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Abstract: In this paper, it is found numerically that the previously found hidden chaotic attractors of
the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors.
For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic
dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation
with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time
Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the
considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic
attractor of the Rabinovich–Fabrikant system are comparatively analyzed.

Keywords: hidden chaotic attractor; self-excited attractor; strange nonchaotic attractor; Rabinovich–
Fabrikant system

1. Introduction

In the last three decades, strange nonchaotic attractors (SNAs) have attracted much
attention from both theoretical and experimental points of view, reportedly arising in
many physically relevant situations. Though somewhat exotic, SNAs are not at all rare.
In fact, SNAs have been reported in quasiperiodically forced pendulum, quantum particles,
quasiperiodic potentials, biological oscillators, quasiperiodically driven Duffing-type oscil-
lators, velocity dependent oscillators, electronic circuits, etc. (see, e.g., [1] and references
therein). Additionally, some models are studied in higher dimensions and for both discrete
and continuous systems. Commonly existing in quasiperiodically driven nonlinear sys-
tems, SNAs are found and studied for non autonomous quasiperiodically forced dynamical
systems and can be regarded as “intermediate” structures linking regularity and chaos.
However, as this paper shows, there are undriven continuous systems with SNAs, or even
with hidden SNAs.

SNAs were introduced in 1984, when Grebogi, Ott, Pelikan, and Yorke constructed
dynamical systems with attractors that were strange but not chaotic [2] (see also [3–7]).
Results on flows containing SNA were obtained far before than the term SNA was coined
(see [8], where some references (in Russian) can be found)). The first experimental ob-
servation of an SNA was in a magnetoelastic ribbon [9] (see also [10–12]). The ‘strange’
characteristic refers to the fractal, nontrivial, and complicated geometry of the attractor.
There are authors who consider SNAs to be “strange” because they are not piecewise
differentiable. The relatively new term, SNAs, has still not been precisely formulated and
their existence has not been rigorously proven. Therefore, most results on SNAs, such as
those in this paper, are based on numerical analysis.

The ‘nonchaotic’ property means that SNAs do not show sensitivity to initial conditi-
ons—i.e., with negative Lyapunov exponents (LEs), just like regular systems. Note that
some authors consider the nonchaotic property to be defined by nonpositive LEs (see,
e.g., [6]). Although it is difficult to distinguish an SNA visually from a strange chaotic
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attractor, dynamically there are important differences. Indeed, orbits on SNAs and chaotic
attractors are non-periodic, but compared to chaotic attractors the trajectories on SNAs are
not separate from each other. The dynamical behavior characterizing SNAs occurs in a
very narrow range of the control parameter values.

In principle, strange nonchaotic attractors occur in all dissipative dynamical systems
that exhibit the period-doubling route to chaos, where the attractors formed at the ac-
cumulation points are fractal sets with zero Lyapunov exponents. Such attractors are,
however, not physically observable because the set of parameter values for them to arise
has a Lebesgue measure of zero in the parameter space [13].

SNAs are typically not robust in the absence of quasiperiodic driving. Therefore, they
are not expected to occur naturally, whilst, as shown by Grebogi et al. in [2], if the system
is quasiperiodically driven then SNAs can be robust. A robust SNA is typical but not
vice versa.

From a computational point of view, attractors can be classified as self-excited (SE)
and hidden. While SE attractors can be localized numerically with some standard compu-
tational procedures by starting from a point in a neighborhood of unstable equilibrium,
the basins of hidden attractors, which can be chaotic (HCAs) or non-chaotic (e.g., stable
cycles), are not connected with equilibria. Thus, if the trajectories are attracted by some
attractor, the attractor is an SE attractor, while a hidden attractor cannot be excited by
the unstable equilibria (if they exist) and trajectories from neighborhoods of unstable
equilibria are attracted either by some attractors (stable equilibria or cycles) or diverge
to infinity [14–19]. Therefore, the HCAs are usually found empirically. In other words, it
means to verify if the attraction basins of the HCA do not intersect small neighborhoods of
unstable equilibria. However, finding the attraction basins of HCAs analytically remains
an open and challenging problem.

The investigation of hidden oscillations actually arose in the second part of Hilbert’s
16th problem and in Bautin’s works, related to nested limit cycles in quadratic systems,
which showed the necessity of studying hidden oscillations to solve this problem [15].
HCAs may appear in, e.g., chaotic systems with one or several stable equilibriums or with
a line equilibria (infinitely many equilibria), or without equilibrium [20–23].

In this paper, attractors and transients of the Rabinovich–Fabrikant (RF) are differ-
entiated via their lifetime and it is shown numerically that some HCAs of the RF system
present the characteristics of SNAs. For this purpose, the spectrum Λ of the finite-time
local Lyapunov exponents (LEs), the ‘0-1’ test (Appendix A), the two-sided Power Spectral
Density (PSD) determined for one component, the Correlation Dimension (D2), and the
Recurrence Plot (RP) (Appendix B) are used. Additionally, histograms and the difference
between two close trajectories are utilized to differentiate SNAs from chaotic attractors.

This paper is organized as follows: Section 2 presents the Rabinovich–Fabrikant
system with some representative attractors and Section 3 shows that the system has hidden
strange nonchaotic attractors (HSNAs). The Appendixes A–C present the notions of the
‘0-1’ test and the recurrence plot. Finally, the conclusion in Section 4 ends the paper.

2. Hidden Attractors in RF System

The RF system [24,25], arising from the modulation instability in a nonequilibrium
dissipative medium, is modeled by:

.
x1 = x2

(
x3 − 1 + x2

1
)
+ ax1,

.
x2 = x1

(
3x3 + 1− x2

1
)
+ ax2,

.
x3 = −2x3(b + x1x2),

where a and b are some real positive parameters and b is the bifurcation parameter.
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The system has extremely rich dynamics, presenting coexisting attractors, SE chaotic
attractors (SECAs), and HCAs [26]. The equilibria of the system are:

X∗1,2

(
∓
√

bR1 + 2b
4b− 3a

,±
√

b
4b− 3a
R1 + 2

,
aR1 + R2

(4b− 3a)R1 + 8b− 6a

)
,

X∗3,4

(
∓
√

bR1 − 2b
3a− 4b

,±
√

b
4b− 3a
2− R1

,
aR1 − R2

(4b− 3a)R1 − 8b + 6a

)
,

and X∗0 (0, 0, 0), with:

R1 =
√

3a2 − 4ab + 4 and R2 = 4ab2 − 7a2b + 3a3 + 2a.

Due to the general instability of chaotic solutions and due to the particular sensibility
of the RF system to numerical integration, the dedicated numerical methods implemented
in known software cannot be used here with 100% confidence, especially for long-time
integration, because global errors increase with the size of the integration interval [27,28].
To numerically integrate the RF system, in this paper Matlab solver ode45 is used. To note
that the system presents some stiffness characteristics (the x3 component of the solution
decreases faster than x1,2 [29]). However, the matlab solvers for stiff systems give, in this
case, similar results). Most importantly, the numerical results cannot be improved by
decreasing the integration step, since the integration error has an extremum as a function
of the integration step-size [30]. Another approach would be higher-accuracy calculations,
but this approach has restrictions: on one hand, the way to decrease the error is narrow;
on another hand, the number of operations needed, if a very small integration step-size
is used, could increase dramatically (see [30] and the references therein). Additionally,
note that it is possible to have reliable numerical simulations only in a relatively small
time interval [31–33]. For example, for the classical Lorenz system, it is a real challenge to
get solutions with small errors (in the sense that the largest error between two computed
solutions for small but different time-steps has a tolerance of 5× 10−14) for t ∈ [0, 100] [31].

Therefore, one can never be confident if an apparently chaotic numerical trajectory on
larger time intervals represents a real chaotic trajectory or just a chaotic transient. Beside
these obstacles in the numerical integration of ODEs of the RF system, the first intensive
numerical investigations [25] revealed an extremely strong dependence of the solution on
the utilized numerical methods, initial conditions, and the parameter b.

On the other hand, transient chaos appears when trajectories starting from some
random initial conditions are chosen near the boundary of the basin of attraction (boundary
crisis) or are very close to some bifurcation point. The underlying trajectories behave chaoti-
cally, possibly for a relative long time, and then quite abruptly switch to some final periodic
state [34–36]. Because the lifetime of the transients can be very long (thousands and tens
of thousands of numerical iterations), one can never be 100% confident that an observed
chaotic system is not a transient (Sprott’s communication). Therefore, to differentiate tran-
sients from attractors of the RF system numerically, a compromise with a sufficiently large
time interval is made, with [0, T] and T = 10, 000. For a = 0.1, b ∈ [0.2808, 0.2907] and with
the initial condition x0 = [0.02, 0.12, 0.53], Figure 1 shows the lifetime of the trajectories
together with the variation in the spectrum of the LEs, Λ = {λ1, λ2, λ3}, with λ1 ≥ λ2 > λ3.
In order to increase T over T = 10, 000, options = odeset(‘RelTol′, 1e− 6, ‘AbsTol′, 1e− 9)
is used [37]. Note that without using options, some of attractors of the RF system transform
into chaotic transients. Thus, in this paper the trajectories which reach a final regular mo-
tion before T = 10, 000 (here the stable equilibria X∗1,2) with an error of less than 1× 10−5

are considered transients. The system presents two kinds of transients: spirals which lead
to X∗1,2 and have negative LEs (black line segments, Figure 1a), and chaotic transients with
positive maximal LE (light green line segments, Figure 1a). The spectrum of the local
finite-time LEs, Λ = {λ1, λ2, λ3} (Figure 1b), is determined numerically from the system
equations with the Wolf algorithm.
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Figure 1. (a) Variation in lifetime intervals [0, T] of the numerical trajectories; (b) The variation in Λ
of the RF system for b ∈ [0.2808, 0.2907].
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Considering the lifetime classification mentioned before, irregular or regular trajec-
tories, which continue their dynamics beyond T = 10, 000, are considered in this paper
attractors as follows: periodic attractors (see red vertical lines in Figure 1a; stable cycles
of the RF system, are not considered in this paper, see [24,25]), quasiperiodic attractors
(a quasiperiodic attractor is presented in Figure 2b), hidden chaotic attractors (blue line
segments, Figure 1a), and hidden strange nonchaotic attractors (dark green line segments,
Figure 1a). Quasiperiodic attractors and irregular transients are merged in the parameter
space. There is little distinction between SNAs (in this paper, the attractorH corresponding
to b = 0.2875) and chaotic attractors (here, the HCA corresponding to b = 0.28708), as can
be seen in the top of Figure 1. They superficially look quite similar, with their structure
remaining actually almost unchanged, and even the maximum LEs have the opposite sign.
However, as will be discussed next, there are dynamically significant distinctions (see,
e.g., [6]).

Equilibria X∗1,2 are stable (stable focus node) for the chosen parameter values, and or-
bits starting in close neighborhoods will be attracted by X∗1,2.

Equilibria X∗3,4 are unstable (attracting saddles) and orbits starting from close neigh-
borhoods or the attraction basin of X∗3,4 will be attracted by X∗3,4 on the surface determined
by the two-dimensional stable manifold; then, after some time, they will exit along the
direction of the 1-dimensional unstable manifold.

X∗0 is unstable (repelling focus saddle) for all values of a and b, being globally asymp-
totically unstable [24], and is a global attractor for the reduced system on x3 = 0. Therefore,
trajectories starting in the plane x3 = 0 within neighborhoods of X∗0 will diverge to in-
finity, while trajectories in neighborhoods of X∗0 with x3 > 0 are attracted by scrolling
and by the stable plane of unstable equilibria X∗3 or X∗4 , after which they are repulsed
by the unstable directions to infinity. Additionally, depending the initial conditions on
the neighborhood of X∗0 , they can be attracted by X∗1,2 along the stable one-dimensional
manifold of these equilibria.

Because all equilibria have a pair of complex eigenvalues, all trajectories starting
within neighborhoods of equilibria present a scrolling dynamic. Details on equilibria X∗0
and X∗1−4 can be found in [24,25].

Consider next, for a = 0.1, the attractors corresponding to b = 0.98, with the initial con-
dition (0.158, 6.188, 0.977) (Figure 2a); b = 0.25675, with the initial condition (0.1, 0.1, 0.1),
without transients (Figure 2b); and b = 0.2875, with the initial condition (−0.2,−0.38, 0.001)
(Figure 2c).

The chaotic attractor corresponding to b = 0.98 (Figure 2a) is SECA, because it can
be found starting from initial conditions within neighborhoods of unstable equilibria X∗3,4.
To characterize this attractor and trace the chaos, consider Figure 3, where the spectrum of
LEs (Figure 3a); the median K (Appendix A) given by the test ‘0-1’ (Figure 3b); the PSD
(Figure 3c); the q as a function of p, given by the ‘0-1’ test (Figure 3d); the mean-square
displacement M as function of t (Figure 3e); and the RP in Figure 3f (Appendix B) are
presented, respectively. The positiveness of the maximal LE, λ1 = 0.062, indicates that
the attractor is chaotic. This fact is underlined also by the median K ≈ 0.98, close to 1.
The broadband of the PSD indicates that the system is chaotic for this value of b. Moreover,
the behavior of q as a function of p and the mean-square displacement M are typical for
chaotic dynamics (see Appendix A). The RP, with ε = 0.95 and t ∈ [0, 1000], presents
intricate structures that are typical for chaos.

Right after the critical point b = 0.2567, when λ1 = λ2 = 0 and λ3 = −0.314
(Figure 4a), for b = 0.25675 the obtained attractor is quasiperiodic (Figure 2b). For
b ∈ [0.2567, 0.2688], the variation in Λ seems to unveil more bifurcations. However, be-
cause of the difficulty of analytical study, the bifurcations are not considered here. As for
regular motions, K is close to 0, K ≈ −0.001 (Figure 4b). The quasiperiodicity is revealed
by the PSD (Figure 4c), whose peaks represent the sub-harmonics (multiples) of a main
harmonic generated at b = 0.2567. q as a function of p (Figure 4d) and the evolution of the
mean-square displacement M (Figure 4e) show that the attractor is quasiperiodic. Besides
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the continuous equidistant and parallel off-second diagonal line in the recurrence plot,
with ε = 0.95 and t ∈ [0, 1000] (Figure 4f), there exist another set of interrupted short
off-second diagonal segments, parallel with the first set of lines (see the larger circled zoom
in Figure 4f). Since all these lines are non-equidistant, the dynamics are quasiperiodic.
Note that another set of interrupted off-second diagonal lines seem to be born (see the
smaller circled zoom in Figure 4f), suggesting a supplementary frequency. However, this
frequency cannot be seen in the PSD (Figure 4c).

Figure 2. Attractors of the RF system. (a) SECA for b = 0.98. Trajectories from unstable equilibria X∗3,4 are attracted by the
SECA, while trajectories starting from X∗0 tend to infinity; (b) quasiperiodic attractor for b = 0.25675 after the first transients
are removed; (c) HSNA for b = 0.2875. Beside the attractorH (green plot), trajectories are presented from unstable equilibria
X∗0 and X∗3,4, which are attracted either by the stable equilibria X∗1,2 or diverge to infinity (see the legend). The dotted plot in
the zoomed image D reflects the fractal autosimilariity characteristic ofH.
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Figure 3. The SECA for b = 0.98. (a) The variation in the Lyapunov spectrum; (b) the variation in the median K; (c) power
spectral density; (d) the graph of p and q; (e) the graph of the mean-square displacement M; (f) the recurrence plot.
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Figure 4. The quasiperiodic attractor for b = 0.25675. (a) The variation in the Lyapunov spectrum; (b) the variation in the
median K; (c) power spectral density; (d) the graph of p and q; (e) the graph of the mean-square displacement M; (f) the
recurrence plot and zoomed details.
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Consider the attractor corresponding to b = b∗ = 0.2875, denoted with H, within a
neighborhood of b∗, Vb∗ = [0.28743, 0.2876] (see Figure 1), obtained with the initial condi-
tion x0 = (−0.2,−0.38, 0.001) [37]. Via the mentioned numerical tools, it is shown that the
attractor presents the characteristic of SNAs. The attractorH is hidden because its attrac-
tion basin has no connection with neighborhoods of unstable equilibria (see [26] for details)
and trajectories starting from small neighborhoods of unstable equilibria X3,4 and X∗0 are
attracted either by the stable equilibria X1,2 or diverge to infinity, as shown in Figure 2c. For
clarity, in Figure 2c only one trajectory from each equilibrium is presented. As can be seen,
trajectories starting from a neighborhood of the unstable equilibrium X∗0 tend either to X∗1
(orange plot), to X∗2 (light green plot), or to infinity via the unstable equilibrium X∗3 (black
plot) or via the unstable equilibrium X∗4 (grey plot). Trajectories from the neighborhood
of X∗3 are attracted either by X∗2 (red plot) or by infinity (brown plot). Trajectories starting
from the neighborhood of X∗4 are attracted either by X∗1 (blue plot) or by infinity (brown
plot). The attraction basin of H within a parallelipipedic neighborhood of the unstable
equilibrium X∗0 is plotted by small red spheres in Figure 5a (note that the system is defined
for x3 > 0 and the axis x3 is invariant with the reduced equation ẋ3 = −2bx3, which has
the solution x3(t) = e−2btx2(0) [24]). In Figure 5b, one can see a zoomed cubic area around
the unstable equilibrium X∗0 , which underlines the fact that, for the considered resolution,
there exists an empty cone-like neighborhood with a radius of about 0.05, without initial
conditions (red points) of H, indicating that the attraction basin of H has no connection
with small neighborhoods of the unstable equilibrium X∗0 . From Figure 5c, one can see that
beside the red points (initial conditions) leading to the hidden irregular attractorH, there
are two other kinds of initial points which lead to the attractive equilibria X∗1,2 (blue and
green plots) [37].

Figure 5. (a) Three-dimensional parallelipipedic representation of the attraction basin (red plot) of
the chaotic attractorH, determined around the unstable equilibrium X∗0 ; (b) zoomed area, revealing
the fact that there are no initial points within a small cubic neighborhood of X∗0 ; (c) the same zoomed
area presenting, as a supplement, the initial conditions leading to the stable equilibria X∗1,2 (blue and
red plot).
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3. SNAs of the RF System

Next, it is verified that the hidden attractor H verifies the characteristics of SNAs.
For this purpose, the ‘0-1’ test, PSD, and RP are used. In Table 1, the characteristics of the
considered attractors of the RF system are presented comparatively.

Table 1. Characterization of the attractors of the RF system.

Motion Λ ‘0-1’ Test PSD RP

(A) chaotic (Figure 2a) λ1 > 0 > λ2,3
−K ≈ 1;
−q, p Brownian;
−M linear growth

broadband irregular
structures

(B) quasiperiodic
(Figure 2b) 0 = λ1 ≥ λ2,3

−K ≈ 0;
−q, p disk;
−M oscillatory

many discrete
peaks

non-equidistant
diagonal segments

and structures

(C) SNA (Figure 2c) 0 > λ1,2,3
−0 < K < 1;
−q, p disk-like;
−M bounded oscillatory growth

broadband with
discrete peaks

characteristics
between (A) and (B)

As shown in Figure 6, the LEs are negative for a small but connected interval of b, Vb∗

(Figure 6a); the oscillations of LEs outside Vb∗ indicate presumably attractors’ coexistence;
the median K has an intermediate value between 0 and 1, K = 0.62 (Figure 6b); the few
peaks in the PSD (F in Figure 6c) not covered by the broadband in the PSD indicate that
the attractor is neither quasiperiodic nor chaotic. To note that in [38] it was shown that
the PSD of SNAs is discrete, but very dense. Additionally, q as a function of p has a
graph between a perfect disc (or circle), for the case of regular behavior, and the Brownian
motion (Figure 6d), for chaos; the mean-square displacement M presents an oscillating
but bounded increase (Figure 6e); the RP, with ε = 0.95 and t ∈ [0, 500], presents many
non-equidistant off-second diagonal lines parallel with the second diagonal beside several
isolated points.

Moreover, the strangeness character, which refers to the nontrivial complicated fractal
geometry of the attractor, can be seen from, e.g., the dotted plot in the zoomed area D in
Figure 2c, which, besides the non-differentiability of the trajectory, reveals the repeating
isolated dust-like points typical for fractals and the correlation dimension D2 (Appendix C)
is D2 = 1.2.

Since the system is time-continuous, the time series are generally oversampled. This
happens because most numerical integrators have variable step sizes, which can generate
extremely large numbers of points within some critical trajectory zones. Therefore, be-
fore applying the ‘0-1’ test, the underlying time series has to be resampled. Otherwise, it
is possible to obtain small (possible zero) values of K, even if the underlying attractor is
chaotic [39]. A simple way to resample in Matlab is to use the function resample.

Because of the negativity of the maximal LE on the HSNA H, trajectories do not
diverge by separating from each other and eventually coincide, as presented in Figure 7.
Comparatively, the first components x1 (red plot) and y1 (blue plot) of two trajectories x
and y, starting from two nearby initial conditions x0 and x0 + (1× 10−5, 1× 10−5, 0) for the
SECA corresponding to b = 0.98 (Figure 7a), the quasiperiodic attractor corresponding
to b = 0.263 (Figure 7b), and the HSNA H (Figure 7c) are considered. In the case of
coupled SNAs, this property characterizes a robust synchronization, in the sense that the
non-dependence on initial conditions is expected to synchronize the SNAs quickly, even
when they operate with different sets of initial conditions [40].
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Figure 6. The HSNA H for b = 0.2875. (a) The variation in the Lyapunov spectrum; (b) the variation in the median K;
(c) power spectral density; (d) the graph of p and q; (e) the graph of the mean-square displacement M; (f) the recurrence plot.
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Figure 7. Difference between the first components x1 and y1 of two close trajectories x and y. (a) The SECA for b = 0.98;
(b) the quasiperiodic attractor corresponding to b = 0.25675; (c) the HSNAH; (i) overplot of x1 and y1 with zoomed details
and three-dimensional representations; (ii) details of (i).

Figure 7a(i)–c(i) shows overplots of x1 and y1. Details D1, D2, and D3 clearly underline
the differences between the chaotic attractor, on one side, and the quasiperiodic attractor
andH on the other side. Figure 7a(ii)–c(ii) present details of Figure 7a(i)–c(i). Details D4,
D5, and D6 of the three-dimensional representations are obtained after removing the first
7500 transient points. Meanwhile, Figure 7a shows that the difference between the two
chaotic trajectories separate—see Figure 7b,c, with details D2 and D3—suggesting that
both quasiperiodic trajectories and both trajectories in the case of HSNA present periodic
evolution while remaining close to each other. Note that this property of the H is not so
evident as for SNAs in quasiperiodically driven discrete systems.

Because the RPs do not show the differences between the considered attractors clearly
enough, in Figure 8 the histograms of the considered attractors are considered. As can be
seen, the HSNAH can be viewed as being situated between the quasiperiodic attractors
and the chaotic attractors. Hidden SNAs, such asH, also exist for b ∈ (0.28743, 0.2876) (see
Figure 1).

Figure 8. Histograms of the component x2. (a) The SECA corresponding to b = 0.98; (b) the quasiperiodic attractor
corresponding to b = 0.25675; (c) the HSNAH corresponding to b = 0.2875.
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4. Conclusions and Discussion

In this paper, it has been shown numerically that the attractor corresponding to
b = 0.2875 presents the characteristics of SNAs. For this purpose, the following tools
were utilized: Lyapunov exponents, the ‘0-1’ test, power spectral density, recurrence plots,
histograms, and the difference between close trajectories. The considered attractorH has
all negative LEs, the median K value is between 0 and 1 (K ≈ 0.62), the graph of p and q
presents a disk-like structure, the mean-square displacement M has an oscillatory bounded
growth, and the recurrence plots present non-equidistant off-second diagonal lines parallel
to the second diagonal and also several isolated points. Additionally, contrarily to chaotic
attractors, it is verified numerically that the distance between two close trajectories on the
HSNAH does not change significantly over time. The fact that LEs look almost similar for
the HSNAs and regular attractors could be explained by some inaccuracy in LE calculations
for the multi-stable regime observed here. On the other hand, differences between the
HSNA and regular attractors of this system are clearly underlined by the 0-1 test, recurrence
plot, and power spectral density, which are different.

Even in dynamics do not have explicit quasiperiodic forcing, it is shown numerically
that the motion of the RF system could appear on strange nonchaotic attractors. Note that
discrete dynamical systems, without a quasiperiodic driving force where the motion is on
strange nonchaotic attractors, are considered in [41].

Some open problems deserve further analysis. Thus, the obtained results in this paper
regarding the SNA characteristics ofH should be considered subject to possible numerical
errors due to system’s strong dependence on the numerical integrators and time integration
interval [0, T], here set to T = 10,000 by using the Matlab options function; strong sensibility
on the parameters (a perturbation of order 1× 10−4 can move the trajectory to different
attractors); initial conditions; etc. Probably due to these reasons, the conclusions regarding
the SNA characteristics ofH are not so evident, just like the cases of quasiperiodic-driven
systems. However, the existence of this hidden strange nonchaotic attractor is verified
numerically for a connected parameter interval. Therefore, the attractorH would not be
just simply a numerical “accident”.

Using different numerical methods to integrate the system, the results could be some-
what different but consistent: there exist small parameter intervals where the RF system
has HSNAs.

The usual transition quasiperiodicity→ SNA→ chaos does not seem to be character-
istic for this system. Indeed, Figure 1 shows that after the interval of b, which generates
HSNAs, it follows a parameter window where, after chaotic (with maximal positive LE)
or nonchaotic (with negative maximal LE) transients, the system enters into a regular
dynamics domain (stable equilibria X∗1,2). Note that in quasiperiodically forced dynamical
systems, the values of the Lyapunov exponents are negative for both quasiperiodic attrac-
tors (tori) and SNAs, and in this case the Lyapunov exponents fail to detect transitions
from quasiperiodic dynamics to SNAs [42].

On the other hand, an open problem here is the presumably weak chaos. Weak chaos
means that even though two trajectories are initially close, they will diverge to be weaker,
and their divergence remains finally bounded. In other words, trajectories are not simply
regular nor fully chaotic. The separation of nearby trajectories in the case of weak chaos
implies that the corresponding maximal Lyapunov exponent is zero [43,44]. Sometimes,
this situation appears for some large parameter intervals (see, e.g., the light green vertical
bands in Figure 9a). Therefore, the reliability of the ‘0-1‘ test [45], used for this system,
could be interpreted from the perspective of the weak chaos. For b ∈ [0.255, b1] ∪ [b3, b4]
(Figure 9), because the maximal LE, λ1, is 0 (Figure 9a), the oscillations of K (Figure 9b
or Figure 4b) could be due to the existence of weak chaos. For b ∈ [b4, b5], K increases
but cannot reach the value corresponding to chaos, 1, and the maximal LE is only slightly
larger than 0. A clear image for b ∈ [b5, 0.288] can be seen in Figure 6a,b. Actually, even
the advantage of the ‘0-1’ test is due to the fact that it is binary: ‘white’ (0) and ‘black’ (2).
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The ‘gray’-like situations, such as values ’close’ to 1 or 0 for the RF system, require a careful
supplementary analysis to clearly state thatH is non-chaotic.

Figure 9. (a) LEs of the RF system for b ∈ [0.255, 0.289]; (b) median K for b ∈ [0.255, 0.289].

Additionally, as Figure 7 show, even when two close trajectories remain at a constant
distance to each other, the difference between them seems not to vanish at the end of a
relatively large integration interval, unlike in the case of SNAs in quasiperiodically driven
discrete systems, where, under some circumstances, trajectories eventually coincide, which
represents a characteristic of SNAs: robust synchronization.

The use of the recurrence quantification analysis [46] for the detection of structural
changes in the dynamics of complex nonlinear systems could give a supplementary clarifi-
cation ofH.

Searching SNAs in other continuous time systems could offer more exciting results.
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Appendix A. The ‘0-1’ Test

The ’0-1’ test, which has its roots in [47] and was developed in [48] (see also [39] or [42]),
is designed to distinguish chaotic behavior from regular behavior in deterministic systems,
which could be used to identify SNAs as well. However, the ‘0-1’ test has been used to
identify some SNAs (see, e.g., [42]). The test is easy to implement and does not need system
equations, with the input being a time series. Consider a dynamical system with a one-
dimensional observable data set, constructed from a time series of the underlying system,
φ(j), j = 1, 2, ..., N. The ‘0-1’ test is based on a theorem, which states that a nonchaotic
motion is bounded, while a chaotic dynamic behaves like a Brownian motion [47].

(1) First, for c ∈ [0, 2π], compute the translation variables p and q by [48]:

p(n) =
n

∑
j=1

φ(j) cos(jc), q(n) =
n

∑
j=1

φ(j) sin(jc),

for n = 1, 2, . . . , N. The choice of c represents an important and sensible algorithm
variable (see, e.g., [39], where c is recommended on the interval [π/5, 4π/5]).

(2) To determine the growths of p and q, here we used the mean-square displacement M:

M(n) = lim
N→∞

1
N

N

∑
j=1

[p(j + n)− p(j)]2 + [q(j + n)− q(j)]2.

where n� N (in practice, n = N/10 would be a good choice).
(3) The asymptotic growth rate K is defined as follows:

Kc = lim
n→∞

log M(n)/ log n.

Because of the occurrence of resonances for some isolated values of c (where Kc
could be larger), the median of the computed values of Kc (generally, 100 values),
denoted by K, is used, since the median is robust against outliers associated with
resonances [48]. If the underlying dynamics are regular (i.e., periodic or quasiperi-
odic), then K ≈ 0; if they are chaotic, then K ≈ 1. For SNAs, K takes an intermediate
value between 0 and 1.

In Figure A1a, for the cases of the logistic map xn+1 = rxn(1− xn) and the GOPY
map [2] xn+1 = 2a tanh(xn) cos(2πθn), θn+1 = θn + ω, the plots of q versus p are shown,
while in Figure A1b M is presented as a function of n. Figure A1a(i),b(i) represent the
regular orbit of the logistic map for r = 3.55; Figure A1a(ii),b(ii) present the chaotic orbit
for r = 4, while Figure A1a(iii),b(iii) present the SNA of the GOPY map with a = 1.5
and ω = (

√
5− 1)/2.
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Figure A1. The elements of the ‘0-1‘ test; (a) presents the plots of q versus p and (b) presents the
mean-square displacement M as a function of n. (i) represents the regular orbit of the logistic
map xn+1 = rxn(1− xn) for r = 3.55; (ii) presents the chaotic orbit of the logistic map for r = 4;
(iii) presents an SNA of the GOPY map xn+1 = 2a tanh(xn) cos(2πθn), θn+1 = θn + ω, with a = 1.5,
and ω = (

√
5− 1)/2.

Appendix B. Recurrence Plots

Recurrences in dynamical systems have been analyzed since Poincaré [49], who
showed that under certain conditions, orbits of a bounded dynamical system return arbi-
trarily close to each former points of its own route. However, the time of this return can be
arbitrarily long. A tool to visually analyze this recurrence is provided by recurrence plots
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(RPs), introduced by Eckmann et al. in [50]. Given an autonomous dynamical system and
a trajectory {xi}N

i , xi ∈ Rn, the RP is based on the matrix:

R(ε)
i,j = Θ(ε−

∥∥xi − xj
∥∥).

Here, ε is a predefined threshold, ‖·‖ is a norm (Euclidean or maximum norm), and Θ
is the Heaviside function. The ε-recurrent (close) points give “1” while separate points
give “0”. In a two-dimensional plot, the value is 1 when a point at position j falls into
the neighborhood of radius ε of point at i, and 0 when the point at j does not enter the
neighborhood of points at i; they are depicted as black and white dots, respectively. In this
way, a visual representation of the system dynamics is provided. Generally, the threshold ε
should be chosen small enough. However, in the case of noise influence, a larger threshold
is necessary. At some time moment, the state of the system will recur as close as one wishes
(ε threshold) to a former state. RPs can help find transitions. Diagonal lines correspond
to trajectories passing in the same region of the phase space at different times. The RPs
of periodic trajectories are equidistant parallel to the second diagonal lines (with slope of
45◦), indicating some determinism or periodicity (see Figure A2a for the periodic logistic
map, with r = 3.4, and threshold ε = 0.05). The vertical distances between lines in the
RP (perpendicular to the horizontal axis) represents the period. The RP of a quasiperiodic
trajectory consists of parallel, off-second diagonal lines with different distances between
them, reflecting the existence of different return times. If many intricate structures (clusters)
disposed on interrupted parallel lines appear, the RP indicates a chaotic trajectory. Now,
the distance between the parallel lines is not constant (see Figure A2b for the chaotic
logistic map, with r = 4, and threshold ε = 1.2). For details regarding other RP parameters
(embedding dimension, time delay, etc.), see [51–53]. For the use of the RP to study SNAs
in the forced logistic map, see [54].

Figure A2. The recurrence plot applied to the logistic map xn+1 = rxn(1− xn); (a) the recurrence plot of the logistic map
with r = 3.4 and threshold ε = 0.05; (b) the recurrence plot of the logistic map with r = 4 and threshold ε = 1.2.

Appendix C. Correlation Dimension

Let an d-dimensional embedding space, x1, x2, ..., xm a time series and y1, y2, . . . , yN ,
with N = m− d + 1, and the delay coordinates yj = (xj, . . . , xj+d−1), j = 1, . . . , N. The
correlation integral for a given r > 0 is defined as follows:

C(r) =
1
k2

k

∑
j=1

k

∑
i=1,j 6=i

H(r− |xi − xj|),



Mathematics 2021, 9, 652 18 of 19

where H is the Heaviside step function and |.| is the Euclidean distance. Here, the H counts
the number of pairs (xi, xj), satisfying the condition |xi − xj| < r.

If C(r) scales like C(r) = rD2 , then:

D2 = lim
r→0

log(C(r)
log(r)

,

is called the correlation dimension, the straight line of log-log curve of r and C(r).
The G-P algorithm, created by Grassberger and Procaccia [55], is one of the most used

algorithms to determine D2 numerically, and uses the embedding theory together with the
idea of phase space reconstruction.
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