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Abstract: This paper provides a literature review of some of the most important concepts, techniques,
and methodologies used within autonomous car systems. Specifically, we focus on two aspects
extensively explored in the related literature: tracking, i.e., identifying pedestrians, cars or obstacles
from images, observations or sensor data, and prediction, i.e., anticipating the future trajectories
and motion of other vehicles in order to facilitate navigating through various traffic conditions.
Approaches based on deep neural networks and others, especially stochastic techniques, are reported.

Keywords: autonomous driving; object tracking; trajectory prediction; deep neural networks; stochas-
tic methods

1. Introduction

Autonomous car technology is already being developed by many companies on
different types of vehicles. Complete driverless systems are still at an advanced testing
phase, but partially automated systems have been around in the automotive industry for
the last few years. Autonomous driving technology has been the focus of multiple research
and development efforts by various car manufacturers, universities, and research centers,
since the middle 1980s.

A famous competition was the DARPA Urban Challenge in 2007. Other examples
include the European Land-Robot Trial, which has been held since 2006, the Intelligent
Vehicle Future Challenge, between 2009 and 2013, as well as the Autonomous Vehicle
Competition, held between 2009 and 2017. Since the early stages of autonomous driving
technology development, research in the related fields has been garnering significant
interest in universities and industry worldwide.

In this review, we focus on two aspects of an autonomous car system:

• Tracking: identifying traffic participants, i.e., cars, pedestrians, and obstacles from se-
quences of images, sensor data, or observations. It is assumed that some preprocessing
of sensor data and/or input images has already been done;

• Prediction: assessing the future motion of surrounding vehicles in order to navigate
through various traffic scenarios. Beside the prediction of the simple physical behavior
of the agents based on a set of past observations, an important issue is to take into
account their possible interactions.

The paper is composed of two main parts that focus on these topics.
Section 2 deals with tracking problems as addressed in the related literature. We

cover aspects concerning the extraction and use of various features for the detection of
pedestrians, vehicles, and obstacles across sequences of images and sensor data. Also,
we address the various ways in which authors tackle the problems of ensuring detection
consistency, temporal coherence, or occlusion handling. We present methods using deep
neural networks, but also alternative, conventional approaches.
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Section 3 addresses the problem of motion and behavior prediction in traffic scenarios.
We discuss various solutions proposed in the related literature for predicting the trajectory
of the ego car with respect to the behavior of other traffic participants. We address methods
based on deep neural networks and stochastic models, as well as various mixed approaches.

Section 4 contains some conclusions with regard to the aspects discussed throughout
the paper.

2. Tracking Methods

Object tracking is an important part of ensuring accurate and efficient autonomous
driving. The identification of objects such as pedestrians, cars, and various obstacles from
images and vehicle sensor data is a significant and complex interdisciplinary domain. It
involves contributions from computer vision, signal processing, and/or machine learning.
Object tracking is an essential part of ensuring safe autonomous driving, since it can aid in
obstacle avoidance, motion estimation, the prediction of the intentions of pedestrians and
other vehicles, as well as path planning. Most sensor data that have to be processed take
the form of point clouds, images, or a combination of the two. Point cloud data may be
handled in a multitude of ways, the most common of which is some form of 3D grid, where
a voxel engine is used to traverse the point space. Some situations call for a reconstruction
of the environment from the point cloud which involves various means of resampling and
filtering. In some instances, stereo visual information is available and disparities must
be computed from the left-right images. Stereo matching is not a trivial task and has the
drawback that the computations required for reasonable accuracy usually have a significant
impact on performance. In other cases, multiple types of sensor data are available, thereby
requiring registration, point matching, and image/point cloud fusion. The problem is
further complicated by the necessity to account for temporal cues and to estimate motion
from time-based frames.

The scenes involved in autonomous driving scenarios rarely feature a single individual
target. Most commonly, multiple objects must be identified and tracked concurrently, some
of which may be in motion relative to the vehicle and to each other. As such, most
approaches in the related literature handle more than one object and are therefore aimed at
solving multiple object tracking problems (MOT).

The tracking problem can be summarized as follows: a sequence of sensor data is
available from one or multiple vehicle-mounted acquisitions devices. Considering that
several observations are identified in all or some of the frames from the sequence, how can
the observations from each frame be associated with a set of objects (pedestrians, vehicles,
and various obstacles) and how can the trajectories of each such object be reconstructed
and predicted as accurately as possible?

Most related methods involve assigning an ID or identifying a response for all objects
detected within a frame, and then attempting to match the IDs across subsequent frames.
This is often a complex task, considering that the tracked objects may enter and leave the
frame at different timestamps. They may also be occluded by the environment or may
occlude each other. Additional problems may be caused by defects in the acquired images:
noise, sampling or compression artifacts, aliasing, or acquisition errors.

Object tracking for automated driving most commonly has to operate on real-time
video. As such, the objective is to correlate tracked objects across multiple video frames,
in addition to individual object identification. Accounting for variations in motion comes
with an additional set of pitfalls, such as when objects are affected by rotation or scal-
ing transformations, or when the movement speed of the objects is high relative to the
frame rate.

In the majority of cases, images are the primary modality for perceiving the scene.
As such, a lot of efforts from the related literature are in the direction of 2D MOT. These
methods are based on a succession of detection and tracking steps: consecutive detections
that are similarly classified are linked together to determine trajectories. A significant
challenge comes from the inevitable presence of noise in the acquired images, which may
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adversely change the features of similar objects across multiple frames. Consequently, the
computation of robust features is an important aspect of object detection. Features are
representative of a wide array of object properties: color, frequency and distribution, shape,
geometry, contours, or correlations within segmented objects. Nowadays, the most popular
feature detection methods involve supervised learning. Features start out as groups of
random values and are progressively refined using machine learning algorithms. Such
approaches require appropriate training data and a careful selection of hyperparameters,
often through trial-and-error. However, many results from the related literature show that
supervised classification and regression methods offer the best results both in terms of
accuracy and robustness to affine transformations, occlusion, and noise.

2.1. Methods Using Neural Networks

In terms of classifying objects from images, neural networks have seen a steady rise in
popularity in recent years, particularly the more elaborate and complex convolutional and
recurrent networks from the field of deep learning. Neural networks have the advantage
of being able to learn important and robust features given training data that is relevant and
in sufficient quantity. Considering that a significant percentage of automotive sensor data
consists of images, convolutional neural networks (CNNs) are seeing widespread use in the
related literature, for both classification and tracking problems. The advantage of CNNs
over more conventional classifiers lies in the convolutional layers, where various filters and
feature maps are obtained during training. CNNs are capable of learning object features
by means of multiple complex operations and optimizations. The appropriate choice of
network parameters and architecture can ensure that these features contain the most useful
correlations that are needed for the robust identification of the targeted objects. While this
choice is most often an empirical process, a wide assortment of network configurations
exist in the related literature that are aimed at solving classification and tracking problems,
with high accuracies claimed by the authors. Where object identification is concerned, in
some cases the output of the fully-connected component of the CNN is used, whereas in
other situations the values of the convolutional layers are exploited in conjunction with
other filtering and refining methods.

2.1.1. Learning Features from Convolutional Layers

Many results from the related literature systematically demonstrate that convolutional
features are more useful for tracking than other explicitly computed ones (Haar, Fused
Histogram of Oriented Gradients (FHOG), color labeling). An example in this sense is [1],
which handles MOT using combinations of values from convolutional layers located at mul-
tiple levels. The method is based on the notion that lower-level layers account for a larger
portion of the input image and therefore contain more details from the identified objects.
This makes them useful, for instance, for handling occlusion. Conversely, top-level layers
are more representative of semantics and are useful in distinguishing objects from the back-
ground. The proposed CNN architecture uses dual fully-connected components, for higher
and lower-level features, which handle instance-level and category-level classification
(Figure 2 in [1]). The proper identification of objects, particularly where occlusion events
occur, involves the generation of appearance models of the tracked objects. These often
result from the appropriate processing of the features learned within convolutional layers.

In [2], the authors note that the output of the fully-connected component of a CNN
is not suitable for handling infrared images. Their attempt to directly transfer CNNs
pretrained with traditional images for use with infrared sensor data is unsuccessful, since
only the information from the convolutional layers seem to be useful for this purpose.
Furthermore, the layer data itself require some level of adaptation to the specifics of infrared
images. Typically, infrared data offer much less spatial information than visual images.
It is much more suited, for example, in depth sensors for gathering distances to objects,
albeit at a significantly lower resolution compared to regular image acquisition. As such,
convolutional layers from infrared images are used in conjunction with correlation filters
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to generate a set of weak trackers. This process provides response maps with regard to
the targets’ locations. The weak trackers are then combined in ensembles which form
stronger response maps with a much greater tracking accuracy. The response map of an
image is, generally, an intensity image where higher values indicate a change or a desired
feature/shape/structure, as the original image is processed by an operator or correlation
filter of some kind. By matching or fusing responses from multiple images within a video
sequence, one could identify similar objects (i.e., the same pedestrian) across the sequence
and subsequently construct their trajectories.

The potential of correlation filters is also exploitable for regular images. These have
the potential to boost the information extracted from the activations of convolutional
layers. In [3] the authors find that by applying appropriate filters to information drawn
from shallow convolutional layers, a level of robustness similar to using deeper layers
or a combination of multiple layers can be achieved. In [4], the authors also note the
added robustness obtainable by post-filtering convolutional layers. By using particle and
correlation filters, basic geometric and spatial features can be deduced for the tracked
objects, which, together with a means of adaptively generating variable models, can be
made to handle both simple and complex scenes.

An alternative approach can be found in [5], where discriminative correlation filters
are used to generate an appearance model from a small number of samples. The overall
approach involves feature extraction, post-processing, and the generation of response maps
for carrying out better model updates within the neural network. Contrary to other similar
results, the correlation filters used throughout the system are learned within a one-layer
CNN, which eventually can be used to make predictions based on the response maps.
Furthermore, residual learning is employed in order to avoid model degradation, instead
of the much more frequently-used method of stacking multiple layers. Other tracking
methods learn a similar kind of mapping from samples in the vicinity of the target object
using deep regression [6,7], or by estimating and learning depth information [8].

The authors of [9] note that correlation filters have limitations imposed by the feature
map resolution. They propose a novel solution where features are learned in a continuous
domain, using an appropriate interpolation model. This allows for the more effective
resolution-independent compositing of multiple feature maps, resulting in superior classi-
fication results.

Methods based on discriminative correlation filters are notoriously prone to excessive
complexity and overfitting, and various means are available for optimizing the more
traditional methods. The most noteworthy in this sense is [10], who employs efficient
convolution operators, a training sample distribution scheme and an optimal update
strategy in an attempt to boost performance and reduce the number of parameters. A
promising result that demonstrates significant robustness and accuracy is [11], who use
a CNN where the first set of layers are shared, as in a standard CNN. These layers then
branch into multiple domain-specific ones. This approach has the benefit of splitting the
tracking problem into subproblems which are solved separately in their respective layer
sets. Each domain has its own training sequences and can be customized to address a
specific issue, such as distinguishing a target with specific shape parameters from the
background. A similar concept is exploited by [12], i.e., a network with components
distinctly trained for a specific problem. In this case, multiple recurrent layers are used to
model different structural properties of the tracked objects, which are incorporated into a
parent CNN with the same purpose of improving accuracy and robustness. The Recurrent
Neural Network (RNN) layers generate what the authors refer to as “structurally-aware
feature maps” which, when combined with pooled versions of their non-structurally aware
counterparts, significantly improve the classification results.

2.1.2. High-Level Features, Occlusion Handling, and Feature Fusion

Appearance models offer high-level features that are also used to account for occlusion
in much simpler and efficient systems. In [13], appearance descriptors are compounded
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to form an appearance space. With properly-determined metrics, observations having
a similar appearance are identified using a nearest-neighbor approach. Switching from
image-space to an appearance space seems to effectively handle occlusions, reducing their
negative impact at a negligible performance cost.

A possible alternative to appearance-based classification is the use of template-based
metrics. Such an approach uses a reference region of interest (ROI) drawn from one or
multiple frames and attempts to match it in subsequent frames using an appropriately-
constructed metric. Template-based methods perform well for partial detections, thereby
accounting for occlusion and/or noise. This is because the template need not be perfectly
or completely matched for a successful detection to occur. An example of a template-based
method is provided by [14], which involves three CNNs, one for template generation, one
dedicated to region searching and one for handling background areas. The method is
somewhat similar to what could be achieved by a generative adversarial network (GAN).
A “searcher” network attempts to fit multiple subimages within the positive detections
provided by the template component while simultaneously attempting to maximize the
distance to the negative background component. The candidate subimages generated by
the three components are fed through a loss function that is designed to favor candidates
closer to template regions than to background ones. Performance-wise, such an approach
is claimed to provide impressive framerates and care should be taken when using template
or reference-based methods. These are generally suited for situations where there is
no significant variation in the overall tone of the frames. Such methods have a much
higher failure rate when, for instance, the lighting conditions change during tracking. An
example of this phenomenon is when the tracked object moves from a brightly-lit area to a
shaded one.

An improvement on the use of appearance and shared tracking information is pro-
vided by [15] in the form of a CNN-based single object tracker that generates and adapts
the appearance models for multi-frame detection (Figure 3 in [15]). The use of pooling
layers and shared features accounts for drift effects caused by occlusion and inter-object
dependency. A spatial and temporal attention mechanism is responsible for dynamically
discriminating between training candidates based on the level of occlusion. Training sam-
ples are weighted based on their occlusion status, which optimizes the training process
where both classification accuracy and performance are concerned. Generally speaking,
pooling operations have two important effects: on the one hand, the subimage of the feature
map is increased, since a pooled feature map contains information from a larger area of
the originating image; on the other hand, the reduced size of a pooled map means fewer
computational resources are required to process it, which improves performance. The
major downside of pooling is that spatial positioning is further diluted with each additional
layer. Multiple related papers exploit the so called “ROI pooling”, which commonly refers
to a pooling operation being applied to the bounding box of an identified object. The
resulting reduced representation will hopefully be more robust to noise and geometric
variations across multiple frames. ROI pooling is successfully used by [16] to improve the
performance of their CNN-based classifier. The authors observe that positioning cues are
adversely affected by pooling. A potential solution is to reposition the misaligned ROIs via
bilinear interpolation. This reinterpretation of pooling is referred to as “ROI align”. The
gain in performance is significant, while the authors demonstrate that the positioning of
the ROIs is stabilized.

Tracking stabilization is fundamental in automotive application, where effects such as
jittering, camera shaking, and spatial/temporal noise commonly occur. Occlusion handling
plays an important role in ensuring ROI stability and accuracy. Some authors handle this
topic extensively, such as [17], who propose a deep neural network for tracking occluded
body parts, by processing features extracted from a VGG19 network. Some authors use
different interpretations of the feature concept, adapted to the specifics of autonomous
driving. Reference [18] creates custom feature maps by encoding various properties of the
detections in raster images (bounding boxes, positions, velocities, accelerations). These
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images are sent through a CNN that generates raster features that the authors demonstrate
to provide more reliable correlations and more accurate trajectories than using features
derived directly from raw data.

The idea of tracking robustness and stability is sometimes solvable using image and
object fusion. The related methods are referred to as being “instance-aware”. This concept
means that a targeted object is matched across the image space and across multiple frames
by fusing identified objects with similar characteristics. Reference [19] proposes a fusion-
based method that uses single-object tracking to identify multiple candidate instances.
Subsequently, it builds target models for potential objects by fusing information from
detection and background cues. The models are updated using a CNN, which ensures
robustness to noise, scaling, and minor variations of the targets’ appearance. As with many
other related approaches, an online implementation offloads most of the processing to
an external server leaving the embedded device from the vehicle to carry out only minor,
frequent tasks. Since quick reactions of the system are crucial for safe vehicle operation,
performance and a rapid response of the underlying software is essential, which is why the
online approach is popular in this field. Fusion methods are also applied for multimodal
inputs, such as in [20], who propose a model based on a convolutional autoencoder to
obtain features from a combination of multiple sensor sources, in order to account for
improved environment perception.

Also in the context of ensuring robustness and stability, some authors apply fusion
techniques to information extracted from convolutional layers. It has been previously
mentioned that important correlations can be drawn from deep and shallow layers that can
be exploited together for identifying robust features in the data. This principle is used for
instance in [21]. In order to ensure robustness and performance, various features extracted
from layers in different parts of a CNN are fused to form stronger characteristics that are
affected to a lesser degree by noise, spatial variations, and perturbations in the acquired
images. The identified relationships between CNN layers are exploited in order to account
for lost spatial information that occurs in deeper layers. The method is claimed to have
improved accuracy over the state-of-the-art of the time, which is consistent with the idea
of ensuring robustness and low failure rates. Deeper features are more consistent and
allow for stronger classification, while shallow features compensate for the detrimental
effects of filtering and pooling. This allows for deep features to be better integrated
into the spatial context of the images. On a similar note, in [22] features from multiple
layers that individually constitute weak trackers are combined to form a stronger one,
by means of a hedging algorithm. The practice of using multiple weak methods into
a more effective one has significant potential and is based on the principle that each
individual weak component contains some piece of meaningful information on the tracked
object, while also having useless data mostly found in the form of noise. By appropriately
combining the contributions of each weak component, a stronger one can be generated. As
such, methods that exploit compound classifiers typically show robustness to variances of
illumination, affine transforms, or camera shaking. The downside of such methods is that
multiple groups of weak features are needed, which causes penalties in real-time response.
Additionally, the fusion algorithm has its own performance-impacting overhead.

Alternative approaches exist which mitigate this to some extent. For example, the use
of multiple sensors directly supplies the necessary data, as opposed to relying on multiple
features computed from the same camera or pair of cameras. An example in this direction
is provided in [23], where an image gallery from a multi-camera system is fed into a
CNN in an attempt to solve multi-target multi-camera tracking and target re-identification
problems. For correct and consistent re-identification, an observation in a specific image is
matched against several ones from other cameras using correlations as part of a similarity
metric. Such correlation among images from multiple cameras are learned during training
and subsequently clustered to provide a unified agreement between them. Eventually,
after a training process that exploits a custom triplet loss function, features are obtained to
be further used in the identification process. In terms of performance, the method boasts
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substantial accuracy considering the multi-camera setup. The idea of compositing robust
features from a multi-faceted architecture is further exploited in works such as [24]. A
triple-net setup is used to generate features that account for appearance, spatial cues, and
temporal consistency.

2.1.3. Ensuring Temporal Coherence

One of the most significant challenges for autonomous driving is accounting for
temporal coherence in tracking. Nearly all automotive scenarios involve video and motion
across multiple frames. Consequently, handling image sequence data and accounting for
temporal consistency are key factors in ensuring successful predictions, accuracy, and
reliability. Essentially, solving temporal tracking is a compound problem. On the one hand,
it involves tracking objects in single images considering all the problems induced by noise,
geometry and the lack of spatial information. On the other hand, it should ensure that the
tracking is consistent across multiple frames. That is, assigning correct IDs to the same
objects in a continuous video sequence.

This presents a lot of challenges, for instance when objects become occluded in some
frames and are exposed in others. In some cases, the tracked objects suffer affine transfor-
mations across frames, of which rotation and shearing are notoriously difficult to handle.
Additionally, the objects may change shape due to noise, aliasing and other acquisition-
related artifacts that may be present in the images. Video is rarely if ever acquired at “high
enough” resolution and is in many cases in some lossy compressed format. As such, the
challenge is to identify features that are robust enough to handle proper classification
and to ensure temporal consistency considering all pitfalls associated with processing
video data. This often involves a “focus and context” approach: key targets are identified
based on features learned from current frames and from the context of the tracked object.
Processing a key frame in a video sequence provides the focus, while the information from
previous frames form the context.

For this type of problem, one popular approach is to integrate recurrent components
into the classifier, which inherently account for the context provided by a set of elements
from a sequence. Neural networks with recurrent layers, such as long short-term memory
(LSTM) and gated recurrent units (GRU), are commonly employed in the related literature
for the processing of temporal data. When training and exploiting recurrent layers to
classify sequences, the results from one frame carry over to the computations that take place
for subsequent frames. As such, when processing the current frame, resulting detections
also account for what was found in previous frames. For automotive applications, one
advantage of neural networks is that they can be trained off-site, while the resulting model
can be ported to the embedded device in the vehicle where predictions and tracking can
occur at usable speeds. While training a recurrent network or multiple collaborating
networks can be a lengthy process, forward-propagating new data can happen quite fast,
making these algorithms a good choice for real-time tracking.

Another concept that consistently appears in the related literature is “historical match-
ing”. The idea is to carry over part of the characteristics of tracked objects across multiple
frames, by building an affinity model from shape, appearance, positional, and motion cues.
This is achieved in [25] using dual CNNs with multistep training, which handle appear-
ance matching using various filtering operations and linearly composing the resulting
features across multiple timestamps. The notion of determining and preserving affinity is
also exploited in [26] where data consisting of frame pairs several timestamps apart are
fed into dual VGG networks (models based on convolutional neural networks with an
architecture designed for image recognition tasks). The resulting features are permuted
and incorporated into association matrices that are further used to compute object affinities.
This approach has the benefit of partially accounting for occlusion using only a limited
number of frames, since the affinity of an object that is partially occluded in one frame may
be preserved if it appears fully in the pair frame.
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Ensuring the continuity of high-level features such as appearance models is not a
trivial task, and multiple solutions exist. For example [27] uses a CNN modified with a
discriminative component intended to correct for temporal errors that may accumulate in
the appearance of tracked objects across multiple frames. Discriminative network behavior
is also exploited in [28] where selectively trained dual networks are used to generate and
correlate appearance with a motion stream. Also, decomposing the tracking problem into
localization and motion using multiple component networks is a frequently-encountered
solution, further exploited in works such as [29,30]. As such, using two networks that work
in tandem is a popular approach and seems to provide accurate results throughout the
available literature (Figure 2 in [30]).

In this context, siamese convolutional networks have the ability to learn similarities
by comparing features from dual-stream convolutional layers. One example is provided
by [31], where appearance and motion are handled by a combination of CNNs that work
together within a unified framework. The motion component uses spotlight filtering
over feature maps that result from subtracting features drawn from dual CNNs. A space-
invariant feature map is then generated using pooling and fusion operations. The other
component handles appearance by filtering and fusing features from a different arrange-
ment of convolutional layers. Data from ROIs in the acquired images are passed to both
components. Motion responses from one component are correlated with appearance
responses from the other. Both components produce feature maps that are composed
together to form space- and motion-invariant characteristics to be further used for target
identification. As such, a common functionality of such models is to feed the similarities
learned among different inputs to subsequent network components that carry out the
classification/detection task [32,33].

Some authors take this concept further by employing several network components [34],
each of which contributes features exhibiting specific and limited correlations. When joined
together, the features form a complete appearance model of the tracked objects. Other ap-
proaches map network components to flow graphs, the traversal of which enables optimal
cost-function and feature learning [35]. It is worthy of noting that the more complicated
the architecture of the classifier, the more elaborate the training process and the poorer
the performance. A careful balance should therefore be reached between the complexity
of the classifier, the completeness of the resulting features, and the amount of processing
and training data needed to produce high-accuracy results. All this should involve a
computational cost consistent with the needs of automotive applications. For instance,
in [36] the authors propose a lightweight solution where the feature extractor consists in
only two convolutional layers, while a careful selection of motion patterns solves the data
association problem.

In [37], the idea of object matching from frame pairs is further explored using a
three-component setup: a siamese network configuration handles single object tracking
and generates short-term cues in the form of tracklet images, while a modified version of
GoogleNet Inception-v4 generates re-identification features from multiple tracklets. The
third component is based on the idea that there may be a large overlap in the previously-
computed features, which are consequently treated as switcher candidates. As a result,
a switcher-aware logic handles the situation where IDs of different objects may be inter-
changed during frame sequences mainly as a result of partial occlusion.

As the difficulty of the tracking problem increases, so does the need to design systems
capable of learning increasingly useful and robust features. In this sense, many solutions
consist in models that extract features expressing increasingly abstract concepts, which
have the potential for greater generalization. Therefore, a lot of effort is directed toward
identifying object features that are higher-level, more abstract representations of how
the object fits within the overall context of the acquired video sequence. Examples of
such concept are the previously-mentioned “affinity”; another is “attention”, where some
authors propose neural-network-based solutions for estimating attention and generating
attention maps. Reference [15] computes attention features that are spatially and temporally
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sound using an arrangement of ROI identification and pooling operations. Reference [38]
uses attention cues to handle the inherent noise from conventional detection methods,
as well as to compensate for frequent interactions and overlaps among tracked targets.
A two-component system handles noise and occlusion, and produces spatial attention
maps by matching similar regions from pair frames. Temporal coherence is achieved by
weighing observations across the trajectory differently, thereby assigning them different
levels of attention. This process results is filtering criteria used to successfully account for
similar observations while eliminating dissimilar ones. Another noteworthy contribution
is [39], where attention maps are generated using reciprocative learning. The input frame
is sent back-and-forth through several convolutional layers: in the forward propagation
phase classification scores are generated, while the back-propagation produces attention
maps from the gradients of the previously-obtained scores. The computed maps are
further used as regularization terms within a classifier. The advantage of this approach
is its simplicity compared to other similar ones. The authors claim that their method
for generating attention features ensures long-term robustness. Other methods that use
frame pairs and no recurrent components do not seem to work as well for very long-
term sequences. Recently, attention mechanisms have been gaining significant ground for
solving temporal consistency problems, since they allow the underlying model the freedom
to weigh selective portions of a time-based sequence. Other noteworthy examples of works
where attention mechanisms are incorporated into a CNN-based detector are [40,41].

2.1.4. LSTM-Based Methods

Generally, methods that are based on non-recurrent CNN-only approaches are best
suited to handle short scenes where quick reactions are required in a brief situation that
can be captured in a limited number of frames. Various literature studies show that
LSTM-based methods have more potential to ensure the proper handling of long-term
dependencies while avoiding various mathematical pitfalls. One example in this sense is
the “vanishing gradient” problem, which in practice manifests as a mis-trained network
resulting in drift effects and false positives. Furthermore, handling long-term dependencies
means having to deal with occlusions to a greater extent than in shorter term scenarios.

Most approaches combine various classifiers that handle spatial and shape-based
classification with LSTM components that deal with temporal coherence. An early ex-
ample of an RNN implementation is [42], which uses an LSTM-based classifier to track
objects in time, across multiple frames (Figure 1 in [42]). The authors demonstrate that an
LSTM-based approach is better suited to removing and reinserting candidate observations
to account for objects that leave/reenter the visible area of the scene. This provides a
solution to the track initiation and termination problem based on data associations found
in features obtained from the LSTM layers. This concept is exploited further by [43] where
various cues are determined to assess long-term dependencies using a dual LSTM network.
One LSTM component tracks motion, while the other handles interactions, and the two
are combined to compute similarity scores between frames. The results show that using
recurrent components to handle lengthy sequences produces more reliable results than
other methods based on frame pairs. Some implementations using LSTM layers focus
on tracking-while-driving problems, which pose additional challenges compared to most
established benchmarks using static cameras. As an alternative to solutions that involve cre-
ating models of vehicle behavior, Reference [44] circumvent the need for vehicle modeling
by directly inputting sensor measurements into an LSTM network to predict future vehicle
positions and to analyze temporal behavior. A more elaborate attempt is [45] where instead
of raw sensor data, the authors establish several maneuver classes and feed maneuver
sequences to LSTM layers in order to generate probabilities for the occurrence of future
maneuver instances. Eventually, multiple such maneuvers can be used to construct the
trajectory and/or anticipate the intentions of the vehicles.

Furthermore, increasing the length of the sequence increases accuracy and stability
over time, up to a certain limit where the network saturates and no longer improves. A
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solution to this problem would be to split the features into multiple sub-features, followed
by reconnecting them to form more coherent long-term trajectories. This is achieved in [46]
where a combined CNN and RNN-based feature extractor generates tracklets over lengthy
sequences. The tracklets are split on frames that contain occlusions. A recombination
mechanism based on gated recurrent units (GRUs) recombines the tracklet pieces accord-
ing to their similarities, followed by the reconstruction of the complete trajectory using
polynomial curve fitting.

Some authors do further modifications to LSTM layers to produce classifiers that
generate abstract high-level features, such as those found in appearance models. A good ex-
ample in this sense is [47] where LSTM layers are modified to do multiplication operations
and use customized gating schemes between the recurrent hidden state and the derived fea-
tures. The newly-obtained LSTM layers are better at producing appearance-related features
than conventional LSTMs, which excel at motion prediction. Where trajectory estimation is
concerned, LSTM-based methods exploit the gating that takes place in the recurrent layers,
as opposed to regular RNNs, which pass candidate features into the next recurrent iteration
without discriminating between them. The filters inherently present in gated LSTMs have
the potential to eliminate unwanted feature candidates which may represent unwanted
trajectory paths. Candidates which eventually lead to correctly-estimated motion cues are
maintained. Furthermore, LSTMs demonstrate an inherent capability to predict trajectories
that are interrupted by occlusion events or by reduced acquisition capabilities. This idea
is exploited in order to find solutions to the problem of estimating the layout of a full
environment from limited sensor data, a concept referred to in the related literature as
“seeing beyond seeing” [48]. Given a set of sensors with limited capability, the idea is to
perform end-to-end tracking using raw sensor data without the need to explicitly identify
high-level features or to have a pre-existing detailed model of the environment. In this
sense, recurrent architectures have the potential to predict and reconstruct occluded parts
of a particular scene from incomplete or partial raw sensor output. The network is trained
with partial data and it is updated through a mapping mechanism that makes associations
with an unoccluded scene. Subsequently, the recurrent layers make their own internal
associations and become capable of filling in the missing gaps that the sensors have been
unable to acquire. Specifically, given a hidden state of the world that is not directly captured
by any sensor, an RNN is trained using sequences of partial observations in an attempt to
update its belief concerning the hidden parts of the world. The resulting information is
used to “unocclude” the scene that was initially only partially perceived through limited
sensor data. Upon training, the network is capable of defining its own interpretation of the
hidden state of the scene. The previously-mentioned result is elaborated upon by a group
that includes the same authors [49]. A similar approach previously applied in basic robot
guidance is extended for use in assisted driving. In this case, more complex information
can be inferred from raw sensor input, in the form of occupancy maps. Together with a
deep network-based architecture, these allow for predicting the probabilities of obstacle
presence even in occluded portions within the field of view. In [50], the idea of using LSTM
layers to process sensor data is depicted by modeling actor trajectories and activities based
on the output of an arrangement on inertial sensors. The proposed neural network learns
correlations among sensor outputs and consequently forms an inertial odometry model.

In more recent studies, authors tend to add supplementary processing stages to their
LSTM-based models. This additional effort seems to stem from the need to generate and
incorporate an increasingly-refined and abstract array of features into the tracking process.
As tracking scenarios increase in complexity, the resulting problem space increases in size
and dimensionality. This motivates the need for extending an LSTM-centered model by
incorporating it into a broader system. An example of such an approach is [51], where se-
quential dependencies are handled by LSTM layers as in commonly the case in such works.
While relying on convolutional feature maps in the initial phases of the tracking pipeline,
there is an additional mechanism for preparing selection proposals for the LSTM layers
to process. Additionally, the common problem of feature inadequacy and class imbalance
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in the learning phase is handled by a GAN-based stage where the candidate samples are
augmented. It is worth mentioning that, as more and more layers of different types are
added to such a system, the reliability of the selected features may increase together with
robustness to potential biases in the training data. However, at the same time, there is the
risk that training and validating such a system may become a tedious, time consuming
task. As the complexity increases, so does the need for extending the training data set
and supplement the required computational resources. Other efforts in the direction of
producing more usable features involve determining pedestrian intention as suggested
by [52]. In this scenario, an LSTM model is used in conjunction with an intention filter to
select suitable trajectory offset hypotheses so as to add to the reliability of the predicted
result. The use of intention as a defining concept for features is also explored by [53], who
enhance LSTM cells by introducing additional speed and correlation components. These
components serve to model the more complex interactions required to define intention.
In [54], instead of refining feature candidates using additional mechanisms, the authors
choose to change the representation of the respective features. Specifically, LSTM layers
are reconfigured and repurposed to handle multidimensional hidden states as opposed
to the 1D vectors used traditionally. This increases the ability of such layers to accurately
model spatial and temporal interactions among pedestrians. Conversely, in [55] the authors
adapt an arrangement of LSTM layers to process sparse 3D data structures as opposed
to changing internal data representation. The authors choose to model the interactions
among pedestrians using graphs and, consequently, graph convolutional networks. Such
systems still rely on LSTM layers to encode temporal dependencies. The spatial and
sequence-related relationships among the tracked actors (represented as nodes) is modeled
by determining connections in the form of graph edges [56,57].

2.1.5. Miscellaneous Neural Network-Based Methods

An interesting alternative to conventional deep learning architectures is the use of
GANs, as demonstrated in [58]. GANs train generative models and filter their results
using a discriminative component. GANs are notoriously difficult to train, which is one
of the reasons why they see seldom use in the related literature. In terms of tracking,
GANs alleviate the need to compute expensive appearance features and minimize the
fragmentation that typically occurs in more conventional trajectory prediction models.
A generative component produces and updates candidate observations, of which the
least updated are eliminated. The generative-discriminative model is used in conjunction
with an LSTM component to process and classify candidate sequences. This approach
has the potential to produce high-accuracy models of human behavior, especially group
behavior. At the same time, it is significantly more lightweight than previously-considered
CNN-based solutions.

Another “outlier” solution in the related literature is [59], one of the few efforts in-
volving reinforcement learning for MOT applications. The proposed model is split into
two parts: a predictive component based on a CNN, which treats pedestrian detections as
agents and determines the displacement of a target agent from its initial location; a decision
network, which uses the resulting predictions and detections within a deep reinforcement
learning network where the actions among the agents and their environment are rewarded
so as to maximize their shared utility. Consequently, the collaborative interactions of multi-
ple agents are exploited in order to simultaneously detect and track them more effectively.
Other driver-centric reinforcement learning-based solutions determine driving rules for
collision avoidance by weighing vehicle paths against potential pedestrian trajectories [60].

2.2. Other Techniques

While the current state-of-the art methods for MOT are mostly neural network-based,
there also exist a multitude of other approaches which exploit more traditional, unsuper-
vised means of providing reliable tracking. Neural networks gained popularity in recent
years due in no small part to the availability of more powerful hardware, particularly GPUs,
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which allowed for training models capable of handling realistic scenarios in a reasonable
amount of time. Neural networks however have the downside of needing vast amounts
of reliable training data. Also, they require a lot of experimentation and trial-and-error
before the right design and hyperparameter set is found for a particular scenario. There
are, however, situations where training data may not be readily available in sufficient
quantity and variety. Such cases call for a more straightforward design and a more intuitive
model that can provide reliable tracking without necessarily requiring supervised learning.
Neural network models are harder to understand in terms of how they function, and, while
as deterministic as their non-neural network-based counterparts, are less intuitive and
meant for use in a “black-box” manner. This is where other, more transparent methods
come into place.

The tracking problem can be formulated similarly to the neural-network case: given a
set of observations/appearances/segmented objects in multiple video frames, the task is
to develop a means of determining relationships among these elements across the frames
and to come up with a means of predicting their path. Various authors formulate this
problem differently, for instance some methods involve determining tracklets in each frame
and then assembling object trajectories in a full video sequence by combining tracklets
from all or some of the frames [61]. Traditional, non-NN-based approaches, especially non-
supervised ones, generally formulate much more straightforward models. Some are based
on a graph or flow-oriented interpretation of the tracked scene. Others rely on emitting
hypotheses as to the potential trajectories of the tracked targets, or otherwise formulating
some probabilistic approach to predicting the evolution of objects in time. It is worth
noting that many of the more conventional, unsupervised algorithms from the related
literature do not generalize the solution as well as a NN-based method. Consequently,
they are usable in a limited number of scenarios, by comparison. Some works attempt
to circumvent this problem using evolutionary algorithms as multicriteria optimization
methods [62]. However, while capable of covering a significant portion of the problem
space, such methods have the downside that the optimal trajectory needs to be periodically
recalculated, which can hinder performance especially for on-board-only systems. Also,
methods that attempt to account for temporal consistency do not handle time sequences as
lengthy as, for instance, an LSTM network. The likely explanation is that an unsupervised
method requires far more processing capabilities the more frame elements it is fed. In the
case of a properly-trained neural network, the amount of computational resources required
does not increase as much with the length of the associated sequence. However, in practice,
especially on an embedded device as required in automotive tracking, porting a more
conventional method may be more convenient in terms of implementation and platform
compatibility than running a pre-trained NN model.

Another important aspect worth mentioning is that conventional methods are much
more varied in terms of their underlying algorithms, as opposed to an NN-based architec-
ture which features various arrangements of the same two or three neural network types,
with additional processing of layer activations or outputs as the case may be. For this
reason, we do not attempt to cover all the approaches ever developed for object tracking,
but we rather focus on representative works featuring various successful attempts at MOT.

2.2.1. Traditional Algorithms and Methods Focusing on High-Performance

The Kalman filter is a popular method with many applications in navigation and
control, particularly with regard to predicting the future path of an object, associating
multiple objects with their trajectories, while demonstrating significant robustness to noise.
Generally, Kalman-based methods are used for simpler tracking, particularly in online
scenarios where the tracker only accesses a limited number of frames at a time, possibly
only the current and previous ones. An example of the use of the Kalman filter is [63],
where a combination of the aforementioned filter and the Munkres algorithm as the min-
cost estimator is used in a simple setup focusing on performance. The method requires
designing a dynamic model of the tracked objects’ motion, and is much more sensitive to
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the type of detector. However the proper parameters are established, the simplicity of the
method allows for significant real-time performance.

Similar methods are frequently used in simple scenarios where a limited number of
frames are available and the detections are accurate. In such situations, the simplicity of
the implementations allows for quick response times even on low-spec embedded client
devices. In the same spirit of providing an easy, straightforward method that works well for
simple scenarios, Reference [64] provides an approach based on bounding-box regression.
Given multiple object bounding boxes from a set of ordered frames, the authors use a
regression model to predict the positions of the objects’ bounding boxes in following frames.
An important restriction of such an approach is that it only successfully detects targets
that move only slightly across consecutive frames, making it reliable in scenarios where
the frame rate is high enough and relatively stable. Furthermore, a reliable detector is
a must in such situations, and crowded scenes with frequent occlusion events are not
handled properly. As with the previous approach, this is well suited for easy cases where
robust image acquisition is available and performance and implementation simplicity are a
priority. Unfortunately, noisy images are fairly common in automotive scenarios where,
for efficiency and cost reasons, a compromise may be made in terms of the quality and
performance of the cameras and sensors. It is often desirable that the software be robust to
noise so as to minimize the hardware costs.

In Reference [65], tracking is done by a particle filter for each track. The authors use
the Munkres assignment for bounding boxes within consecutive images for each track. A
cost matrix is then generated based on the associations made among bounding boxes from
current and previous images. Specifically, the cost of associating two bounding boxes is
determined from the Euclidean distance between the centers of the boxes, as well as their
size variation. This approach is simple to implement, but the assignment algorithm has an
O(n3) complexity, which is likely too high for real-time tracking.

Various attempts exist for improving noise robustness while maintaining performance,
for example in [66]. In this case, the lifetime of tracked objects is modeled using a Markov
Decision Process (MDP). The policy of the MDP is determined using reinforcement learn-
ing, whose objective is to learn a similarity function for associating tracked objects. The
positions and lifetimes of the objects are modeled using transitions between MDP states.
Reference [67] also use MDPs in a more generalized scheme, involving multiple sensors
and cameras and fusing the results from multiple MDP formulations. Note that Markov
models can be limiting when it comes to automotive tracking, since a typical scene with
multiple interacting targets does not exhibit the Markov property where the current state
only depends on the previous one. In this regard, the related literature features multiple
attempts to improve reliability. Reference [68] propose an elaborate pipeline featuring
multiview tracking, ground plane projection, maneuver recognition, and trajectory predic-
tion. The method involves an assortment of approaches, which include Hidden Markov
Models and Variational Gaussian mixture models. Such efforts show that an improvement
over traditional algorithms involves sequencing together multiple different methods, each
with its own role. As such, there is the risk that the overall resulting approach may be too
fragmented and too cumbersome to implement, interpret, and improve properly.

Works such as [69] attempt to circumvent such limitations by proposing alternatives
to tried-and-tested Markov models, in this case in the form of a system that determines
behavioral patterns in an effort to ensure global consistency for tracking results. There are
multiple ways to exploit behavior in order to guide the tracking process. For instance, a
possible solution would rely on learning and minimizing/maximizing an energy function
that associates behavioral patterns with potential trajectory candidates. This concept is
exemplified by [70], who propose a method based on minimizing a continuous energy
function aimed at handling the very large space of potential trajectory solutions. A limited,
discrete set of behavior patterns impose limitations on the energy function. While such
a limitation offers better guarantees that a global optimum will eventually be reached, it
may not allow for a complete representation of the system.
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An alternative approach which is also designed to handle occlusions is [71], where
the divide-and-conquer paradigm is used to partition the solution space into smaller sub-
sets, thereby optimizing the search for the optimal variant. The authors note that while
detections and their respective trajectories can be extracted rather efficiently from crowded
scenes, the presence of ambiguities induced by occlusion events may raise significant de-
tection errors. The proposed solution involves subdividing the object assignment problem
into subproblems, followed by a selective combination of the best features found within
the subdivisions (Figure 3 in [71]). The number and types of the features are variable,
thereby accounting for some level of flexibility for this approach. One particular downside
is that once the scene changes, the problem itself also changes and the subdivisions need
to reoccur and update, therefore making this method unsuitable for scenes acquired from
moving cameras.

A similar problem is posed in [61], where it is also noted that complex scenes pose
tracking difficulties due to occlusion events and similarities among different objects. This
issue is handled by subdividing object trajectories into multiple tracklets and subsequently
determining a confidence level for each such tracklet, based on its detectability and continu-
ity. Actual trajectories are then formed from tracklets connected based on their confidence
values. One advantage of this method in terms of performance is that tracklets can be
added to already-determined trajectories in real-time as they become available without
requiring complex processing or additional associations. Additionally, linear discrimi-
nant analysis is used to differentiate objects based on appearance criteria. The concept
of appearance is more extensively exploited by [72], who use motion dynamics to distin-
guish between targets with similar features. They approach the problem by determining
a dynamics-based similarity between tracklets using generalized linear assignment. As
such, targets are identified using motion cues, which are complementary to more well
established appearance models. While demonstrating adequate performance and accuracy,
it is worth mentioning that motion-based features are sensitive to camera movement and
are considerably more difficult to use in automotive situations. Motion assessment metrics
that work well for static cameras may be less reliable when the cameras are in motion and
image jittering and shaking occur.

The idea of generating appearance models using traditional means is exemplified
in [73], who use a combination appearance models learned using a regularized least squares
framework and a system for generating potential solution candidates in the form of a set
of track hypotheses for each successful detection. The hypotheses are arranged in trees,
each of which are scored and selected according to the best fit in terms of providing usable
trajectories. An alternative to constructing an elaborate appearance model is proposed
by [74], who directly involve the shape and geometry of the detections within the tracking
process, therefore using shape-based cost functions instead of ones based on pixel clusters.
Furthermore, results focusing on tracking-while-driving problems may opt for a vehicle
behavior model, or a kinematic model, as opposed to one that is based on appearance
criteria. Examples of such approaches are [75–77], where the authors build models of
vehicle behavior from parameters such as steering angles, headings, offset distances, and
relative positions. Note that kinematic and motion models are generally more suited
to situations where the input consists in data from radar, Light Detection and Ranging
(LiDAR) or Global Positioning Systems (GPS), as opposed to image sequences. In particular,
attempting to reconstruct visual information from LiDAR point clouds is not a trivial task
and may involve elaborate reconstruction, segmentation and registration preprocessing
before a suitable detection and tracking pipeline can be designed [78].

Another class of results from related literature follows a different paradigm. Instead
of employing complex energy minimization functions and/or statistical modeling, other
authors opt for a simpler, faster approach that works with a limited amount of information
drawn from the video frames. The motivation is that in some cases the scenarios may
be simple enough that a straightforward method that alleviates the need for extended
processing may prove just as effective as more complex and elaborate counterparts. An
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example in this direction is [79] whose method is based on scoring detections by deter-
mining overlaps between their bounding boxes across multiple consecutive frames. A
scoring system is then developed based on these overlaps and, depending on the resulting
scores, trajectories are formed from sets of successive overlaps of the same bounding boxes.
Such a method does not directly handle crowded scenes, occlusions or fast moving objects
whose positions are far apart in consecutive frames, however it may present a suitable
compromise in terms of accuracy in scenarios where performance is detrimental and the
embedded hardware may not allow for more complex processing. This is in contrast to
high-performance methods that use on-board hardware to provide a lot of the information
required for tracking, therefore reducing the reaction time of the underlying system in
high-speed scenarios [80]. An additional important consideration for this type of problem
is how the tracking method is evaluated.

Most authors use a common, established set of benchmarks which, while having a
certain degree of generality, cannot cover every situation that a vehicle might be found
in. As such, some authors such as [81] devote their work to developing performance
and evaluation metrics and data sets, which allow for covering a wide range of potential
problems that may arise in MOT scenarios. As such, the choice in the method used for
tracking is as much a consequence of the diversity of situations and events claimed to be
covered by the method, as it results from the evaluation performed by the authors. For
example, as was the case for NN-based methods, most evaluations are done for scenes with
static cameras, which are only partly relevant for automotive applications. The advantage
of the methods presented thus far lies in the fact that they generally outperform their
counterparts in terms of the required processing power and computational resources,
which is a plus for vehicle-based tracking where the client device is usually a low-power
solution. Furthermore, some methods can be extended rather easily, as the need may be,
for instance by incorporating additional features or criteria when assembling trajectories
from individual detections, by finding an optimizer that ensures additional robustness,
or, as is already the case with some of the previously-mentioned papers, by incorporating
a light-weight supervised classifier in order to boost detection and tracking accuracy.
Additionally, the problem of false or malicious information from other traffic participants
(for example in a multi-vehicle situation) has the potential to affect the accuracy of such
methods. One proposed solution to this issue is to cluster the observations drawn from
cooperative tracking according to their reliability and their potential to adversely affect the
tracking results [82].

2.2.2. Methods Based on Graphs and Flow Models

A significant number of results from the related literature present the tracking solution
as a graph search problem or otherwise model the tracking scene using a dependency graph
or flow model. There are multiple advantages to using such an approach: graph-based
models tailor well to the multi-tracking problem since, like a graph, it is formed from
inter-related nodes each with a distinct set of parameter values. The relationships that
can be determined among tracked objects or a set of trajectory candidates can be modeled
using edges with edge costs. Graph theory is well understood and graph traversal and
search algorithms can be widely found, with implementations readily available on most
platforms. Likewise, flow models can be seen as an alternative interpretation of graphs,
with node dependencies modeled through operators and dependency functions, forming an
interconnected system. Unlike a traditional graph, data from a flow model progresses in an
established direction that starts from initial components where acquired data are handled
as input; the data then traverse intermediate nodes where they are processed in some
manner and end up at terminal nodes where the results are obtained and exploited. Like
graphs, flow models allow for loops that implement refinement techniques and in-depth
processing via multiple local iterations.

Most methods that exploit graphs and flow models attempt to solve the tracking
problem using a minimum path or minimum cost-type approach. An example in this sense
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is [83], where multi-object tracking is modeled using a network flow model subjected to
min-cost optimization. Each path through the flow model represents a potential trajectory,
formed by concatenating individual detections from each frame. Occlusion events are
modeled as multiple potential directions arising from the occlusion node and the proposed
solution handles the resulting ambiguities by incorporating pairwise costs into the flow
network.

A more straightforward solution is presented by [84], who solve multi-tracking using
dynamic programming and formulate the scenario as a linear program. They subsequently
handle the large number of resulting variables and constraints using k-shortest paths.
One advantage of this method seems to be that it allows for reliable tracking from only
four overlapping low resolution low fps video streams, which is in line with the cost-
effectiveness required by automotive applications.

Another related solution is [85], where a cost function is developed from estimating the
number of potential trajectories as well as their origins and end frames. Then, the scenario
is handled as a shortest-path problem in a graph, which the authors solve using a greedy
algorithm. This approach has the advantage that it uses well-established methods, therefore
affording some level of simplicity to understanding and implementing the algorithms.

In [86], a similar graph-based solution divides the problem into multiple subproblems
by exploring several graph partitioning mechanisms and uses greedy search based on
Adaptive Label Iterative Conditional Modes. Partitioning allows for successful disassocia-
tion of object identities in circumstances where said identities might be confused with one
another. Also, methods based on solution space partitioning have the advantage of being
highly scalable, therefore allowing fine tuning of their parameters in order to achieve a
trade-off between accuracy and performance. Multiple extensions of the graph-based prob-
lem exist in the related literature, for instance, when multiple other criteria are incorporated
into the search method. Reference [87] incorporate appearance and motion-based cues into
their data association mechanism, which is modeled using a global graph representation
and makes use of generalized minimum clique graphs to locate representative tracklets in
each frame. Among other advantages, this allows for a longer time span to be handled,
albeit for each object individually.

Another related approach is provided in [88], where the solution consists in a col-
laborative model which makes use of a detector and multiple individual trackers, whose
interdependencies are determined by finding associations with key samples from each
detected region in the processed frames. These interdependencies are further exploited via
a sample selection method to generate and update appearance models for each tracker.

As extensions of the more traditional graph-based models that use greedy algorithms
to search for suitable candidate solutions and update the resulting models in subsequent
processing steps, some authors handle the problem using hypergraphs. These extend the
concept of classical graphs by generalizing the role of graph edges. In a conventional graph
an edge joins two nodes, while in a hypergraph edges are sets of arbitrary combinations
of nodes. Therefore an edge in a hypergraph connects to multiple nodes, instead of just
two as in the traditional case. This structure has the potential to form more extensive
and complete models using a singular unified concept and to alleviate the need for costly
solution space partitioning or subdivision mechanisms. Another use of the hypergraph
concept is provided by [89], who build a hypergraph-based model to generate meaningful
data associations capable of handling the problem of targets with similar appearance
and in close proximity to one-another, a situation frequently encountered in crowded
scenes. The hypergraph model allows for the formulation of higher-order relationships
among various detections, which, as mentioned in previous sections, have the potential
to ensure robustness against simple transformations, noise, and various other spatial and
temporal inaccuracies. The method is based on grouping dense neighborhoods of tracklets
hierarchically, forming multiple layers which enable more fine-grained descriptions of
the relationships that exists in each such neighborhood. A related but much more recent
result [90] is also based on the notion that hypergraphs allow for determining higher
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order dependencies among tracklets, but in this case the parameters of the hypergraph
edges are learned using a structural support vector machine (SSVM), as opposed to being
determined empirically. Trajectories are established as a result of determining higher order
dependencies by rearranging the edges of the hypergraph so as to conform to several
constraints and affinity criteria (Figure 1 in [90]). While demonstrating robustness to
affine transforms and noise, such methods still cannot handle complex crowded scenes
with multiple occlusions and, compared to previously-mentioned methods, suffer some
penalties in terms of performance, since updating the various parameters of hypergraph
edges can be computationally costly.

2.3. Discussion

Most of the results from the available literature focus on generating abstract, high-
level features of the observations found in the processed images, since, generally, the more
abstract the feature, the more robust it should be to transformations, noise, drift, and other
undesired artifacts and effects. Most authors rely on an arrangement of CNNs where
each component has a distinct role in the system, such as learning appearance models,
geometric and spatial patterns, or learning temporal dependencies. It is worth noting that a
strictly CNN-based method needs substantial tweaking and careful parameter adjustment
before it can accomplish the complex task of consistent detection in space and across
multiple frames.

LSTM-based architectures seem to show more promising results for ensuring long-
term temporal coherence, since this is what they were designed for, while also being
simpler to implement and train. For the purposes of autonomous driving, an LSTM-based
method shows promise, considering that training should happen offline and that a heavily-
optimized solution is needed to achieve a real-time response. Designing such a system also
requires a fair amount of trial-and-error since currently there is no well established manner
to predict which network architecture is suited to a particular purpose.

One particularly promising direction for automotive tracking are solutions that make
use of limited sensor data and that are able to efficiently predict the surrounding envi-
ronment without requiring a full representation or reconstruction of the scene. These
approaches circumvent the need for lengthy video sequences, heavy image processing and
the computation of complicated object features while being especially designed to handle
occlusion and objects outside of the immediate field of view. As such, where automotive
tracking is concerned, the available results from the state-of-the art seem to suggest that
an effective solution would make use of partial data while being able to handle temporal
correlations across lengthy sequences using an LSTM component.

Other, unsupervised approaches not reliant on neural networks offer a more straight-
forward model with an easier implementation. The downside often consists in the lack of
generalization that such systems are capable of. The features required for detection and
stability often have to be manually established, as opposed to supervised methods that can
learn meaningful features on their own. The choice in terms of the most useful and reliant
tracking model ultimately rests on many factors, among which we mention: the size and
complexity of the problem, the availability of training data, the available computational
resources, and, ultimately, the requirements in terms of accuracy, coherence, and stability.

We summarize our findings in Table 1, where we classify the works referenced in
this Section according to the main method and the general approach used throughout.
We choose to feature distinctive categories for solutions relying mainly on convolutional
layers and on recurrent ones. Other methods are grouped into their own category. This
choice is motivated by the fact that, as of yet, deep neural networks consistently show the
most promise for the problems described throughout this Section. Many authors have
found inventive and effective solutions to tracking problems using neural network-based
models, since they offer the most robust features while being natively designed to solve
focus-and-context problems in data sequences.



Mathematics 2021, 9, 660 18 of 37

Table 1. Classification of tracking solutions from existing works.

Category Strenghts/Weaknesses Overall Approach Contributions

Methods
based on
convolutional
neural
networks

Strengths:
- good at learning spatial,
shape and geometric features
- reduced computational load
compared to regular neural
networks
- translation invariance

Weaknesses:
- cannot determine temporal
dependencies in sequence
data without additional
mechanisms

Tracking from features directly learned by simple single-stream
convolutional layers [8,16,18]

Dual-stream CNNs with data associations performed by additional model
components [6,19,28,37]

Tracking using responses from convolutional features processed through
correlation filters [2–5,22,23]

Multistream CNNs that determine similarities between multiple ROIs and
target templates [14]

Models that determine appearance descriptors or that generate appearance
representations from convolutional features [1,13,25,27,32]

Convolutional models that account for temporal coherence using a
multi-network pipeline [24]

Tracking from features learned by fusing responses from dual stream
convolutional layers (Siamese CNNs) [26,30,31,38]

Models that generate features from convolutional layers and use attention
mechanisms for temporal coherence and matching [15,39–41]

Multi-stream convolutional layers used for detecting pedestrian poses [17]

Siamese networks combining convolutional features with complementary
features from image processing [33]

Methods
based on
recurrent
neural
networks

Strengths:
- good for processing data
series
- good for learning temporal
features and dependencies,
and for ensuring temporal
coherence

Weaknesses:
- cannot deduce interactions
without additional
mechanisms
- generally more difficult to
train

Models based on LSTM cell configurations that directly predict
vehicle/obstacle occupancy [44,49]

Model for motion prediction based on vehicle maneuvers [45]

LSTM-based architectures that generate appearance and motion models
and learn interaction information over extended sequences [43,47,51]

Multi-layer GRU-based architecture which splits and reconnects tracklets
generated from convolutional features [46]

Basic RNN that encodes information from multiple frame sequences [42,48]

LSTM layers that focus on learning and interpreting actor intentions [52,53]

LSTM-based object detection and tracking adapted for sequences of
higher-dimensional data [55]

LSTM models that encode relationships between actors using graph
representations [56,57]

LSTM model that uses multidimensional internal representations of data
sequences [54]

Methods not
relying on
neural
networks

Strengths:
- designing a working model
is more straightforward
compared to neural networks
- most are not training
data-dependent

Weaknesses:
- traditional, classic methods
do not model sequence
dependencies as effectively as
many RNN-based solutions

Models that represent and predict actor relationships using flow-networks
and graphs [83,85,89,90]

Models relying on geometric representations, kinematics and pose
estimations [74,75,77,91]

Models that ensure detection coherence using adaptive partitioning of the
problem space [71,86]

Methods relying on Markov models and Markov decision processes [66–68]

Methods that build appearance models and/or use appearance similarity
metrics [72,73,87,88]

Methods using a multi-stage tracking pipeline incorporating filtering,
segmentation, clustering and/or data association [76,78]

Methods relying on lightweight filtering and optimization for high-speed
high-performance applications [63,64,80,84]
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3. Trajectory Prediction Methods

In order to navigate through complex traffic scenarios safely and efficiently, au-
tonomous cars should be able to predict the way in which the other traffic participants
will behave in the near future with a sufficient degree of accuracy. The prediction of their
motion is especially difficult because there are usually multiple interacting agents in a scene.
Also, driver behavior is multi-modal, e.g., in different situations, from a certain common
past trajectory, several different future trajectories may emerge. An autonomous car must
also find a balance between the safety of people involved (its own passengers and other
human drivers, or pedestrians) and choosing an efficient speed to reach its destination,
without any perturbations to existing traffic. Predicting the future state of its environment
is particularly important when the autonomous vehicle should act proactively, e.g., when
changing lanes, overtaking other traffic participants and managing intersections [45].

Other difficulties come from the requirement that such a system must be prepared to
handle rare, exceptional situations. However, because of the great number of possibilities
involved, it should take into account only a reasonable subset of possible future scene
evolutions [92] and often, it is important to identify the most probable solution [93].

Reasoning about the intentions of other drivers is a particularly helpful ability. Trajec-
tory prediction can be treated on two different levels of abstraction. On the higher level,
one can identify the overall intentions regarding a discrete set of possible actions, e.g.,
changing a lane or moving left or right in an intersection. On the lower level, one can
predict the actual continuous trajectories of the road users [94].

Trajectory prediction needs to be precise but also computationally efficient [95]. The
latter requirement can be satisfied by recognizing some constraints that reduce the size
of the problem space. For example, the current speed of a vehicle affects its stopping
time or the allowed curvature of its future trajectory so as to maintain the stability of the
vehicle. Even if each driver has his/her own driving style, it is assumed that traffic rules
will be obeyed, at least to some extent, and this will constrain the set of possible future
trajectories [93].

A recent white paper [96] states that a solution for the prediction and planning tasks
of an autonomous car may consider a combination of the following properties:

• Predicting only a short time into the future. Given the probabilistic nature of trajectory
prediction, the farther one predicts into the future, the less certain the results become.
Moreover, the probability distribution of the predicted trajectories disperses and thus
becomes less useful altogether;

• Relying on physics where possible. Machine learning models, e.g., deep networks, can be
used to predict trajectories, but they can suffer from approximation errors. Especially
in simple, non-interactive scenarios, e.g., when the vehicles have constant speeds or
accelerate/decelerate in a foreseeable manner, using physics-based extrapolations can
provide more precise results. Also, each type of vehicle may have its own dynamics,
so the identification of the vehicle class before prediction is a necessary initial step;

• Considering whether road users obey traffic rules. The autonomous car may plan as if the
other traffic participants observed the imposed traffic rules, e.g., cars stopping at red
lights or pedestrians not crossing the street in forbidden areas. However, defensive
safety measures must be in place to prevent accidents with the so-called “vulnerable”
road users;

• Recognizing particular traffic situations. For example, the behavior of traffic participants
caught in a traffic jam differs from their behavior in flowing traffic.

Further, Reference [96] asserts that the self-driving car system should be prepared
not only for the worst-case illegal behavior of the other traffic participants, but also for
their worst-case legal behavior. The prediction system should be able to learn what the
“reasonable” conduct of the other drivers may be in various circumstances. This may also
depend on local conditions, such as different “driving cultures” in different countries.
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3.1. Problem Description

To tackle the trajectory prediction task, one needs to have access to real-time data
from sensors such as LiDAR, radar, or camera, and to a functioning system that allows
detection and tracking of traffic participants in real-time. Examples of pieces of information
that describe a traffic participant are: the bounding box, position, velocity, acceleration,
heading, and yaw rate, i.e., the change in the heading angle. It may also be needed to
have mapping data of the area where the ego car is driving, i.e., road and crosswalk
locations, lane directions, and other relevant map-related information. Past and future
positions are represented in an ego car-centric coordinate system. Also, one needs to
model the static context with road and crosswalk polygons, as well as lane directions and
boundaries [97]. An example of available information on which the prediction module can
operate is presented in Figure 1.3 in [98].

More formally, prediction can be defined as reasoning about probable outcomes based
on past observations [99]. Let Xi

t be a vector with the spatial coordinates of agent i at
observation time t, with t ∈ {1, 2, ..., Tobs}, where Tobs is the present time step in the series
of observations. The past trajectory of agent i is a sequence Xi = {Xi

1, Xi
2, ..., Xi

Tobs
}. Based

on the past trajectories of all agents, one needs to estimate the future trajectories of all
agents, i.e., Ŷi = {Ŷi

Tobs+1, Ŷi
Tobs+2, ..., Ŷi

Tpred
}.

It is also possible to first generate the trajectories in the Frenet coordinate system
along the current lane of the ego vehicle, and then convert it to the Cartesian coordinate
system [93]. The Frenet coordinate system is useful to simplify the motion equations when
cars travel on curved roads. It consists of longitudinal and lateral axes, denoted as s and d,
respectively. The curve that goes through the center of the road determines the s axis and
indicates how far along the car is on the road. The d axis indicates the lateral displacement
of the car. d is 0 on the center of the road and its absolute value increases with the distance
from the center. Also, it can be positive or negative, depending on the side of the road.

3.2. Classification of Methods

There are several classification approaches presented in the literature regarding trajec-
tory planning methods.

An online tutorial [100] distinguishes the following categories:

1. Model-based approaches. They identify common behaviors of the vehicle, e.g., changing
lane, turning left, turning right, determining the maximum turning speed, etc. A
model is created for each possible trajectory the vehicle can follow and then probabili-
ties are computed for all these models. One of the simplest approaches to compute the
probabilities is the autonomous multiple modal (AMM) algorithm. First, the states of
the vehicle at times t− 1 and t are observed. Then the process model is computed
at time t− 1 resulting in the expected states for time t. Then the likelihood of the
expected state with the observed state is compared, and the probability of the model
at time t is computed. Finally, the model with the highest probability is selected;

2. Data-driven approaches. In these approaches a black box model (usually a neural
network) is trained using a large quantity of training data. After training, the model
is applied to the observed behavior to make the prediction. The training of the model
is usually computationally expensive and is made offline. On the other hand, the
prediction of the trajectories, once the model is trained, is quite fast and can be made
online, i.e., in real-time. Some of these methods also employ unsupervised clustering
of trajectories using, e.g., spectral clustering or agglomerative clustering, and define a
trajectory pattern for each cluster. In the prediction stage, the partial trajectory of the
vehicle is observed, it is compared with the prototype trajectories, and the trajectory
most similar to a prototype is predicted.

A survey [101] proposes a different classification based on three increasingly
abstract levels:
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1. Physics-based motion models. They apply the laws of physics to estimate the trajectory
of a vehicle, by considering inputs such as steering, acceleration, weight, and even
the coefficient of friction of the pavement in order to predict outputs such as position,
speed, and heading. Challenges are related to noisy sensors and sensitivity to initial
conditions. Methods include Kalman filters and Monte Carlo sampling. Advantages.
Such models are very often used in the context of safety, as classic fail-safe methods
when more sophisticated approaches, such as those using machine learning, are
utilized for prediction. They can also be employed in situations that lack intricate
interactions between road users. These models do not have to be very simple, as
they can include detailed representations of vehicle kinematics, road geometry, etc.
Disadvantages. They are usually appropriate for short-term predictions, e.g., less than
a second, because they cannot predict maneuvers that aim to accomplish higher level
goals, e.g., slowing down to prepare to turn in an intersection or because the vehicle
in front is expecting a pedestrian to cross the street;

2. Maneuver-based motion models. They try to estimate the series of maneuvers that the
cars perform on their way, but consider each vehicle to be deciding independently
from the other traffic participants. These models attempt to identify such maneuvers
as early as possible, and then assume that the maneuvers continue into the near future
and estimate the corresponding trajectories. They use either prototype trajectories or
maneuver intention estimation. Challenges are related to occlusions and the complexity
of intentions. Methods include clustering, hidden Markov models, and reinforcement
learning. Advantages. The identified maneuvers serve as a priori information or
evidence that conditions future motion. Therefore, they tend to be more reliable
than the physics-based ones and their predictions remain relevant for longer periods
of time. Disadvantages. Because of the independence assumption, these models
cannot handle the ways in which the maneuvers of a car influence the behavior of
its neighbors. The interactions between traffic participants can be strong in scenarios
with a high density of agents, e.g., intersections, possibly with specific priority rules.
By ignoring the inter-agent interactions, these models tend to provide less accurate
interpretations of such situations;

3. Interaction-aware motion models. This is the most general class of models, where the ma-
neuvers of the vehicles are considered to be influenced by those of their neighboring
road users. These models use prototype trajectories or dynamic Bayesian networks.
Challenges refer to the ability to detect interactions and to a possible combinatorial
explosion. Methods include coupled hidden Markov models, dynamically-linked
hidden Markov models, and even rule-based systems. Advantages. The inclusion
of inter-agent dependencies contributes to a better understanding of the situation.
On the one hand, they facilitate longer-term predictions compared to physics-based
models. On the other hand, they can be more reliable than maneuver-based models.
Disadvantages. Because they often have to compute all possible trajectories, they can
be inefficient from the computational point of view. Therefore, they may not be
appropriate for real-time use cases.

The higher the level of abstraction of a prediction model, the more computationally
expensive the model tends to become. Therefore, algorithms have been proposed that focus
only on the most plausible trajectories. Also, the performance of the prediction methods are
highly coupled with risk estimation possibilities. Therefore, the authors of [101] consider
that successful approaches in this area should consider both vehicle motion modeling and
risk estimation.

A classification somewhat similar with the previous two is mentioned in [102], which
distinguishes the following motion prediction categories of methods:

1. Learning-based motion prediction: learning from the observation of the past movements
of vehicles in order to predict the future motion;

2. Model-based motion prediction: using motion models;
3. Motion prediction with a cognitive architecture: trying to reproduce human behavior.
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In the rest of this section, we present some specific approaches classified by their main
prediction “paradigm”, namely neural networks and other methods, most of which use
some kind of stochastic representation of the agents’ behavior in the environment. This is
especially useful since some works use the same model to address different abstraction
levels of the trajectory prediction task.

3.3. Methods Using Neural Networks

Many of the approaches presented in the literature that are based on neural networks
use either recurrent neural networks (RNNs), which explicitly take into account a history
composed of the past states of the agents, or simpler convolutional neural networks (CNNs).
Other authors use conditional variational autoencoders (CVAEs) or more recent methods
such as generative adversarial networks (GANs) and attention mechanisms.

A generative system is DESIRE [99], which has the goal of predicting the future
locations of multiple interacting agents in dynamic (driving) scenes. It can handle the
multi-modal nature of the prediction, i.e., for the same set of inputs, the predicted outputs
may have several distinct values (a one-to-many mapping). It also takes into account the
scene context and the interactions between traffic participants. It uses a single end-to-end
neural network model, which the authors report to be computationally efficient. Using a
deep learning framework, DESIRE can rank and refine the set of generated trajectories by
considering the long-term future values, i.e., the sum of discounted rewards.

The corresponding optimization problem tries to maximize the potential future reward
of the prediction, using the following mechanisms (Figure 2 in [99]):

1. Diverse sample generation: A conditional variational auto-encoder (CVAE) is used to
capture the multi-modal nature of future trajectories. It uses stochastic latent variables
which can be sampled to generate multiple possible future hypotheses for a single
set of past information. The CVAE is combined with an RNN that encodes the past
trajectories, to generate hypotheses using another RNN;

2. Inverse optimal control (IOC)-based ranking and refinement: After including the context
and the interactions, the most likely trajectories are identified using potential future
rewards, similar to inverse optimal control (IOC) or inverse reinforcement learning
(IRL). The agents maximize long-term values. The authors believe that in this way the
generalization capabilities of the model are improved and the model is more reliable
for longer-term predictions. Since a reward function is difficult to design for general
traffic scenarios, it is learned by means of IOC. The RNN model assigns rewards to
each prediction hypothesis and assesses its quality based on the accumulated long-
term rewards. In the testing phase, there are multiple iterations in order to obtain
more accurate refinements of the future prediction;

3. Scene context fusion: This module aggregates the agent interactions and the context
encoded by a CNN. Then this information is passed to an RNN scoring module which
computes the rewards.

In [103], a method to predict the trajectories of the neighboring traffic participants is
proposed using a long short-term memory (LSTM) network, with the goal of taking into
account the relationship between the ego car and surrounding vehicles. The LSTM is a type
of recurrent neural network (RNN) capable of learning long-term dependencies. Generally,
an RNN has a vanishing gradient problem. An LSTM is able to deal with this through
a forget gate, designed to control the information between the memory cells in order to
store the most relevant previous data. The proposed method considers the ego car and
four surrounding vehicles. It is assumed that drivers generally pay attention to the relative
distance and speed with respect to the other cars when they intend to change a lane. Based
on this assumption, the relative amounts between the target and the four surrounding
vehicles are used as the input of the LSTM network. The feature vector xt at time step t is
defined by twelve features: lateral position of target vehicle, longitudinal position of target
vehicle, lateral speed of target vehicle, longitudinal speed of target vehicle, relative distance
between target and preceding vehicle, relative speed between target and preceding vehicle,
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relative distance between target and following vehicle, relative speed between target and
following vehicle, relative distance between target and lead vehicle, relative speed between
target and lead vehicle, relative distance between target and ego vehicle, and relative speed
between target and ego vehicle. The input vector of the LSTM network is sequence data
with xt’s for past time steps. The output is the feature vector at the next time step t + 1. A
trajectory is predicted by iteratively using the output result of the network as the input
vector for the subsequent time step.

In [44], an efficient trajectory prediction framework is proposed, which is also based
on an LSTM. This approach is data-driven and learns complex behaviors of the vehicles
from a massive amount of trajectory data. The LSTM receives the coordinates and velocities
of the surrounding vehicles as inputs and produces probabilistic information about the
future positions of the traffic participants on an occupancy grid map (Figure 1 in [44]). The
proposed method is reported to have better prediction accuracy than Kalman filtering.

The occupancy grid map is widely adopted for probabilistic localization and mapping.
It reflects the uncertainty of the predicted trajectories. In [44], the occupancy grid map
is constructed by partitioning the range under consideration into several grid cells. The
grid size is determined such that a grid cell approximately covers a quarter of a lane to
recognize the movement of the vehicles on the same lane, as well as the lengths of the
vehicles (Figure 3 in [44]).

When predictions are needed for different time ranges, e.g., ∆ = 0.5, 1, 2 s, the LSTM
is trained independently for each time range. The LSTM produces the probability of
occupancy for each grid cell. Let (x, y) be the identifier of a cell in the occupancy grid. Then
the softmax layer in LSTM i computes the probability Po(ix, iy) for the grid element (ix, iy).

Finally, the outputs of the n LSTMs are combined using Po(ix, iy) = 1−
n
∏
i=1

(
1− P(i)

o (ix, iy)
)

.

The probability of occupancy Po(ix, iy) summarizes the prediction of the future trajectory
for all n vehicles in the single map.

Alternatively, the same LSTM architecture can be used to directly predict the coor-
dinates of a vehicle as a regression task. Instead of using the softmax layer to compute
probabilities, the system can produce two real coordinate values x and y.

In [45], another LSTM model is described for interaction-aware motion prediction.
Confidence values are assigned to the maneuvers that are performed by vehicles. Based on
them, a multi-modal distribution over future motions is computed. More specifically, the
model computes probabilities for each type of maneuver, based on six maneuver classes.
The input to the LSTM is represented by the past positions of the ego car and its neighbors,
and the geometry of the road lanes.

Social LSTM [104], used for predicting the trajectory of pedestrians, uses LSTM with
a social pooling layer which allows neighbors, up to a certain distance, to exchange
information. The hidden states of their corresponding LSTMs are pooled together and used
as an input for the following prediction step.

Taking into account the time constraints of a real-time system, Reference [97] uses a
simple feed-forward CNN architecture for the prediction task. The authors use an RGB
image to represent the scene context. However, a vector of velocity, acceleration, and yaw
rate can also be included. In this case, this vector is concatenated with the flattened output
of the CNN. Then, these aggregated features are sent to a fully connected layer.

A similar approach is used in [18], which predicts multiple possible trajectories to-
gether with their probabilities. The context is also encoded as an image that is passed to a
CNN. Given the raster image and the state estimates of agents at a time step, the CNN is
used to predict a multitude of possible future state sequences, as well as the probability of
each sequence.

As part of a complete software stack for autonomous driving, NVIDIA created a
system based on a CNN, called PilotNet [105], which outputs steering angles given images
of the road ahead. This system is trained using road images paired with the steering angles
generated by a human driving a car that collects data. The authors identified the elements
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of the road image that have the greatest effect on the steering decision. It seems that in
addition to learning the obvious features such as lane markings, edges of roads and other
cars, the system learns more subtle features that would be hard to anticipate and program
by engineers, e.g., bushes lining the edge of the road and atypical vehicle classes, while
ignoring structures in the camera images that are not relevant to driving. This capability is
derived from data without the need of hand-crafted rules.

In [94], the authors propose a learnable end-to-end model with a deep neural network
that reasons about both high level behavior and long-term trajectories. Inspired by how
humans perform this task, the network exploits motion and prior knowledge about the road
topology in the form of maps containing semantic elements such as lanes, intersections,
and traffic lights. The so-called IntentNet is a CNN that outputs three types of variables in
a single forward pass: the detection scores for vehicle and background classes, the action
probabilities corresponding to the discrete intentions, and bounding box regressions in the
current and future time steps representing the intended trajectory. This design enables the
system to propagate uncertainty through the different components and is reported to be
computationally efficient.

A sequence-to-sequence CNN architecture is also used in [95] for an end-to-end
trajectory prediction model. The authors say that the results are comparable to those
of other, more complex approaches using LSTMs. Trajectory histories are embedded by
means of a fully connected layer. Stacked convolutional layers are used to learn temporal
dependencies in a consistent manner. Then, the features from the final convolutional
layer are passed through a fully-connected layer to simultaneously generate all predicted
positions. The authors report that the results when only one time step at a time is predicted
are worse than the results when all future times are predicted at the same time.

The CoverNet model [106] uses a CNN in combination with a trajectory set gener-
ated from the input state containing, e.g., speed, acceleration, and yaw rate. The image
features pass though some fully-connected layers and produce probabilities for each mode
using softmax.

The Y-net model [107] uses the U-Net architecture [108] for the semantic segmentation
of the input image. It also computes a distribution for the future trajectories, where the
sampled points are clustered using k-means [109].

The TraPHic model [110] uses a hybrid LSTM-CNN network. The trajectory informa-
tion is passed through LSTMs to construct three maps for the horizon, neighbors, and ego
vehicle. The first two are further passed through different CNNs and concatenated with
the ego car tensor. The resulting latent representations are passed through another LSTM
to predict the ego trajectory.

The EvolveGraph approach [111] uses graphs to model the behavior of heterogeneous
agents. It proposes an observation graph, fully connected, to represent the agents in the
scene, and an interaction graph for the agent–agent and agent–context interactions. It
also employs an encoder–decoder technique, with the encoder using softmax for edge
classification and the decoder generating a Gaussian mixture distribution for prediction.

The TNT model [112] uses VectorNet [113], a hierarchical graph neural network, to
encode the context of a scene, including road lanes and the position of the traffic signs,
beside the trajectories of the agents. The generated set of trajectories is finally filtered to
reject similar instances.

Generative approaches are also used. For example, PRECOG [114] follows the idea of
identifying high-level goals and condition the predictions based on those. It employs CNNs
and RNNs, and also a generative model where the latent variables stand for plausible
behavior of the agents in a scene. Reference [115] uses a so-called “conditional flow”
variational autoencoder (CF-VAE) that can handle multi-modal conditional distributions.
PECNet [116] conditions the predicted trajectories on their endpoints with a conditional
variational autoencoder (CVAE) and proposes the “truncation trick”, i.e., truncating the
sampling distribution with a smaller standard deviation for cases with a few samples to
increase the diversity for multi-modal prediction.
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Several trajectory prediction models employ Generative Adversarial Networks
(GANs) [117]. This architecture has two components: a generator and a discriminator.
Instead of training the generator model to directly match the desired data distribution, in
this case the generator is trained so that it increases the error rate of the discriminator. In
turn, the discriminator tries to distinguish whether a given sample belongs to the true data
distribution or is generated by the generator. Both components are engaged in a compe-
tition to outsmart the other one, and from this process the generator learns to generate
data that resemble the true data distribution. In the domain of trajectory prediction, Social
GAN [118] uses a GAN where the generator is composed of an LSTM-based encoder, a
context-pooling module, and an LSTM-based decoder. The discriminator uses LSTMs as
well.

Other models employ GANs in conjunction with attention mechanisms.
AEE-GAN [119] uses attention in order to alleviate the issues given by the complexity
of a scene with many heterogeneous interacting agents. For trajectory encoding, it also
uses LSTMs. A characteristic feature is the enhanced attention module containing two
components: one for recurrent visual attention enforcement (RVAE) and one for social
enforcement (SE). The results of the RVAE are visualized with the Grad-Cam method [120],
which creates a heatmap with the attention weights of the image pixels.

Another GAN-based architecture is Social Ways [121], which uses three types of losses:
discrimination loss for the discriminator, adversarial loss for the generator, and information
loss for both. SoPhie [122] uses a GAN module together with a feature extractor module
composed of a CNN and several LSTMs encoders, and an attention module with two
components: physical attention and social attention.

Attention mechanisms are also used with techniques other than GANs.
MHA-JAM [123] uses a CNN for the transformation of the input image and LSTMs for
trajectory encoding, whose outputs then pass to several attention heads that provide the
data for the LSTM decoders.

Other authors rely on methods to handle graphs explicitly. For example,
DAG-NET [124] uses an attention-enhanced graph neural network (GNN) together with a
recurrent variational encoder (RVAE) composed of a variational autoencoder (VAE) and
a recurrent neural network (RNN). Multiverse [125] is also based on a graph attention
network that is used by a convolutional recurrent neural network (ConvRNN). Unlike
other approaches, it uses an occupancy grid for a coarse-grained prediction, which is fur-
ther refined by a fine-grained prediction. Graphs are also employed by Trajectron++ [126],
where a scene is represented as a spatio-temporal graph in which nodes denote the agents
and edges denote their interactions. A local map is processed by a CNN, trajectories are
encoded with LSTMs, multi-modal solutions are handled by means of a CVAE, and the
trajectory decoders are based on gated recurrent units (GRUs).

P2TIRL [127] uses similar techniques, i.e., attention, GRU, CNN, but it conditions
trajectories by means of a policy learned with inverse reinforcement learning (IRL) on a
grid that represents the scene.

3.4. Methods Using Stochastic Techniques

The authors of [128] use Partially Observable Markov Decision Processes (POMDPs)
for behavior prediction and nonlinear receding horizon control, or model predictive control,
for trajectory planning. The POMDP models the interactions between the ego vehicle
and the obstacles. The action space is discretized into: acceleration, deceleration, and
maintaining the current speed. For each of the obstacle vehicles, three types of intentions
are considered: going straight, turning, and stopping. The reward function is chosen so
that the agents make the maximum progress on the road while avoiding collisions. A
particle filter is implemented to update the belief of each motion intention for each obstacle
vehicle. For the ego car, the bicycle kinematic model is used to update the state.

Article [129] presents a method to predict trajectories in dense city environments. The
authors recorded the trajectories of cars comprising over 1000 h of driving in San Francisco
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and New York. By relating the current position of an observed car to this large dataset of
previously exhibited motion in the same area, the prediction of its future position can be
directly performed. Under the hypothesis that the car follows the same trajectory pattern as
one of the cars in the past at the same location had followed. This non-parametric method
improves over time as the amount of samples increases and avoids the need for more
complex models.

Paper [93] presents a trajectory prediction method that combines the constant yaw
rate and acceleration (CYRA) motion model with maneuver recognition. The maneuver
recognition module selects the current maneuver from a predefined set (e.g., keep lane,
change lane to the right or to the left, and turn at an intersection) by comparing the center
lines of the road lanes to a local curvilinear model of the path of the vehicle. The proposed
method combines the short-term accuracy of the former technique and the longer-term
accuracy of the latter. The authors use mathematical models that take into account the
position, speed, and acceleration of vehicles.

In [130], a method is presented that evaluates the probabilistic prediction of real
traffic scenes with varying start conditions. The prediction is based on a particle filter,
which estimates the behavior-describing parameters of a microscopic traffic model, i.e., the
driving style as a distribution of behavior parameters. This method seems to be applicable
for long-term trajectory planning. The driving style parameters of the intelligent driving
model (IDM) are continuously estimated, together with the relative motion between objects.
By measuring vehicle accelerations, a driving style estimation can be provided from the first
detection without the need of a long observation time before performing the prediction. By
using a particle filter, it is possible to handle continuous behavior changes with arbitrarily
shaped parameter distributions. Forward propagation using Monte Carlo simulation
provides an approximate probability density function of the future scene.

In first-order Markov models, a state prediction depends only on the previous ob-
served state, therefore, if the set of past trajectories has common subsequences, the quality
of future predictions may be poor. An additional problem is that the data obtained from
sensors can be affected by occlusions. The approaches based on Gaussian processes (GPs)
overcome this problem by modeling motion patterns as velocity flow fields and provide
good performance in the presence of noise. Another advantage is that the predictions have
a simple analytical form, and this can be used to assess the risk in traffic scenarios.

As the traffic participants have a mutual influence on one another, their interaction is
explicitly considered in [102], which is inspired by an optimization problem. For motion
prediction, the collision probability of a vehicle performing a certain maneuver is com-
puted. The prediction is performed based on the safety evaluation and the assumption
that drivers avoid collisions. This combination of the intention of each driver and the
driver’s local risk assessment to perform a maneuver leads to an interaction-aware motion
prediction. The authors compute the probability that a collision will occur anywhere in
the whole scene, considering that the number of different maneuvers is limited (e.g., lane
changes, acceleration, maintaining the speed, deceleration, and combinations), and then
the proposed system assesses the danger of possible future trajectories.

The same concept of considering risk is used in [92], which applies a Bayesian ap-
proach combined with maneuver-based trajectory prediction. First, a collection of high-
level driving maneuvers is assessed for each vehicle with inference in the Bayesian network
that models the traffic scene. Then, maneuver-based probabilistic trajectory prediction
models are employed to predict the configuration of each vehicle forward in time. The
proposed system has three main parts: the maneuver detection, the prediction, and the
criticality assessment. In the last part, the individual joint distributions are used together
with a parametric free space map-based representation of the environment with probability
distribution functions to estimate the probability of a collision between the ego car and any
of its neighbors within the prediction horizon via Monte Carlo simulation.

The authors of [68] propose a framework with three interacting modules: a trajectory
prediction module based on a motion-based interaction model combined with maneuver-
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specific variational Gaussian mixture models, a maneuver recognition module based on
hidden Markov models (HMMs) for assigning confidence values for maneuvers being
performed by surrounding vehicles, and a vehicle interaction module that handles the
context of the scene and assigns final predictions by minimizing an energy function based
on outputs of the other two modules. The paper defines ten maneuver classes defined by
combinations of lane passes, overtakes, cut-ins, and drifts into the ego lane. A correspond-
ing energy minimization problem is set so that the predictions where cars come too close
to one another are penalized.

3.5. Mixed Methods

The authors of [131] use a model-based approach relying on vehicle kinematics and
an assumption that drivers plan trajectories in such a way as to minimize an unknown cost
function. They introduce an IRL algorithm to learn the cost functions of other vehicles in
an energy-based generative model. Langevin sampling, a Monte Carlo-based sampling
algorithm, is used to directly sample the control sequence. Langevin sampling is shown to
generate better predictions with higher stability. It seems that this algorithm is more flexible
than standard IRL methods, and can learn higher-level, non-Markovian cost functions
defined over entire trajectories. The cost functions are extended with neural networks in
order to combine the advantages of both model-based and model-free learning. The study
uses both environment structure, in the form of kinematic vehicular constraints, which
can be modeled very accurately, and the assumption that human drivers optimize their
trajectories according to a subjective cost function.

Multiple deep neural network architectures are designed to learn the cost functions,
some of which augment a set of hand-crafted features. The human-crafted cost functions
are defined as ten components: the distance to the goal, the distance to the center of the
lane, the penalty of collision to other vehicles (inversely proportional to the distance to
other vehicles), the L2-norm of acceleration and steering, the L2-norm for the difference of
acceleration and steering between two frames, the heading angle to lane, and the difference
to the speed limit.

The application of deep learning and mixture models for the prediction of human
drivers in traffic is investigated in [132]. The chosen approach is a mixture density net-
work (MDN) where the neural model has LSTM units and the mixture model consists
of univariate Gaussian distributions. It applies multi-task learning, in that by sharing
the representation between multiple tasks, one enables the model to generalize better.
A limitation is that the tasks usually have to be related to some extent. For example, a
single neural network can predict both longitudinal and lateral accelerations from the same
input, where the first few layers in the network are shared between the two tasks, and then
separated into two different layers to produce the final outputs. To capture the intention of
the driver, another layer is used in parallel to the motion prediction layer after the LSTM
layers. This layer indicates if the driver intends to switch lane and remain there within the
next four seconds.

Another algorithm is the Predictron [133]. This architecture is an abstract model
based on a Markov reward process, which can be rolled forward for a series of “imagined”
planning steps. The predictron is trained end-to-end with the objective that the accumulated
values computed in each forward pass should approximate the true value function. It is
reported to demonstrate more accurate predictions than conventional deep neural network
architectures.

The Monte Carlo Tree Search (MCTS) [134] algorithm can also be used in the context
of trajectory planning. It simulates the possible future trajectories starting from the current
state, then it evaluates the performance of the leaves using an evaluation function, e.g.,
a “value network”, and finally it uses these evaluations to update the internal values
along the trajectory. The architecture presented in [135], called MCTSnet, incorporates
the simulation-based search into a neural network, working with vector embeddings. Its
advantage is that gradient-based optimization can be used to train the network end-to-end.
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However, internal action sequences directing the control flow of the network cannot be
differentiated. To address this, an approximate method for credit assignment is proposed
that allows to learn this part of the search network from data.

3.6. Discussion

We summarize the works and their specific techniques presented in the trajectory
prediction section in Table 2. The table is sorted by publication year in order to give the
reader an impression about the overall progress in this field.

The datasets that were used as benchmarks by the papers were also included. We
must mention that all authors report experimental results on some kind of datasets, e.g.,
driving data specifically collected in some areas of the world or synthetic data collected
from simulators. However, only the publicly available, real-world datasets were included
in the table.

Information about the general capabilities of the methods was included in terms of
the ability to provide multi-modal predictions and whether the social context, i.e., the
other agents in the scene, was taken into account. Here, we only mention the approaches
that handle the interactions and the context explicitly, e.g., with some kind of pooling
mechanism or graph representation, not those that just consider an image as the input,
which implicitly contains graphical depictions of all agents.

Some of the works also predict the trajectories of pedestrians, not only vehicles.
However, we do not distinguish between these case studies, but only mention the main
methods which can be used in both situations.

Table 2. Overview of trajectory prediction solutions.

Contribution Year Datasets Multi-Modal Social Context Methods

[93] 2013 physics model (CYRA),
maneuver recognition

[102] 2013 Yes
interaction-based, risk
estimation, discrete
maneauvers

[92] 2016 Yes

Bayesian networks,
maneuver-based, risk
estimation, Monte Carlo
simulation

Social LSTM [104] 2016 ETH, UCY Yes LSTM

DESIRE [99] 2017 KITTY, Stanford
Drone Yes Yes CVAE, GRU, IRL

[44] 2017
Yes (probabilities
of occupancy grid
cells)

Yes LSTM, occupancy grid,
softmax

PilotNet [105] 2017 CNN, outputs steering angles

[130] 2017 Yes
particle filter, IDM, driving
style estimation, Monte Carlo
simulation

Predictron [133] 2017
Markov reward process, DNN
(fully-connected deep neural
network)

[103] 2018 I-80 Yes (only four
neighbors) LSTM

[45] 2018 NGSIM, I-80 Yes Yes LSTM, maneuver-based

[97] 2018 CNN

[18] 2018 Yes CNN
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Table 2. Cont.

Contribution Year Datasets Multi-Modal Social Context Methods

IntentNet [94] 2018 Yes CNN, intention-based,
discrete intention set

[95] 2018 ETH, UCY CNN

[128] 2018 Yes POMDP, particle filter,
discrete states and actions

[129] 2018 probabilistic sampling

[68] 2018 Yes Gaussian mixture models,
HMM, discrete maneauvers

[132] 2018 NGSIM DNN, MDN, LSTM

MCTSNet [135] 2018 DNN, vector embeddings,
Monte Carlo tree search

Social GAN [118] 2018 ETH, UCY Yes Yes GAN, LSTM

[131] 2019 NGSIM IRL, Langevin sampling,
DNN

PRECOG [114] 2019 nuScenes Yes Yes GRU, CNN, generative model

Social Ways [121] 2019 ETH, UCY Yes Yes GAN, LSTM, generative
model, attention

SoPhie [122] 2019 ETH, UCY,
Stanford Drone Yes Yes GAN, attention, CNN, LSTM

TraPHic [110] 2019 NGSIM Yes LSTM-CNN hybrid network

MHA-JAM [123] 2020 nuScenes Yes Yes multi-head attention, LSTM,
CNN

AEE-GAN [119] 2020 Waymo, Stanford
Drone, ETH, UCY Yes Yes attention, GAN, LSTM

CF-VAE [115] 2020 Stanford Drone Yes Yes CF-VAE

CoverNet [106] 2020 nuScenes Yes softmax for discrete trajectory
set

DAG-NET [124] 2020 Stanford Drone,
SportVU Yes Yes VAE, RNN, attention, GNN

EvolveGraph [111] 2020
Honda 3D,
Stanford Drone,
SportVU

Yes Yes graphs, GRU, Gaussian
mixture

Multiverse [125] 2020 VIRAT/ActEV Yes ConvRNN, occupancy grid,
graph attention network

P2TIRL [127] 2020 Stanford Drone Yes IRL, attention, GRU, CNN

PECNet [116] 2020 Stanford Drone,
ETH, UCY Yes Yes CVAE (Endpoint VAE),

truncation trick

TNT [112] 2020
Argoverse,
Interaction,
Stanford Drone

Yes Yes VectorNet, MLP (classic
multilayer percepton)

Trajectron++ [126] 2020 ETH, UCY,
nuScenes Yes Yes LSTM, attention, GRU, CVAE,

Gaussian mixture model

Y-Net [107] 2020 Stanford Drone,
ETH, UCY Yes U-Net, k-means

In general, many authors use CNNs to process the graphical inputs, e.g., camera-
based images or maps, and LSTMs for trajectory encoding and decoding. Because of



Mathematics 2021, 9, 660 30 of 37

the constraints of real-time requirements, some works also use CNN architectures for
prediction [97]. They seem to be able to model complex relations and capture spatial
correlations in the data [136]. Some papers state that they are also competitive in modeling
temporal data [95], with performance comparable to that of the LSTMs, but with a much
simpler internal structure. Multi-modal predictions are often made with some kind of
generative models such as CVAE. The methods based on CNNs seem to be more lightweight
and fast than those containing LSTM and CVAE components. Still, a large number of
approaches combine these techniques in some way.

Other works employ more recent techniques such as GANs and graph representa-
tions in conjunction with neural networks. Attention mechanisms also seem promising to
distinguish the important features in the context of a complex scene with many interact-
ing agents.

The data themselves may cause difficulties, because a network only learns what is
present in the data, and hopefully generalizes well, but there may be situations where the
humans do not behave according to previous observations. This is one drawback of using
neural networks. However, it seems that the advantages of using data-driven approaches
outperform the disadvantages.

Many methods that belong to the stochastic paradigm try to estimate the probabilities
of discrete maneuvers. When using, e.g., hidden Markov models, the movement of the
traffic participants is evaluated independently, an assumption which is true only for simple
scenarios. Gaussian Process regression can quantify uncertainty, but it is also limited in its
ability to model complex interactions. For this purpose, other techniques such as Bayesian
networks can be used instead, with the disadvantage of an increased computation time
and thus a difficulty in handling real-time learning tasks [97].

Although it is possible to do multi-step prediction with a Kalman filter, it cannot be
extended far into the future with reasonable accuracy. A multi-step prediction done solely
by a Kalman filter was found to be accurate up until 10–15 time steps, after which the
predictions diverged and ended up being worse than constant velocity inference [132]. This
emphasizes the advantages of data-driven approaches, as it is possible to observe almost
an infinite number of variables that may all affect the driver, whereas the Kalman filter
relies solely on the physical movement of the vehicle.

Another approach is to learn policies in a supervised way, e.g., imitation learning. The
cost function of a human driver can be estimated with inverse reinforcement learning and
then a policy can be extracted from the cost function [136]. However, this may again be
inefficient for real-time applications [97].

In multi-agent contexts such as those defined by traffic scenarios, since an agent’s
actions depend on the other agents’ actions, uncertainty can propagate to future states with
the consequence that an agent completely stops because all possible actions are deemed as
unacceptably unsafe. This is known as the “freezing-robot” problem. Deadlock avoidance
and multi-objective decision making are very common in practice, e.g., in autonomous
robotics [137–139].

Finally, it should be mentioned that in this section, we have addressed the trajectory
prediction problem. A related, but distinct problem, is trajectory planning, i.e., finding
an optimal path from the current location to a given goal location. Its aim is to produce
smooth trajectories with small changes in curvature, so as to minimize both the lateral and
the longitudinal acceleration of the ego vehicle. For this purpose, there are several methods
reported in the literature, e.g., using cubic spline interpolation, trigonometric spline inter-
polation, Bézier curves, or clothoids, i.e., curves with a complex mathematical definition,
which have a linear relation between the curvature and the arc length, and allow smooth
transitions from a straight line to a circle arc or vice versa. Deep reinforcement learning
methods [140,141] such as policy gradients [142], deep Q-network [143], actor-critic [144],
asynchronous advantage actor-critic [145], proximal policy optimization [146], trust region
policy optimization [147], imagination-augmented agents [148], or proximal gradient tem-
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poral difference learning [149] can also be used to decide the possible maneuvers that the
ego car can make in order to optimize criteria related to risk and efficiency.

4. Conclusions

Learning-based approaches have basically become the norm for autonomous driving
problems. Although explicit rule-based methods may have an important advantage in the
form of explicit knowledge, hand-crafted rules usually take a considerable amount of effort
to devise and validate, and usually do not have satisfactory generalization capabilities
because of the great variability of situations that may appear in a driving context. Unfortu-
nately, techniques based on learning typically require large quantities of data in order to
cover a sufficiently large part of the space of possible driving behaviors.

Because they capture the generative structure of vehicle trajectories, model-based
methods can potentially learn more from fewer data than model-free methods. However,
good cost functions are challenging to learn, and simple, hand-crafted representations
may not generalize well across tasks and contexts. In general, model-based methods can
be less flexible and may underperform model-free methods in the limit of infinite data.
Model-free methods take a data-driven approach, aiming to learn predictive distributions
over trajectories directly from data. These approaches are more flexible and require less
knowledge engineering in terms of the type of vehicles, maneuvers, and scenarios, but the
amount of data they require may be very large.

The past three decades have seen increasingly rapid progress in driverless vehicle
technology. In addition to the advances in computing and perception hardware, this rapid
progress has been enabled by major theoretical progress in computational aspects. Au-
tonomous cars are complex systems that can be decomposed into a hierarchy of decision
making problems, where the solution of one problem is the input to the next. The break-
down into individual decision making problems has enabled the use of well-developed
methods and technologies from a variety of research areas.

This literature review has concentrated only on two aspects: tracking and trajectory
prediction. It can serve as a reference for assessing the computational tradeoffs between
various choices for algorithm design.
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