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Abstract: Simple mathematical tools are needed to quantify the threat posed by emerging and re-
emerging infectious disease outbreaks using minimal data capturing the outbreak trajectory. Here
we use mathematical analysis, simulation and COVID-19 epidemic data to demonstrate a novel
approach to numerically and mathematically characterize the rate at which the doubling time of an
epidemic is changing over time. For this purpose, we analyze the dynamics of epidemic doubling
times during the initial epidemic stage, defined as the sequence of times at which the cumulative
incidence doubles. We introduce new methodology to characterize epidemic threats by analyzing
the evolution of epidemics as a function of (1) the number of times the epidemic doubles until the
epidemic peak is reached and (2) the rate at which the doubling times increase. In our doubling-time
approach, the most dangerous epidemic threats double in size many times and the doubling times
change at a relatively low rate (e.g., doubling times remain nearly invariant) whereas the least
transmissible threats double in size only a few times and the doubling times rapidly increases in
the period of emergence. We derive analytical formulas and test and illustrate our methodology
using synthetic and COVID-19 epidemic data. Our mathematical analysis demonstrates that the
series of epidemic doubling times increase approximately according to an exponential function with
a rate that quantifies the rate of change of the doubling times. Our analytic results are in excellent
agreement with numerical results. Our methodology offers a simple and intuitive approach that relies
on minimal outbreak trajectory data to characterize the threat posed by emerging and re-emerging
infectious diseases.

Keywords: doubling time; outbreak; epidemic growth; exponential growth; generalized-growth
model; mathematical model; COVID-19; coronavirus; SARS-CoV-2

1. Introduction

The trajectory of an infectious disease epidemic, which is typically tracked as the
number of new reported cases by date of symptoms onset, is shaped by multiple factors
including the natural history of the disease, background immunity patterns, environmental
factors [1], superspreading events [2], control interventions and behavior changes. These
factors are not static but change over the different time scales associated with the natural
history of the infectious disease (e.g., influenza, Ebola, HIV/AIDS). Further, these factors
shape the early growth dynamics [3,4] and the basic reproduction number (R0), which
quantifies the number of secondary cases per primary case in a completely susceptible
population, and the generation interval, which dictates the time scale for the generation of
new cases [5]. It is worth pointing out that even the generation interval is not necessarily
invariant, but it can be affected during the course of an outbreak by control interventions
and susceptible depletion (e.g., contact tracing and isolation) [6,7]. Hence, transmission
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estimates that capture dynamic changes in epidemic growth could provide a conceptual
framework to characterize the epidemic threat posed by infectious diseases.

Parameter R0 is a widely used indicator of transmission potential in a native pop-
ulation and is driven by the average contact rate and the mean infectious period of the
disease [5]. Yet, it only characterizes transmission potential at the onset of the epidemic and
varies geographically for a given infectious disease according to local healthcare, outbreak
response, social, and cultural factors that in turn influence the probability of superspread-
ing events [8–10]. Furthermore, estimating R0 requires information about the natural
history of the infectious disease. Thus, our ability to estimate reproduction numbers for
novel infectious diseases is hindered by the lack of information about their epidemiological
characteristics and transmission mechanisms. Therefore, approaches that rely on empirical
patterns rather than specific mechanistic assumptions have proved valuable especially
during the early transmission stages [11]. It is also worth noting that mathematical analyses
of the doubling time of epidemics remain limited to exponentially growing epidemics, an
assumption that does not always hold. Here we derive and demonstrate mathematical
expressions that allow the characterization of the rate of change of the doubling time
beyond exponential growth dynamics.

Although the effective reproduction number, Rt, tracks time-dependent changes in
transmission potential during the course of an epidemic, this quantity does not convey
information about the magnitude or dynamic changes in the trajectory of the epidemic [12].
For instance, Rt could be fluctuating over time around the epidemic threshold of 1.0
regardless of whether the outbreak’s incidence rate is fluctuating around tens of cases
per week or fluctuating around thousands of cases per week. This is because epidemic
trajectories at broader spatial scales hide sub-epidemic growth dynamics. More informative
metrics could synthesize real-time information about the extent to which the epidemic is
expanding over time. Such metrics would be particularly useful if they rely on minimal
data, such as time series of cases or deaths, of the outbreak’s trajectory.

Epidemic doubling times characterize the sequence of times at which the cumulative
incidence doubles [13–18]. Here we introduce metrics that capture the dynamics of epi-
demic doubling times to provide a parsimonious and practical framework to quantify the
threat associated with infectious diseases. We use mathematical and numerical analysis
which we illustrate using COVID-19 epidemic data of the early stages of the epidemic in
various hotspot countries.

2. Data Sources
2.1. Representative Country-Level COVID-19 Data

We retrieved daily reported cumulative case data of the early spread of the COVID-
19 pandemic in Germany, France, Canada, the United Kingdom (UK), The Netherlands,
and the United States of America (USA) from the World Health Organization (WHO)
website [19] and for Spain and Italy from the corresponding governmental datasets [20,21]
from early February to 24 May 2020. We calculated the daily incidence from the cumulative
trajectory and analyzed the early incidence trajectory for the 8 countries.

2.2. Synthetic Epidemic Growth Data

We conducted simulation studies for testing and demonstrating the mathematical
results and estimation of parameters characterizing the rate of change of doubling times.
For this purpose, we simulated epidemic growth curves by adding a Poisson error structure
to the daily incidence curve obtained from the generalized-growth model (GGM) [8,22],
which provides a first approximation to the growth phase of the epidemic’s trajectory. We
generate synthetic data to verify the methodology before we apply it to real epidemic data.

3. The Generalized-Growth Model for Early Ascending Phase

We analyze the evolution of epidemics as a function of the number of times the
cumulative incidence doubles before the epidemic peaks, and the rate at which the doubling
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time increases (hence the epidemic slows down), owing to interventions, behavior changes
and depletion of susceptible individuals. The most difficult to control are epidemic threats
that double in size many times by the time the peak has been reached, while doubling
times increase at a relatively low rate. Conversely, the least difficult to control are epidemic
threats that only double in size very few times, while the sequence of doubling times
rapidly increases.

During the epidemic growth phase, the times at which cumulative incidence doubles
are given by ti such that 2C(ti) = C(ti+1), where t0 = 0, C(t0) = C0, i = 0, 1 . . . , nd − 1,
and nd is the total number of times cumulative incidence doubles (Figure 1A). The actual
sequence of "doubling times" is defined as follows (see Figure 1B):

∆tj = tj − tj−1, where j = 1, . . . , nd.

As a first approximation, we employ the generalized-growth model (GGM) [8,22] to
characterize the temporal evolution of doubling times during the growth phase of the epi-
demic’s trajectory. The GGM is a useful phenomenological model that relaxes the assumption
of exponential growth in the early ascending phase of an outbreak, taking the form:

C′ = rCp(t), (1)

where C′(t) describes the incidence at time t, the solution C(t) describes the cumulative
number of cases at time t, r is a positive parameter denoting the growth rate (with units of
(people)(1−p) per time), and p ∈ [0, 1] is a “deceleration of growth” parameter (dimensionless).
If p = 0, this equation describes constant incidence over time and the cumulative number
of cases grows linearly, whereas p = 1 describes exponential growth. This model has been
shown to provide an improved description of the early growth phase of epidemics [8,22] and
has displayed promising results for short-term epidemic forecasting [23–25].
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Figure 1. (A) Illustration of the temporal evolution of cumulative incidence and times ti, such that 2C(ti) = C(ti+1), at
which cumulative incidence doubles, and (B) the actual sequence of “doubl-ing times”, where ∆ti = ti − ti−1, i = 1, . . . , nd.
In this illustration the doubling times increase as cumulative incidence doubles, indicating that the epidemic features
sub-exponential rather than exponential growth dynamics.
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For exponential growth dynamics (i.e., p = 1), it is well known that the doubling
times remain invariant and is given by: ∆tj =

ln 2
r , whereas the doubling times follow an

increasing trend when the epidemic grows sub-exponentially fast as shown in Figure 1.
When p < 1 (sub-exponential epidemic growth), given a time t > 0 and the initial

number of cases C0, one can determine the time to the doubling of cases from t. That is,
given t > 0, one can find ∆t = ∆t(t) such that 2C(t) = C(t + ∆t). As shown in the next
section, this function is given by

∆t =
(

21−p − 1
){

t +
C1−p

0
(1− p)r

}
. (2)

Alternatively, one can also express the doubling time ∆t as a function of C = C(t) as
follows (full derivation given below):

∆t =
(

21−p − 1
) C1−p(t)
(1− p)r

. (3)

Thus, for the case of sub-exponential growth, i.e., when p < 1, one concludes that the
doubling time increases exponentially according to

∆tj+1 = λebd j, bd := (1− p) ln 2, λ :=

(
21−p − 1

)
C1−p

0
(1− p)r

, j = 0, 1, 2 . . . . (4)

The constant bd depends only on the deceleration of growth parameter p < 1. Hence,
bd is the exponential rate at which the doubling times, ∆tj, increase. The slower the rate bd,
the slower the rate at which the epidemic doubling times increase, which tends to increase
the number of times the epidemic doubles.

4. Evolution of Doubling Times for Sub-Exponential Growth. Mathematical Analysis

In this section, we carry out mathematical analysis of the temporal evolution of
doubling times during the epidemic growth phase using the generalized growth model (1).
We wish to find the “doubling time”, ∆t, such that for any t > 0,

2C(t) = C(t + ∆t). (5)

For exponential growth dynamics (i.e., p = 1), one can easily check that ∆t remains
invariant and is given by ∆t = ln 2

r . Consider the case p < 1 (sub-exponential epidemic
growth). Given C(0) = C0, from Equation (1) one obtains

C(t) =
{
(1− p)rt + C1−p

0

} 1
1−p . (6)

Substituting expression (6) into (5), one has

2
{
(1− p)rt + C1−p

0

} 1
1−p

=
{
(1− p)r(t + ∆t) + C1−p

0

} 1
1−p . (7)

This identity is equivalent to

21−p
{
(1− p)rt + C1−p

0

}
= (1− p)r(t + ∆t) + C1−p

0 . (8)

In order to solve for ∆t, we rewrite (8) as

21−p
{
(1− p)rt + C1−p

0

}
−
{
(1− p)rt + C1−p

0

}
= (1− p)r∆t. (9)
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Equation (9) yields(
21−p − 1

){
(1− p)rt + C1−p

0

}
= (1− p)r∆t, (10)

and therefore

∆t =

(
21−p − 1

){
(1− p)rt + C1−p

0

}
(1− p)r

=
(

21−p − 1
){

t +
C1−p

0
(1− p)r

}
. (11)

This proves (2) as stated in Section 3 above. One can also express the doubling time,
∆t, as a function of C(t). Indeed, according to (6),

C1−p(t) = (1− p)rt + C1−p
0 . (12)

Identity (12) implies

t =
C1−p(t)− C1−p

0
(1− p)r

. (13)

Combining (11) and (13), one concludes

∆t =
(

21−p − 1
){C1−p(t)− C1−p

0
(1− p)r

+
C1−p

0
(1− p)r

}
=
(

21−p − 1
) C1−p(t)
(1− p)r

. (14)

Thus, given C(t), r and p, we can determine ∆t. This confirms property (3) of sub-
exponential growth model introduced in Section 3.

Consider the sequence of doubling times, {∆tj}, j = 0, 1, 2 . . . , such that

∆t0 := 0, 2C

(
j

∑
k=0

∆tk

)
= C

(
j+1

∑
k=0

∆tk

)
. (15)

Importantly, for the case of sub-exponential growth, i.e., when p < 1, one can verify
that {∆tj} increases exponentially according to:

∆tj+1 = λebj, b := (1− p) ln 2, λ :=

(
21−p − 1

)
C1−p

0
(1− p)r

, j = 0, 1, 2 . . . . (16)

To verify (16), set α := 21−p − 1. It follows from (11) that

∆tj+1 =
(

21−p − 1
){ j

∑
k=0

∆tk +
C1−p

0
(1− p)r

}
= α

j

∑
k=0

∆tk + λ. (17)

Specifically, by (15) and (17) one has

∆t0 = 0, ∆t1 = λ, (18)

∆t2 = α∆t1 + λ = λ(α + 1), (19)

∆t3 = α(∆t1 + ∆t2) + λ = λ(α + 1)2, . . . (20)

∆tj+1 = λ(α + 1)j = λ
(

21−p − 1 + 1
)j

= λ2j(1−p) = λej(1−p) ln 2, (21)

which completes the proof.
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5. Simulation Studies to Verify Analytic Results
5.1. Estimating the Rate of Change of Doubling Times from Epidemic Data

The exponential rate, bd, at which the doubling times ∆tj increase can simply be
estimated by least squares fitting, where we estimate bd as the slope of the line given by
the equation:

ln(∆tj) = ln
(

λ

α + 1

)
+ bd j.

The intercept parameter, ln
(

λ
α+1

)
, is also estimated using least squares. That is, we

estimate two parameters denoted by Θ, and the sequence of doubling times given by ∆tj is
sufficient to estimate both.

To quantify parameter uncertainty, we employ parametric bootstrapping with a Pois-
son error structure (e.g., [26–28]) around the incidence curve from which the sequence
of doubling times, ∆tj, can be obtained. That is, we re-estimate parameters Θi, where
i = 1, 2, . . . , s, and s is the number of bootstrap realizations.

5.2. Doubling Time Analysis of COVID-19 Epidemics

We conducted simulation studies to verify our analytic results and assess the amount
of time-series data (e.g., number of doublings in cumulative incidence) that is needed to
reliably estimate the rate bd at which the doubling times increase. For this purpose, we
simulated 500 incidence curves comprising 35 days by adding a Poisson error structure to
the daily incidence curve obtained from the generalized-growth model. For illustration,
we set common parameter r = 0.2 and vary the scaling of growth parameter, p. The initial
condition was set at C(0) = 1, see Figure 2.
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Figure 2. The cumulative incidence and the sequence of “doubling times” for the growth dynamics dynamics obtained from the
generalized-growth model with varying levels of epidemic growth scaling parameter, p.

Figure 3 shows that the analytic results of the rate of change of doubling times, bd, are
consistent with our numerical results (Figure 3B). We also assessed our ability to estimate
bd from limited simulated data using the GGM that incorporates a Poisson error structure
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as described above. Our results based on simulated data indicate that the parameter bd can
be reliably estimated from the first few doubling times of the epidemic (Figure 4).
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Figure 3. Comparison of the numerical and analytic estimates of the rate of change of doubling ti-mes assuming growths
according to the generalized-growth model. (A) The sequence of “doubling times” from the GGM and (B) consistent point
estimates of rate of change of doubling times are obtained from the numerical and analytic results for a range of values of
the scaling of growth parameter, p, with bd := (1− p) ln 2.

Figure 4. Assessing our ability to estimate bd when limited simulated data includes a Poisson error
structure as described above. Findings indicate that the parameter bd can be reliably estimated from
the first few doubling times of the epidemic.
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The evolution of the doubling times during the early phase of the representative COVID-
19 epidemics in various hotspot countries is displayed in Figure 5. Overall, the mean doubling
time ranged from 1.9 (Italy) to 4.1 (Canada). Importantly, Figure 5 also shows that the sequence
of doubling times is well characterized by the generalized-growth model.
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Figure 5. The evolution of the doubling times during the early phase of the COVID-19 epidemics in various hotspot countries. The
blue dashed line corresponds to the fit of Generalized-Growth model that characterizes the evolution of the doubling times obtained
from the data (red triangles).

6. Conclusions

In this paper, we have introduced a novel framework to characterize epidemic control
based on the evolution of doubling times associated with the epidemic’s ascending phase.
Our methodology, based on analytic and numerical results, validated by simulations, relies
on minimal outbreak data and, is independent of the time scales driving the transmission
process. Our work contributes in several ways:

(1) Our approach provides a framework to numerically and mathematically characterize
the rate at which the doubling time of an epidemic is changing over time.

(2) We derive analytical formulas of the rate at which the doubling time is changing and
test and illustrate our methodology using synthetic and COVID-19 epidemic data.

(3) Our mathematical analysis (and proof) demonstrates that the series of epidemic
doubling times increase approximately according to an exponential function with a
rate that quantifies the rate of change of the doubling times. Our analytic results are
in excellent agreement with numerical simulations.

Future studies could characterize the doubling times for past outbreaks of different
infectious diseases at different geographic and spatial contexts in order to glean a more
refined and comprehensive picture of the relationship between changing doubling times
and geographic variability in socio-demographic factors and interventions. Indeed, all
outbreaks are influenced by stochasticity and by multiple factors including the mode of
transmission and severity that shapes the transmission network structure as well as the
fraction of the susceptible population [3,29–32] and the effects of behavior changes and
control interventions [3,33,34].
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Our analysis is not exempt of limitations. First, to illustrate our methodology we
were not exhaustive on the number of outbreak datasets on COVID-19, but rather we
focused on a convenient sample of COVID-19 datasets at the country level to illustrate our
methodology. Second, surveillance epidemiological data is often subject to limitations. In
particular, near real-time epidemiological data is often subject to measurement noise and
reporting delays, in particular owing to the interval between infection and reporting [17].
Reporting delays could distort the incidence pattern particularly for the most recent weeks
of the trajectory of the epidemic [35–37].

Our framework is based on a transmission scale that goes beyond estimates of trans-
mission potential tied to the early epidemic onset such as R0, or parameters such as Reff
that does not include notions of outbreak magnitude. Our method could be readily applied
for monitoring the progression of newly emerging or re-emerging infectious diseases as
it only requires incidence data describing the cumulative number of cases as a function
of time. However, as other transmission metrics, it may be affected by changes in case
definitions or underreporting over the course of epidemics, particularly as epidemiological
surveillance systems tend to capture more severe cases.
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