
mathematics

Article

Real-Time Estimation of R0 for COVID-19 Spread

Theodore E. Simos 1,2,3,* , Charalampos Tsitouras 4 , Vladislav N. Kovalnogov 1, Ruslan V. Fedorov 1 and
Dmitry A. Generalov 1

����������
�������

Citation: Simos, T.E.; Tsitouras, C.;

Kovalnogov, V.N.; Fedorov, R.V.;

Generalov, D.A. Real Time Estimation

of R0 for COVID-19 Spread.

Mathematics 2021, 9, 664. https://doi.

org/10.3390/math9060664

Academic Editor: Alexander Zeifman

Received: 15 February 2021

Accepted: 18 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Applied Mathematics for Solving Interdisciplinary Problems of Energy Production,
Ulyanovsk State Technical University, Severny Venetz St. 32, 432027 Ulyanovsk, Russia;
kvn@ulstu.ru (V.N.K.); r.fedorov@ulstu.ru (R.V.F.); dmgeneralov@mail.ru (D.A.G.)

2 Scientific and Educational Center “Digital Industry”, South Ural State University, 76, Lenin Av.,
454080 Chelyabinsk, Russia

3 Section of Mathematics, Department of Civil Engineering, Democritus University of Thrace,
67100 Xanthi, Greece

4 General Department, Euripus Campus, National and Kapodistrian University of Athens,
34400 Athens, Greece; tsitourasc@uoa.gr

* Correspondence: simost@susu.ru

Abstract: We propose a real-time approximation of R0 in an SIR-type model that applies to the
COVID-19 epidemic outbreak. A very useful direct formula expressing R0 is found. Then, various
type of models are considered, namely, finite differences, cubic splines, Piecewise Cubic Hermite
interpolation and linear least squares approximation. Preserving the monotonicity of the formula
under consideration proves to be of crucial importance. This latter property is preferred over accuracy,
since it maintains positive R0. Only the Linear Least Squares technique guarantees this, and is finally
proposed here. Tests on real COVID-19 data confirm the usefulness of our approach.
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1. Introduction

The SIR model describes the dynamics of an epidemic. Kermack and McKendrick
introduced this in their pioneering work [1]. In this model, we consider a homogeneous
population. Thus, no age-structures or group behaviours are taken into account. The pop-
ulation is divided into three homogeneous sections: susceptible people S, infectious people
I and recovered people R. Since S, I and R change in time t, we represent these numbers
as functions S(t), I(t) and R(t). Births and deaths are ignored, considering a constant
population size N within time t i.e., S(t) + R(t) + I(t) = N.

We proceed setting i(t) = I(t)/N, s(t) = S(t)/N, r(t) = R(t)/, i.e., the correspond-
ing rates.

The following system of ordinary differential equations describes the SIR model [2–4]

ds(t)
dt

= −β(t)i(t)s(t),
di(t)

dt
= β(t)i(t)s(t)− γ(t)i(t),

dr(t)
dt

= γ · i(t).

(1)

The function β(t) is the transmission with respect to time, while γ(t) is the rate of
recoveries. Ideally, β(t) and γ(t) are constants. Notice that

ds(t)
dt

+
di(t)

dt
+

dr(t)
dt

= 0,
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and consequently
s(t) + i(t) + r(t) = 1 = s(0) + i(0) + r(0).

A very important quantity is the reproduction number, given as

R0(t) =
β(t)
γ(t)

.

Ordinary Differential Equations (1) can be solved numerically using Runge–Kutta
pairs [5–7]. One of the main difficulties arising is the estimation of parameters β(t), γ(t)
and, consequently, of R0(t).

There is an ongoing interest in SIR-type models. Bertrand and Pirch [8] presented a
least-squares finite element method for the SEIQRD model. Cherniha and Davydovych [9]
studied a nonlinear model based on logistic equations, while Keller et al. [10] simulated the
spread of an infectious disease across a heterogeneous and continuous landscape. E. Kuhl [11]
focused on modeling various stages of COVID-19 outbreak and Viguerie et al. [12] simulated
COVID-19 via an SEIRD model.

From (1) we deduce
ds
dr

= − β(t)
γ(t)

s,

and, consequently, we arrive at

R0 = −1
s

ds
dr

. (2)

Thus, our concern here is actually a reliable estimation of ds
dr .

2. Interpolating the Past

We proceed to set tn as the current time, while sn = s(tn) and rn = r(tn) are the
current observed numbers of susceptible and recovered. Consequently, tn−1 corresponds to
the previous time step, usually the previous day, i.e., tn−1 = tn − 1 and all t are considered
integers. Past values of sn−1, rn−1, sn−2, rn−2, · · · and population N are usually known
and we seek an approximation of the R0(t) trough ds

dr . Through the estimation of this
derivative at the right (current) point, dsn

drn
. In the following, it is convenient to consider s as

a function with respect to the increasing variable r. We have various choices.

2.1. Backward Finite Differences

The celebrated Taylor series [13] states that

s(r + h) = s(r) + hs′(r) +
1
2!

h2s′′(r) +
1
3!

h3s′′′(r) +
1
4!

h4s(4)(r) + · · · , (3)

We are given various values of s at distinct points, r0 < r1 < · · · < rn and name
them for simplicity s0 = s(r0), s1 = s(r1), · · · , etc. Backward finite differences answer the
question of approximating the derivatives of s at rn. Thus, we may derive

dsn

drn
= s′n ≈

sn − sn−1

rn − rn−1
(4)

which is easily verified from (3) using its implicit Euler variant

sn = s(r + h) ≈ s(r) + hs′(r + h) = sn−1 + hs′n−1,
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with h = rn − rn−1. Approximation (4) is said to be the first order of accuracy, since no
higher orders of h are involved in using (3), e.g., h2, h3, · · · etc. After substituting − 1

s with
the mean value − 2

sn−1+sn
, we obtain the formula

R0 ≈ −
2

sn−1 + sn
· sn − sn−1

rn − rn−1
. (5)

This latter estimation (5) is of limited value, since it is based on data from two days and
fluctuates intensively. Thus, we may proceed to higher-order differences. A second-order
backward finite difference approximation of dsn

drn
produces the formula

R0 ≈ −
3

sn−2 + sn−1 + sn
·


(rn−rn−1)

(rn−2−rn−1)(rn−2−rn)
· sn−2

+ (rn−2−rn)
(rn−2−rn−1)(rn−1−rn)

· sn−1

− (rn−2+rn−1−2rn)
(rn−2−rn)(rn−1−rn)

· sn

. (6)

As we worked in (5), we substituted − 1
s with the mean value of sn−2, sn−1 and sn.

We observe that s is clearly a decreasing variable. Then, dsn
drn
≤ 0 and R0 ≥ 0 must hold.

In (5), this property is preserved. However, this is not true for (6). Let us check this using a
small example. Take the following artificial data

rn−2 = 0.001, rn−1 = 0.002, rn = 0.003,
sn−2 = 0.996, sn−1 = 0.9915 and sn = 0.991

(7)

to verify that, according to (6), we get R0 ≈ −1.5108 < 0!
This happens because second- and higher-order backward finite differences do not

preserve monotonicity [14]. Dealing with higher-order methods is,therefore, of no meaning.
Notice that using (5), we have R0 ≈ 0.505 for the last two days (i.e., based on the

r-interval [0.002, 0.003]). However, the previous day’s estimation was R0 ≈ 4.539. This os-
cillation is also unacceptable.

2.2. Cubic Splines

Cubic splines [15] are a very interesting tool that can be used in various fields [16,17].
The interval [r0, rn] is divided to n subintervals [r0, r1], [r1, r2], · · · , [rn−1, rn]. Using cubic
splines, we can obtain n polynomials of third degree, with each one active in every sub-
interval. Concentrating again on the interval [rn−2, rn], we may obtain the following
formula after using the software found in [18]

R0 ≈ −
3

sn−2 + sn−1 + sn
·


(rn−rn−1)

2(rn−1−rn−2)(rn−rn−2)
· sn−2

+ (2rn−2−rn−1−rn)
2(rn−2−rn−1)(rn−1−rn)

· sn−1

+ (2rn−2+rn−1−3rn)
2(rn−2−rn)(rn−rn−1)

· sn

.

The data (7) produce R0 ≈ −0.5036 < 0, which is unacceptable. For this dataset, we
can obtain two polynomials of the third degree. In the interval [0.002, 0.003], the polynomial
approximation of s is

s(r) ≈ −106(r− 0.002)3 + 3000(r− 0.002)2 − 2.5(r− 0.002) + 0.9915,

with the positive derivative s′(0.003) ≈ 0.5 > 0 at the rightmost point. Through this
counterexample, we deduce that cubic splines do not preserve monotonicity either.

2.3. Piecewise Cubic Hermite Interpolant

An alternative to cubic splines is Piecewise Cubic Hermite interpolation (PCHIP).
In cubic splines, the coincidence of higher derivatives at the nodes is demanded. In PCHIP,
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this is abandoned in order to achieve monotone cubic polynomials for monotone data.
The issue is rather complicated to explain here. More details can be found in [19] or in the
MATLAB function pchip.

For the data (7), we can obtain the following polynomial active in the interval r ∈
[0.002, 0.003]

s(r) ≈ 105(r− 0.002)3 + 300(r− 0.002)2 − 0.9(r− 0.002) + 0.9915, (8)

with derivative s′(0.003) = 0 at the rightmost point. Monotonicity is marginally preserved,
but R0 = 0 in this case. Even if we add more points from the past, we will not change the
situation. The method tries always to produce a monotone polynomial of the third degree.
Thus, it will make very small changes to (8), regardless of how many points we add from
the past.

All of the above three type of approximation (2.1–2.3) may attain higher algebraic
orders, i.e., second-order or higher. This means that we may obtain better accuracy in the
approximation of ds

dr . However, these actually fail, since they do not preserve monotonicity,
which is by no means a property of the function s(r) and is also present in the corresponding
data. Failure to preserve monotonicity is catastrophic. We may sometimes experience
R0 < 0 then.

2.4. Linear Least Squares

Finally, we propose estimation dsn
drn

by the slope of linear least squares approximation
of the data in [r0, rn]. Then, we get

R0 ≈ −
n + 1

∑n
j=0 sj

·
(n + 1)∑n

j=0 rjsj − (∑n
j=0 rj)(∑n

j=0 sj)

(n + 1)∑n
j=0 r2

j − (∑n
j=0 rj)2

. (9)

The denominator of (9) is always positive, since r is ascending.
For the special case of using data in the interval [rn−2, rn], we have

R0 ≈ −
3

sn−2 + sn−1 + sn
·


(

3(rn−2sn−2 + rn−1sn−1 + rnsn)
−(rn−2 + rn−1 + rn)(sn−2 + sn−1 + sn)

)
3(r2

n−2 + r2
n−1 + r2

n)− (rn−2 + rn−1 + rn)2

. (10)

After using (10) with data (7), we arrive at an acceptable R0 ≈ 2.523.
It seems that (9) furnishes a balanced result in view of the corresponding results found

by (5). The reason for the final choice of this method is the preservation of monotonicity,
which helps to avoid unpleasant outcomes such as ds

dr > 0. This is true, since the slope of
a least squares line applied on decaying data is obligatorily negative. The latter does not
always happen in cases where, e.g., a parabola passes through these points.

The question that raises now is the size of the data used. i.e., n =?. A strategy to
address this is begins with n = 2 and estimates R0 with a value named R2

0. Continue with
n = 3, 4, · · · and estimates R3

0, R4
0, · · · , respectively. We stop the iteration whenever two

consecutive estimations of R0 differ less than 1
100 . That is, whenever

|Rk
0 − Rk−1

0 | < 0.01,

we accept Rk
0 as the value on demand. In case this does not happen, we accept R21

0 as the
final approximation of R0. We implement this procedure as a MATLAB [20] program in
the Appendix A.

3. Preliminary Tests

We choose the static case β(t) = β = 0.1 and γ(t) = γ = 0.05 with initial conditions
s(0) = s(t0) = s0 = 0.9999, i0 = 0.0001 and r0 = 0. Here, R0 = 2. Then, we obtain the
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values of s, i and r for t1, t2, t3, t4, · · · , t100 by the following lines in the command window
of MATLAB.

>> beta=0.1;gamma=0.05;
>> fcn=@(t,x)[-beta*x(1)*x(2);
beta*x(1)*x(2)-gamma*x(2);
gamma*x(2)];
>> [tout,xout]=ode45(fcn,(0:1:100)’,[0.9999 0.0001 0]’);

Now, we may approximate the actual value of R0 for t20 = 20, t21 = 21, · · · , t100 = 100.
Thus, we type

>> ro=zeros(101,1);
>> j1=21:101,ro(j1)=r00(xout(j1-20:j1,3),xout(j1-20:j1,1));end;
>> max(abs(ro(21:101)-2))
ans =
3.2964e-005

i.e., we obtain almost five digits of accuracy. This result was obtained by using the data
from only tree consecutive data pairs (i.e., by using only (10)). We observed this behavior
since the parameters are constant. The same result is also attained for other selections of β
and γ.

The method also applies in case of varying parameters. In the next test, we choose
constant γ = 0.1 and β = 0.1 + t

1000 . Then, we type in MATLAB

>> fcn=@(t,x) [-(0.1+t/1000)*x(1)*x(2);
(0.1+t/1000)*x(1)*x(2)-.1*x(2);
0.1*x(2)];
>> [tout,xout]=ode45(fcn,(0:1:100)’,[0.999 0.001 0]’);

In this paradigm, we have R0 = 1+ t
100 , and the performance of the method is checked

by the following

>> ro=zeros(101,1);
>> for j1=21:101,ro(j1)=r00(xout(j1-20:j1,3),xout(j1-20:j1,1));end;
>> max(abs(ro(21:101)-1-(20:100)’./100))
ans =
0.0149

i.e., the error is in the second decimal point. This is a rather good approximation of a R0,
which takes values in the interval [1, 2].

A very interesting issue is that using mean value of data s in (2) calibrates the result to
the correct value of R0. The percentage of susceptible s varies slowly. Using the mean value
instead of sn causes only a small difference, which delivers 2–3 more digits of accuracy.
Additionally, we mention that this new approach is much easier to compute than our
previous method [21]. It also seems to achieve better accuracy.

4. Tests on Real COVID-19 Data

We will test the new approach using real COVID-19 data. The time-series data of
confirmed, recovered, and death cases for various countries were retrieved from [22].
The data are presented in the format shown in Table 1.

The two rightmost columns sum to form vector r, after dividing this sum by the coun-
try’s population. The vector s is formed by the division of confirmed cases by population.
The population of each country was retrieved from Wikipedia [23]. The data in [22] are not
always reliable. Data are missing or reported inaccurately for some countries. The method
presented here does not apply properly at the outbreak of a disease, when values r are
rather small. Then, we may apply some scale, e.g., use vectors S and R. The values in r
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have to vary somehow in order to obtain reliable results. Thus, no trustworthy results can
be derived from the following Table 2.

Table 1. Data as presented in [22].

Date Country Confirmed Recovered Deaths

. . .
6 February 2021 Russia 3,907,653 3,398,545 75,010
7 February 2021 Russia 3,923,461 3,418,329 75,430
8 February 2021 Russia 3,939,162 3,434,163 75,828
9 February 2021 Russia 3,953,970 3,455,582 76,347
10 February 2021 Russia 3,968,228 3,477,760 76,873
11 February 2021 Russia 3,983,031 3,499,230 77,415
12 February 2021 Russia 3,997,898 3,519,689 77,911
. . .

Table 2. Data for Russia at the beginning of COVID-19 outbreak, as presented in [22].

Date Country Confirmed Recovered Deaths

. . .
1 March 2020 Russia 2 2 0
2 March 2020 Russia 3 2 0
3 March 2020 Russia 3 2 0
4 March 2020 Russia 3 2 0
5 March 2020 Russia 4 2 0
6 March 2020 Russia 13 2 0
7 March 2020 Russia 13 2 0
. . .

We do not believe that any serious method can extract something reliable from the
above data. By this, we mean that, at the beginning of an outbreak, we may not obtain
an explicit picture of the situation from a sole country’s data. Only a global view may
raise some interest in these numbers. Thus, the method at hand may apply after the initial
development of the pandemic.

We present the results for Russia in Figure 1, for Germany in Figure 2, and for Italy in
Figure 3.
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Figure 1. R0 for Russia from 30 November 2020 to 9 March 2021.
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Figure 2. R0 for Germany from 30 November 2020 to 9 March 2021.
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Figure 3. R0 for Italy from 30 November 2020 to 9 March 2021.

We produced these results using at least 14 of the latest data in order to obtain
smoother curves.

We observe that R0 decays for Russia and, after mid-January 2021, stays below 1.
The corresponding parameter for Germany stayed below 1 for 2021, but it seems that this
was not true from the beginning of March. Finally, R0 stayed below 1 for Italy until the end
of February, and climbed above it in March.

The data for the countries mentioned above seem to be reliable. However, there are
cases with misreported data. In France, after a year, only about a quarter of million were
reported as recovered, while there are 4 million infected! The same problem is apparent in
the data for the UK and other countries.

Thus, the new method cannot apply to corrupted data, as expected for any other
method. Least squares may circumvent an outlier or some misreported data, but consis-
tently faulty data are untreatable.
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5. Conclusions

A new formula for directly estimating R0 present in the SIR epidemic model is derived
here. Using only the percentage values of susceptible s, and recovered r at consecutive days,
we form a linear least squares approximation of the derivative ds

dr ≤ 0. This approximation
is non-positive (i.e., preserves monotonicity). Then, the new formula stays close enough to
R0. For use with real COVID-19 data, we implemented an iterative technique that promises
convergence to the actual value of R0. Similar research is planned in the future for other
models, such as SIS, SIRD, and SEIR.
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Appendix A

The MATLAB [20] function r00 that implements the proposed iterative scheme of suc-
cessive linear least squares.

%-------------------------------------------------------------------------
function roo=r00(r,s);
% give r, s vectors with 21 entries
j1=1;roold=1000;r=r(:);s=s(:);
roo=r0(r(end-j1:end),s(end-j1:end));
while abs(roo-roold)>0.01 && j1<20,
roold=roo;
j1=j1+1;
roo=r0(r(end-j1:end),s(end-j1:end));
end;
return;

function ro=r0(r,s);
% least squares estimation of r0 through formula
% 1 ds
% r0=- -*--
% s dr
%
if (length(r)~=length(s)) | (length(r)<2),
then disp(’vectors of improper length’);return;
end;

dsdr=(length(r)*sum(r.*s)-sum(r)*sum(s))/(length(r)*sum(r.^2)-(sum(r))^2);
ro=-1/mean(s(1:end))*dsdr;
return;
%-------------------------------------------------------------------------
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