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Abstract: In this paper, an extended SEIR model with a vaccination compartment is proposed to
simulate the novel coronavirus disease (COVID-19) spread in Saudi Arabia. The model considers
seven stages of infection: susceptible (S), exposed (E), infectious (I), quarantined (Q), recovered
(R), deaths (D), and vaccinated (V). Initially, a mathematical analysis is carried out to illustrate
the non-negativity, boundedness, epidemic equilibrium, existence, and uniqueness of the endemic
equilibrium, and the basic reproduction number of the proposed model. Such numerical models
can be, however, subject to various sources of uncertainties, due to an imperfect description of the
biological processes governing the disease spread, which may strongly limit their forecasting skills.
A data assimilation method, mainly, the ensemble Kalman filter (EnKF), is then used to constrain the
model outputs and its parameters with available data. We conduct joint state-parameters estimation
experiments assimilating daily data into the proposed model using the EnKF in order to enhance
the model’s forecasting skills. Starting from the estimated set of model parameters, we then conduct
short-term predictions in order to assess the predicability range of the model. We apply the proposed
assimilation system on real data sets from Saudi Arabia. The numerical results demonstrate the
capability of the proposed model in achieving accurate prediction of the epidemic development up to
two-week time scales. Finally, we investigate the effect of vaccination on the spread of the pandemic.

Keywords: COVID-19 pandemic; SEIR model; mathematical modeling; ensemble Kalman filter; joint
state-parameters estimation

1. Introduction

The novel coronavirus disease (COVID-19) first appeared in Wuhan city, and due to
its high transmission rate, the virus has been rapidly spreading all over the world. On 8
March 2020, the WHO announced COVID-19 as a global pandemic [1]. As of 1 January
2021, there are over 100 million reported cases, and a death toll exceeding 2 million.

In the absence of a ready-to-use vaccine, and besides medical and biological research,
mathematical models can play an important role in understanding and predicting disease
transmission. Moreover, it helps to implement appropriate measures and efficient strategies
to control the pandemic’s spread and mitigate its impact.

Mathematical epidemic models based on the SIR model [2] are widely used to study
the spread of a disease in a population [3–7]. Recently, several mathematical models have
been developed to study the transmission dynamics of COVID-19 [8–11]. However, these
models suffer from various sources of uncertainties, due to the incomplete description
of the biological processes governing the disease spread, and also due to some involved
parameters being poorly known. One way to mitigate these uncertainties is to constrain
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epidemic forecasting models with available data. These data can be combined with the
model output to improve its prediction and reduce uncertainties [12–14]. This process,
known as data assimilation, sequentially adjusts the model state and parameters once data
become available to keep the model as close as possible to the real track [15].

The ensemble Kalman filter (EnKF) is a popular data assimilation technique introduced
by [16] to tackle large-scale, sequential, and non-linear problems. The EnKF is a Monte
Carlo implementation of the traditional Kalman filter [17], operating in cycles of two
steps: (i) A forecast step in which a set of state samples, or ensemble members, are
integrated forward in time with the model, and (ii) an analysis step to update the forecasted
members with available data based on the Bayes rule in a Gaussian framework [15,16].
Because of its affordable computational cost, robust performance, nonintrusive formulation,
and ease of implementation, the EnKF have been successfully implemented in many
geophysical applications, including weather forecasting [18–20], hydrology and reservoir
applications [21–26], ocean modeling [27–31], and flood modeling [32–34].

In epidemiology, previous studies have used data assimilation in the context of both
variational and Kalman filter methods [35–38]. The Reference [39] used the EnKF to esti-
mate the parameters of a stochastic SEIR model. The Reference [40] applied a deterministic
variant of the EnKF, the Ensemble Adjustment Kalman Filter (EAKF), in combination
with a network of SEIR models, simulating different connected cities. The Reference [41]
used an ensemble smoother with a multiple data assimilation (ESMDA) approach for
parameter estimation in a SEIR model. The Reference [42] also implemented the ESMDA
to effectively estimate the parameters of a more sophisticated SEIR model accounting for
age-classes and compartments of the sick, hospitalized, and dead. The Reference [43] used
an EnKF approach for parameter estimation and shot-term forecasts with a simple SIR
model. The Reference [44] proposed an EnKF for estimating unmeasurable state variables
and unknown parameters of a SIRV model, which takes into account the circulation of free
coronavirus in the environment. In the context of variational data assimilation methods,
the Reference [45] performed parameter estimation and predictions using a SIR model,
while [46] proposed a modified SEIR model that distinguishes between symptomatic and
asymptomatic, and conducted observation sensitivity experiments to identify suitable
observing strategies. However, these studies did not consider the impact of vaccination on
the pandemic spread.

This work therefore aims to study the impact of vaccination on the COVID-19 spread.
An extended SEIR model comprising of seven compartments—susceptible, exposed, infec-
tious, quarantined, recovered, deaths, and vaccinated—is then proposed. First, we conduct
a mathematical analysis to illustrate the non-negativity, boundedness, epidemic equilib-
rium, existence, and uniqueness of the endemic equilibrium, and the basic reproduction
number of the model. A Joint-EnKF is implemented for state-parameters estimation by
assimilating COVID-19 data into the model. By considering uncertainties in all model states
and poorly known parameters, our ensemble data assimilation approach computes updates
of both state and parameter ensembles. The estimated set of model state and parameters is
then used to assess the model prediction skill. The proposed approach is validated with
the cases reported from the most-infected Gulf country, Saudi Arabia, showing a great
ability to provide accurate and consistent forecasts up to two weeks. We finally investigate
the effect of vaccination on the spread of the pandemic, showing a notable decrease in the
number of cases.

The remainder of this paper is organized as follows. Section 2 presents the extended
SEIR model and briefly describes the Joint-EnKF algorithm. Section 3 is devoted to the
mathematical analysis of the model. The numerical results are presented and discussed in
Section 4. Section 5 concludes the study, with a summary of the main results.
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2. Model and Assimilation Scheme
2.1. Extended SEIR Model

We extend the SEIR model to seven compartments to simulate the epidemic of COVID-
19. Seven state variables are considered within a population, that is, S(t), E(t), I(t), Q(t),
R(t), D(t), and V(t), denoting the number of susceptible, exposed (infected, but not
yet infectious), infectious (not yet quarantined), quarantined (confirmed and infected),
recovered, dead, and vaccinated cases, respectively. The disease transmission flow of the
proposed model is sketched in Figure 1. The model is then governed by the following set
of nonlinear ordinary differential equations:

dS(t)
dt

= Λ− βS(t)I(t)− αS(t)− µS(t),

dE(t)
dt

= βS(t)I(t)− γE(t) + σβV(t)I(t)− µE(t),

dI(t)
dt

= γE(t)− δI(t)− µI(t),

dQ(t)
dt

= δI(t)− (1− κ)λQ(t)− κρQ(t)− µQ(t),

dR(t)
dt

= (1− κ)λQ(t)− µR(t),

dD(t)
dt

= κρQ(t),

dV(t)
dt

= αS(t)− σβV(t)I(t)− µV(t),

(1)

with non-negative initial conditions S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0,
R(0) = R0, D(0) = D0, and V(0) = V0. The coefficients Λ, β, α, µ, γ, σ, δ, κ, λ, and
ρ represent the new births and new residents per unit of time, transmission rate divided
by N, vaccination rate (rate of people who are vaccinated), natural death rate, average
latent time, average quarantine time, mortality rate, average days until recovery, and
average days until death, respectively. σ is the vaccine inefficacy (0 ≤ σ ≤ 1). So 1− σ
represents the vaccine efficacy. If σ = 0, the vaccine offers 100% protection against the
disease. N = S + E + I + Q + R + D + V is the total population size. Finally, system (1) is
solved using a fourth-order Runge–Kutta method.

S E I Q

R

DV

β γ δ

(1− κ)λ

κρ

σ
α

µ µ µ µ

µ

µ

Λ

Figure 1. Disease transmission flow of the proposed model.
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2.2. Ensemble Kalman Filter (EnKF)

Consider the following nonlinear data assimilation problem:

xk+1 =M(xk, θ) + ηk+1,

yk+1 = H(xk+1) + εk+1,
(2)

where xk is the state vector of the model at time tk,M is the dynamical operator (system (1))
that integrates the model state from time tk to time tk+1, θ is the parameters vector, yk+1 is
the observation vector (active, recovered, and death cases) at time tk+1,H is the observation
operator that projects the state space onto the observation space, and ηk+1 and εk+1 are
model and observation noises assumed to follow Gaussian distributions with zero mean
and covariances Qk+1 and Rk+1, respectively.

At every forecast step, we integrate the ensemble members with the dynamical
model (1). The predicted state mean and the associated error covariance matrix are
then estimated

x̂ f
k+1 =

1
Ne

Ne

∑
i=1

x f ,i
k+1, (3)

P̂ f
k+1 =

1
Ne − 1

Ne

∑
i=1

(
x f ,i

k+1 − x̂ f
k+1

)(
x f ,i

k+1 − x̂ f
k+1

)T
= X f

k+1

(
X f

k+1

)T
, (4)

where Ne is the number of ensemble members.
The Joint-EnKF consists of estimating the augmented state-parameters vector zk+1 =[

xT
k+1, θT

]
at each time tk+1 given the observation yk+1. The prediction step of the Joint-

EnKF becomes:

z f
k+1 = M̃(zk, θ) + ηk+1 =

[
M(xk, θ) + ηk+1

θ

]
, (5)

where M̃ is the augmented nonlinear dynamic operator for the joint state-parameters.
With similar computations as in (4), the joint state-parameters error covariance matrix for
the augmented ensemble vectors z f ,i

k+1 is given by

P̂ f
k+1 =

P̂ f
xk+1xk+1 P̂ f

xk+1θk+1

P̂ f
θk+1xk+1

P̂ f
θk+1θk+1

 =

X f
xk+1

(
X f

xk+1

)T
X f

xk+1

(
X f

θk+1

)T

X f
θk+1

(
X f

xk+1

)T
X f

θk+1

(
X f

θk+1

)T

, (6)

where Xθ denotes the parameter ensemble perturbations. The updated joint state and
parameters are then computed using the current observation ensemble yi

k+1:

za,i
k+1 = z f ,i

k+1 + P̂ f
k+1H̃

T
(
H̃P̂ f

k+1H̃
T + Rk+1

)−1[
yi

k+1 − H̃z f ,i
k+1

]
, (7)

where H̃ = [H 0] is the augmented observational operator with the zero matrix.

3. Mathematical Analysis of the COVID-19 Model

In this section, we discuss the boundedness, non-negativity, epidemic equilibrium,
endemic equilibrium, and basic reproduction number of the COVID-19 model (1).

3.1. Non-Negativity of the Model

Theorem 1. If S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, Q0 ≥ 0, R0 ≥ 0, D0 ≥ 0, and V0 ≥ 0, then the solutions
of system (1) remain non-negative for all t > 0.
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Proof of Theorem 1. From the first equation of system (1), we have:

dS
dt
≥ −µS. (8)

Integrating Equation (8), we get

S(t) ≥ S0e−µt ≥ 0. (9)

Hence, S(t) remains non-negative for all t > 0. Similarly, using the remaining equa-
tions of system (1), we obtain E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0, and
V(t) ≥ 0. Therefore, Theorem 1 is proved.

3.2. Boundedness of the Model

Theorem 2. All solutions of the proposed model with non-negative initial conditions are bounded

and N(t) ≤ Λ
µ

for all t > 0.

Proof of Theorem 2. Adding all the equations in the system (1), the growth rate of the
total population can be written as

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dQ
dt

+
dR
dt

+
dD
dt

+
dV
dt

. (10)

From Equation (10), we have the following equation:

dN
dt

= Λ− µN. (11)

Integrating both sides of Equation (11) gives the solution for N(t) as follows

N(t) =
Λ
µ
+

(
N0 −

Λ
µ

)
e−µt. (12)

Thus, when t→ ∞, we find that

N(t) ≤ Λ
µ

. (13)

Finally, Theorem 1 and Equation (13) give

0 ≤ N(t) ≤ Λ
µ

. (14)

Thus, S(t), E(t), I(t), Q(t), R(t), D(t), and V(t) are bounded and Theorem 2 is
proved.

3.3. Epidemic Equilibrium and Basic Reproduction Number of the Model

The epidemic equilibrium X0 of system (1) is obtained by setting all the derivatives to
zero with I = 0, that yields to:

X0 =

(
Λ

µ + α
, 0, 0, 0, 0, 0,

αΛ
µ(µ + α)

)
. (15)
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R0 is computed using the next-generation matrix concept [47]. Let X = (E, I)T .
System (1) can be written as

X′ = F(X)−W(X), (16)

where F(X) = (βSI + σβIV, 0)T and W(X) = ((µ + δ)E,−γE + (µ + δ))T . Their corre-
sponding Jacobian matrices at the disease-free equilibrium are

F =

(
0 βS0 + σβV0

0 0

)
, W =

(
µ + γ 0
−γ µ + δ

)
. (17)

According to [47], the basic reproduction number R0 is the spectral radius of the
next-generation matrix FW−1. That gives

R0 =
βγ

(µ + γ)(µ + δ)

(
S0 + σV0

)
. (18)

Substituting S0 and V0 from Equation (15) into Equation (20) yields the following
formula for the basic reproduction number of system (1):

R0 =
βγΛ(µ + ασ)

µ(µ + γ)(µ + δ)(µ + α)
, (19)

used to measure the transmission potential of a disease. It is the number of secondary cases
or new infections produced by a single infectious individual in a completely susceptible
population [47,48]. An epidemic is expected to increase exponentially if R0 > 1, and to end
if R0 < 1 [47].

Theorem 3. The disease-free equilibrium X0 is locally asymptotically stable if R0 < 1, and unstable
if R0 > 1.

Proof of Theorem 3. System (1) can be written in a simplified form by eliminating the
sixth equation for the death compartment (D). This is due to the fact that the state D only
appears in the corresponding differential equation and has no significance on the overall
system. The number of deaths can be determined from D = N − S− E− I −Q− R−V.
The Jacobian matrix of the reduced model (1) at the disease-free equilibrium is given by

J
(

X0
)
=



−ε1 0 −βS0 0 0 0
0 −ε2 β

(
S0 + σV0) 0 0 0

0 γ −ε3 0 0 0
0 0 δ −ε4 0 0
0 0 0 λ(1− κ) −µ 0
α 0 −σβV0 0 0 −µ

, (20)

where ε1 = −(α + µ), ε2 = −(γ + µ), ε3 = −(δ + µ), and ε4 = −(λ(1− κ) + κρ + µ).
J
(
X0) has λ1 = −ε1 < 0, λ2 = −ε4 < 0, λ3 = λ4 = −µ < 0. The remaining two

eigenvalues are

λ5 = −1
2

(
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
,

λ6 = −1
2

(
ε2 + ε3 −

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
.

(21)

when R0 < 1, we have λ5 < 0 and λ6 < 0. Since all the eigenvalues are negative, the
disease-free equilibrium X0 is locally asymptotically stable. If R0 > 1, we have λ5 < 0 and
λ6 > 0, and the disease-free equilibrium X0 is locally asymptotically unstable [49].
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3.4. Existence and Uniqueness of the Endemic Equilibrium

In this section, we investigate the existence and uniqueness of the endemic equi-
librium when R0 > 1. Let X∗ = (S∗, E∗, I∗, Q∗, D∗, V∗) be the endemic equilibrium of
model (1). The endemic equilibrium is obtained by setting all the derivatives in model (1)
to zero, giving

Λ− βS∗ I∗ − αS∗ − µS∗ = 0,

βS∗ I∗ − γE∗ + σβV∗ I∗ − µE∗ = 0,

γE∗ − δI∗ − µI∗ = 0,

δI∗ − (1− κ)λQ∗ − κρQ∗ − µQ∗ = 0,

(1− κ)λQ∗ − µR∗ = 0,

αS∗ − σβV∗ I∗ − µV∗ = 0.

(22)

Solving the first, third, and fifth equations of (22) in terms of I∗ gives

E∗ =
ε3

γ
I∗, Q∗ =

δ

ε4
I∗, S∗ =

Λ
βI∗ + ε1

, (23)

where ε1 = µ + α, ε3 = µ + δ, and ε4 = µ + λ(1− κ) + κρ. Adding the second and sixth
equation in (22) gives

V∗ =
ΛβγI + Λαγ− ε2ε3(βI + ε1)I

µγ(βI + ε1)
. (24)

Now substituting the expressions of S∗, E∗, and V∗ in the second equation of (22), we
get the following quadratic equation for I∗:

a2 I∗2 + a1 I∗ + a0 = 0, , (25)

where
a0 = µε1ε2ε3(1− R0),

a1 = ε1ε2ε3 + µβε2ε3 −Λβ2γσ,

a2 = βε2ε3.

(26)

It is clear that a2 is always positive and a0 is negative when R0 > 1. Therefore, there is
a unique positive value for I∗, and consequently, a unique endemic equilibrium X∗ when
R0 > 1.

4. Results and Discussion

The proposed modeling system was applied to forecast the COVID-19 pandemic
in Saudi Arabia. Data are available from the Saudi Center for Diseases Prevention and
Control [50]. These include the number of deaths, as well as recovered and confirmed cases.
The total number of deaths, active cases, and recovered cases were assimilated daily, and
model parameters were also updated using the Joint-EnKF.

4.1. Assimilation Settings

In this section, we cover the period before the vaccine becomes available. Therefore,
state and parameters related to vaccination are excluded from the model at this stage. The
state vector x to be estimated is then composed of six elements

x = [S E I Q R D], (27)

and the parameters to be estimated become

θ = [Λ β µ γ δ κ λ ρ]. (28)
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The augmented state vector to be estimated is then:

z =
[

xT log
(

θT
)]

, (29)

where the parameters are in a logarithmic sense in order to avoid negative values in
the model.

We set the initial numbers of infected and exposed people to I(0) = E(0) = 3, three
times the number of accumulated positive tests (Q0 = 1) provided by March 2nd [50].
The initial numbers of recovered, and death cases are R(0) = D(0) = 0. The total
population and the total number of susceptible cases are N(0) = 34,218,000 and S(0) =
N(0)− E(0)− I(0)− Q(0)− R(0)− D(0), respectively. We consider the following two
periods: the first period concerns the period of the beginning of the pandemic when the
intervention had not been applied using a basic reproduction number greater than one,
R0 = 2.5, which gives β1 = 8.58 × 10−9, while the second period corresponds to the
period when the intervention was applied by the government until June 30th. During
this period, the numbers of new cases are relatively constant. Therefore, we use a basic
reproduction number R0 = 1, which gives β2 = 3.43× 10−9. To reflect the uncertainty
in the transmission rate, we use a standard deviation of 25%. The initial values of the
remaining parameters are listed in Table 1, with a standard deviation of 10%. In addition,
we assume the observation-error standard deviations to be 5% of the data value.

Table 1. Initial model parameters and biological interpretations.

Parameter Initial Value Description Reference

Λ 2300 persons/day New births and new residents [51]
β1 8.58× 10−9 day−1 Transmission rate before intervention Assumed
β2 3.43× 10−9 day−1 Transmission rate during and after intervention Assumed
α 3.5× 10−4 day−1 Vaccination rate [52]
µ 3× 10−5 persons/day Natural death rate [51]

γ−1 5.5 days Incubation period [42]
σ 0.05 Vaccine inefficacy [53]

δ−1 3.8 days Infection time [42]
κ 0.014 Case fatality rate [50]

λ−1 10 days Recovery time [42]
ρ−1 15 days Time until death [42]

In order to initialize the assimilation system, we perturb the initial state using a
Gaussian noise as follows:

xi
0 = max[x0(1 + η · σ), 0] i = 1, 2, · · · , Ne, (30)

where σ ∼ N (0, 1) and η is set to 10%. Similarly, the parameters’ ensemble is generated by
perturbing the initial values, given in Table 1, using a log-normal distribution.

To evaluate the accuracy of the assimilation system solution, we compute the Relative
Mean Absolute Error (RMAE), defined as follows:

RMAE =
1
n

n

∑
j=1

|y(j)− x(j)|
|y(j)| , (31)

where y(j) represents the observed value, x(j) is the model simulation, and n is the sample
size of the observed data.
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4.2. Sensitivity to Ensemble Size

We first study the sensitivity of the filter, to the ensemble size, Ne. Computing accurate
state and parameter estimates with small ensembles is desirable to avoid an important
increase in computational time. We run our assimilation system using seven ensemble sizes:
Ne = 10, 20, 50, 100, 200, 500, and 1000. Figure 2 presents the performance of the EnKF in
terms of RMAE for the different ensemble sizes. As expected, increasing the ensemble size
reduces the discrepancy between the estimates and the data. A clear improvement over
the case with 20 ensemble members is observed. However, increasing the ensemble size
beyond 200 members does not notably enhance the performance of the filter, although it
dramatically increases the computational cost.

10 20 50 100 200 500 1000

Ensemble Size

0

5

10

15

20

25

R
M

A
E

 (
%

)

Figure 2. RMAE of the number of deaths as a function of ensemble size.

Figure 3 summarizes the assimilation results for the active, recovered, and confirmed
cases obtained by the EnKF using 200 ensemble numbers. All results show a good fit
between the predicted and observed values, with generally minor differences. The values of
the model parameters estimated by the EnKF during the assimilation process are sketched
in Figure 4. The parameters do not appear to be dramatically different from the initial
values, except for the reproduction number and the recovery time. We observe a sharp
increase in the reproduction number between March 1st and 15th. This number remains
relatively high, almost R0 = 4, during the pre-intervention period. During and after the
intervention, the value of R0 remains close to 1. That suggests that the intervention was
very fruitful in controlling the pandemic. The recovery time increases significantly during
the first two months, peaking at 16.1, and remains constant after that. We also see a slight
decrease in the time until death to 13.75. The other parameters show slight deviations from
the proposed initial values.
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Figure 3. Assimilated numbers of: (a) Active cases. (b) Recovered cases. (c) Confirmed cases.

4.3. Predictability Experiment

To assess the system relevance for making short-term predictions, we daily performed
two-week forecasts, starting from 1st July until 17th December (the day where the vaccina-
tion campaign started in Saudi Arabia). The estimated state and parameters during the
assimilation process were used to conduct these forecasts. The RMAE of the deaths, and
recovered and confirmed cases were then computed and plotted in Figure 5. The model
performed very well. The values of the RMAE for the forecasted recovered and confirmed
cases are always less than 5%, within the margin of the observation errors. Slightly higher
RMAE are observed during the month of July for the death cases, reaching 12%. However,
the model achieves a lower RMAE in the next few months, with an average of 3%.
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Figure 4. Time series of the estimated model parameters using the Joint-EnKF with 200 ensemble
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Figure 6 shows the final predictions performed on 3rd December for the first two
weeks of December. The predicted numbers of deaths, and recovered and confirmed cases
are all in very good agreement with the data. While they perfectly match the data during
the first 10 days, they tend to slightly underestimate or overestimate the observed values at
the end of the second week. Overall, our numerical results demonstrate the capability of
the proposed system in achieving an excellent two-week prediction skill.
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first two weeks of December.
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4.4. Impact of Vaccination

On 17th December, Saudi Arabia started a three-phase COVID-19 vaccination program,
thus becoming the first Arab country to roll out the Pfizer-BioNTech vaccine. The first
phase targets people aged 65 and above, as well as people most exposed to the disease.
The second phase will include people aged over 50, as well as those with specific chronic
diseases, such as asthma and diabetes. The rest of the population will get the vaccine at the
third stage. However, the Ministry has identified those who should not get the vaccine.
They are women who are pregnant or breastfeeding, women who plan on getting pregnant
in the next two months, people who suffer from severe allergic reactions, and those who
have been infected by the virus in the past 90 days.

As of 17 January 2021, nearly 295,000 people have been vaccinated against COVID-19,
according to the Saudi Health Council [52]. That gives α = 3× 10−4. The Pfizer-BioNtech
vaccine offers up to 95% protection against Covid-19 after a second dose [53], which gives
σ = 0.05. We start our numerical simulation on December 17th for a period of six months
with and without vaccination. Numerical results are presented in Figure 7, where α = 0
corresponds to the model output without vaccination. We notice that the current pace of
vaccination does not show a significant decrease in the number of cases. We observe only a
reduction of 9.02% in the total confirmed cases, and 7.47% in the total deaths. However,
the vaccination rate is expected to increase in the upcoming weeks. Therefore, we consider
three more different values of α

(
6× 10−4, 1.2× 10−3, and 2.4× 10−3). As we can see in

Figure 7, intensifying the vaccination campaign starts to significantly decrease the number
of cases. For α = 0.0006, we observe a reduction up to 16.08% and 13.47% for the total
confirmed cases and deaths, respectively. Finally, a notable reduction is observed for
α = 0.0024. Results show a decline by 38.67% and 33.65%, respectively.
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Figure 7. Impact of vaccination rate on the total number of: (a) Active cases. (b) Recovered cases.
(c) Death cases. (d) Confirmed cases. α = 0 corresponds to the model output without vaccination.

5. Conclusions

This paper presented an extended SEIR model with seven stages of infection, including
vaccination, to simulate and predict the development of the novel COVID-19 outbreak. Ini-
tially, a mathematical analysis was carried out to illustrate the non-negativity, boundedness,
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epidemic equilibrium, existence, and uniqueness of the endemic equilibrium, and basic
reproduction number of the proposed model. To mitigate the imperfection of SEIR models
and the poorly known parameters, we first applied a data assimilation framework based
on a Joint-EnKF for state-parameters estimation in order to enhance the model forecast
skill. We assimilated real data of the number of deaths, the number of recovered cases, and
the number of active cases. In the second step, the updated state and parameters were used
to perform predictions two weeks ahead in order to assess the relevance of the system of
making short-term predictions of the COVID-19 pandemic. Finally, we investigated the
impact of vaccination on the spread of the disease.

The proposed methodology was validated with cases reported from Saudi Arabia. In
the assimilation process, the estimated numbers of active, recovered, deaths, and confirmed
cases were accurately predicted by the model, with generally minor differences. In the
predictability experiments, the model provided encouraging results for short-term predic-
tions, with a relatively small ensemble size. Moreover, model predictions can be updated
weekly or every two weeks to accommodate short- and medium-term predictions. Results
also show that intensifying the vaccination campaign significantly decreases the number of
confirmed cases and deaths. The proposed model can serve as a tool for health authorities
to plan, prepare, and take appropriate measures and decisions to control the pandemic.
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