the collage) does not coincide with the standard set of the abelian group (bottom
row of the collage), even allowing a possible permutation of symbols. In this simple way,
we may ensure that these two groups are not isomorphic.

Figure 7. Standard sets of 90× 90 image patterns associated to the dihedral group (top) and the
abelian group (bottom) of order six.

A similar conclusion arises from the computation of the reduced Gröbner bases
concerning both types of affine algebraic sets associated to the dihedral and the abelian
group of order six. From this computation, we have that

|VC(I(D6))| = 3 and |VC(I(Z6))| = 7.

In addition, we have that |VC(I(P90,90;s(D6)))| = ∞, for every positive integer s ≤ 6,
but

|VC(I(P90,90;2(Z6)))| = |VC(I(P90,90;6(Z6)))| = 7.

Further, the methodology here described can be generalized for other types of arrays
non-subjected to the Latin square condition. In this regard, it would be interesting to
delve, for instance, into the study of standard sets of image patterns associated to (partial)
semigroups or, more generally, to (partial) magmas. Even if they may not be endowed with
a left or right division (as quasigroups are), their multiplication tables enable us to define
r×m image patterns based on these algebraic structures by making use to this end of the
corresponding conditions described in (2) (see [50], for a first approach in this regard in
case of dealing with magmas).

These conditions may be taken into account to deal also with arrays related to other
types of mathematical structures, not only algebraic ones. To illustrate this aspect, let us
focus on the classical problem in graph theory of determining whether two given graphs
are isomorphic or not. Every adjacency matrix of a given simple graph of order n is a binary
symmetric n× n array with main diagonal of zeros. It may be considered the multiplication
table of a finite magma of set of symbols {0, 1, . . . , n− 1} from which one could define
r×m image patterns satisfying the corresponding conditions in (2). Then, standard sets of
s-standard image patterns, with s ∈ {0, 1 . . . , n− 1}, could be defined similarly to those
ones described in Section 3. In this way, the standard set of two isomorphic regular graphs
would always coincide, up to permutations of symbols. This fact may therefore be used for
distinguishing non-isomorphic regular graphs, even from a visual way. Thus, for instance,
the following two arrays constitute respective incidence matrices of the complete graph K4
and the cycle C4.

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

The standard sets of the 90× 90 image patterns associated to both graphs are shown
in the 2× 4 collage of Figure 8. Notice that the standard set of the complete graph K4 (top
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row of the collage) is formed by one constant and three fractal image patterns, whereas
that one of the cycle C4 is formed by one constant, two fractal and one almost constant
(except for its first row, the 3-standard image pattern is monochromatic) image patterns.
Hence, these two regular graphs are not isomorphic.

Figure 8. Standard sets of 90× 90 image patterns associated to the complete graph K4 (top) and the
cycle C4 (bottom).

These examples illustrate the relevance that standard sets of image patterns may have
for distributing distinct types of algebraic and combinatorial structures into isomorphism
classes. A much more comprehensive study dealing with their recognition and analysis is
required in any case. It is established as further work. Similar to the methodology here
implemented, computational algebraic geometry may be an interesting approach to this
end. Furthermore, notice that this paper has not dealt with the fractal gradation of the
image patterns under consideration. A comprehensive analysis of their fractal dimensions
is of particular interest in order to improve the efficiency of this computational approach.

This paper also focuses on the possible use of computational algebraic geometry for
dealing with the distribution of partial Latin squares according to the equivalence relations
of being either partial transpose or P-partial isotopic, for some subset P ⊂ [n]× [n]× [n].
An exhaustive enumeration of these classes is also established as further work. Concerning
the distribution into P-partial isotopism classes, it is required to delve into the study of
P-partial autotopisms (that is, P-partial isotopisms from a partial Latin square to itself)
and make use of the Orbit-Stabilizer Theorem in a similar way to the already studied
distribution of partial Latin squares into isotopism classes [18].

Again, the main limitation of the methodology here introduced is the high dependence
on the number of variables required by each one of the affine algebraic sets under consid-
eration. To see it, it has been made use of the already mentioned Algorithm 1 described
in [48] in order to obtain random Latin squares on which the computational efficiency of
using Gröbner bases has been checked for determining both the set of Latin squares that
are partial transpose of another given Latin square, and the set of partial autotopisms of
a Latin square. Figure 9 shows the running time required by our computer system for
computing both the reduced Gröbner basis of the corresponding ideal, together with the
cardinality of its related affine algebraic set. Notice that only the relationship of being
partial transpose seems to be useful for dealing by itself with the smallest orders for which
no results on the distribution of Latin squares into isomorphism classes is known (n ≥ 12).
It is not the case of the equivalence relation of being P-partial isotopic, for some subset
P ⊂ [n]× [n]× [n], whose exponential growth starts visibly much before, even from order
n = 5. It agrees with the fact that this equivalence relation comprehends that one of being
isotopic, for which previous studies [18] have already revealed the advantages of using
some extra Latin square isomorphism invariant for reducing the computational cost of an
analogous algebraic geometry approach. Similar studies concerning this new equivalence
relation are, therefore, required and established as further work. In this regard, the joint
use of the Latin square isomorphism invariants recently introduced in [34,35] may be of
particular interest.
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Figure 9. Running time (in seconds) required for computing the cardinality of the set VQ(IPT(L)), for
random Latin squares L ∈ Ln, with 1 ≤ n ≤ 14.

It is also interesting to illustrate the computational efficiency of these two approaches
in case of dealing with partial Latin squares with empty cells, whose distribution into
isomorphism classes is only known [17,18] for order n ≤ 6. Firstly, let us focus on the use
of Gröbner bases for determining the set of partial Latin squares that are partial transpose
of another given partial Latin square. To this end, a partial Latin square in the set L10;m
was randomly constructed, for each positive integer m ≤ 100, by means of Method (A)
described in [34]. The latter consists of adding sequentially a set of feasible random entries
to an empty partial Latin square until the desired weight is reached. Figure 10 shows the
running time required by our computer system for determining both the reduced Gröbner
basis of the corresponding ideals and the cardinalities of their related affine algebraic sets.
The maximum running time was 13.99 s, which is reached for m = 50. It is remarkable the
slightly decreasing tendency of this running time with respect to the weight of the partial
Latin square under consideration.

Figure 10. Running time (in seconds) required for computing the cardinality of the set VQ(IPT(L)),
for random partial Latin squares L ∈ L10;m, with 1 ≤ m ≤ 100.

Now, to illustrate the computational efficiency of using Gröbner bases for determining
the set of P-partial isotopisms between two given partial Latin squares, for some subset
P ⊂ [n]× [n]× [n], the mentioned method of adding random entries has been used to
construct a pair of random partial Latin squares in the set L7;m, for each positive integer
m ≤ 49. (Recall that n = 7 is the first order for which no result on the distribution into
isotopism classes is known.) Figure 11 shows the running time required by our computer
system for determining both the reduced Gröbner basis of the corresponding ideals and
the cardinalities of their related affine algebraic sets. The maximum running time has been
102.43 s, which is reached for m = 49 (the Latin square case). The fast exponential growth
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of running time is remarkable for dense partial Latin squares. Partial Latin squares with
either only one filled cell of with more or less the same number of empty and filled cells
seem also to require more running time. All these cases turned out to be related to a high
number of partial isotopisms. In any case, a much more comprehensive computational
analysis concerning orders, weights and particular isomorphism classes of partial Latin
squares is required for distinguishing potential bottlenecks in the computation of related
Gröbner bases.

Figure 11. Running time (in seconds) required for computing the cardinality of the set VQ(IPI(L, L)),
for random partial Latin squares L ∈ L7;m, with 1 ≤ m ≤ 49.

Let us finish this section by establishing the following open problems to deal also with
as further work on this topic.

Problem 1. What are the minimum and maximum numbers of partial Latin squares that are partial
transpose of a partial Latin square in Ln;m?

Problem 2. What are the minimum and the maximum numbers of distinct partial Latin squares
for which there is at least one P-partial isotopism to a partial Latin square in Ln;m, for some subset
P ⊂ [n]× [n]× [n]?

Problem 3. What is the maximum cardinality of a subset P ⊂ [n]× [n]× [n] for which a P-partial
isotopism exists between two distinct partial Latin squares in Ln;m?
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