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Abstract: Music can regulate and improve the emotions of the brain. Traditional emotional regulation
approaches often adopt complete music. As is well-known, complete music may vary in pitch,
volume, and other ups and downs. An individual’s emotions may also adopt multiple states, and
music preference varies from person to person. Therefore, traditional music regulation methods
have problems, such as long duration, variable emotional states, and poor adaptability. In view of
these problems, we use different music processing methods and stacked sparse auto-encoder neural
networks to identify and regulate the emotional state of the brain in this paper. We construct a multi-
channel EEG sensor network, divide brainwave signals and the corresponding music separately,
and build a personalized reconfigurable music-EEG library. The 17 features in the EEG signal are
extracted as joint features, and the stacked sparse auto-encoder neural network is used to classify
the emotions, in order to establish a music emotion evaluation index. According to the goal of
emotional regulation, music fragments are selected from the personalized reconfigurable music-EEG
library, then reconstructed and combined for emotional adjustment. The results show that, compared
with complete music, the reconfigurable combined music was less time-consuming for emotional
regulation (76.29% less), and the number of irrelevant emotional states was reduced by 69.92%. In
terms of adaptability to different participants, the reconfigurable music improved the recognition
rate of emotional states by 31.32%.

Keywords: EEG; reconfigurable music; personalized emotion regulation; SSAE; personalized music-
EEG library

1. Introduction

The role and influence of emotion on cognition has become an important research
field. It has been found that emotion affects the perception, judgment, reasoning, creativity,
and other cognitive processes of individuals [1–3]; as such, it is an urgent task to induce
and regulate emotions. Traditional methods of emotional induction and regulation often
use pictures or music as stimulus materials, for which a universal picture or music library
is often used [4,5]. However, due to the diversity of individuals, there are inevitable differ-
ences in emotional changes in response to the same material, which makes it impossible
to adapt to each individual. Music has ups and downs in pitch and loudness, and can
induce multiple emotional states. Compared with pictures, music has the advantage of
being segmented. However, due to the diversity of individuals, there are inevitable differ-
ences in emotional changes with respect to the same material, which makes it impossible
to adapt to each individual. Therefore, new technical methods are needed, in terms of
emotion-inducing materials.

At present, there is no uniform definition for a quantitative description of emotions.
According to the research results of psychologists Plutchik and Russell et al., two models
are mainly used for the description and classification of emotions: the discrete model and
the dimensional model [6–8]. Among them, the most widely used is the valence arousal
two-dimensional space model [9]. Valence measures the polarity of emotions, increasing as
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they move from negative to positive emotions. Arousal measures how aroused an emotion
is: as alertness goes from low to high, arousal increases. Both are calibrated by the 2-D
SAM (Self-Assessment Manikins) scale [10,11]. The valence arousal model is sufficient to
describe most emotions and has been widely used in the existing research.

There have been many studies on the effects of music-induced emotions, as assessed
by EEG. Hamada et al. made a very comprehensive description of the research status
of music on emotion. The study of the influence of music on emotions has increasingly
become an important research direction, as well as providing new research directions for
future emotion research [12]. Aimed at the influence of music-induced mood, Tseng et al.
studied the relationship between music-induced emotion and electroencephalography in
the prefrontal lobe. Different musical stimuli can induce distinguishable electrical activity
in the brain [13]. In view of the feasibility of using the forehead for emotion recognition, an
emotion recognition system had been established, in which the music-induced emotions
were classified using a three-channel prefrontal EEG; the associated recognition rate was
above 80% [14,15]. Cai et al. used a three-electrode EEG system in the frontal lobe to
recognize depression under sound stimulation [16]. Therefore, it is feasible to use the
forehead channels to induce and recognize emotion.

There have been many studies on emotional recognition based on EEG signals [17].
Chanel et al. extracted the power spectral density of EEG and the energy spectrum
characteristics of each band. The classification of three types of emotion was realized
by using simple Bayesian, support vector machine, and other classifiers; the associated
recognition rate was 56–63% [18]. Murugappan et al. combined power spectrum and
wavelet features, and used the K-nearest neighbor classifier to achieve an 83.04% emotion
classification recognition rate [19]. Soleymani and Koelstra et al. constructed a multi-modal
emotion database, DEAP, and realized the identification of four types of dimensional
emotion tags for an emotional dimension model [20,21]. In general, current research tends
to use traditional classifiers, such as naive bayes (NB), k-nearest neighbors (KNN), and
support vector machine (SVM) classifiers [9,22]. These three classification methods are
typical supervised learning methods, which require a large number of tagged training
samples. Common unsupervised EEG emotion recognition methods include clustering
algorithms, deep belief networks (DBNs), and so on. Murugappan et al. successfully
realized the classification of happiness, disgust, surprise, and fear by adopting Fuzzy
C-means [23]. Georgieva et al. extracted a complete feature set from ERP and verified
the feasibility of the six standard unsupervised clustering algorithms in distinguishing
emotional valence [24]. Wei-Long et al. established three emotion recognition models based
on EEG; compared with SVM, LR, and KNN, deep belief networks (DBNS) had higher
accuracy [25]. In the emotional recognition of this paper, some samples contained class
labels, while other large numbers of divided samples have no class labels. Therefore, new
technical methods are urgently needed, in terms of emotional recognition.

According to the existing literature, the average duration of music is 57.1 s, with
some lasting up to 30 min [12,26]. During music playback, human emotion perception
will also change accordingly, with inter-individual differences [27]. Recent studies have
used music as the inducing material, which has problems, such as long time duration,
variable emotional states, and poor adaptability. In view of the above problems, using the
cutability characteristic of music, we propose an adaptive adjustment model for music
segments which are reconfigurable to emotional states. First, the EEG signals of the tested
individual are measured by a multi-channel EEG sensor network, and the EEG signals
and the complete music are separately segmented to establish a personalized reconfig-
urable music-EEG library for the tested individual. Then, according to the emotional state
recognition model and emotion regulation goal, music segments are selected from the
personalized reconfigurable music-EEG library for reconstruction and combination. Finally,
the reconstructed combined music is played, thereby adaptively adjusting the emotional
state of each individual.
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In addition, biomedical EEG data are processed for each participant and a mathemat-
ical calculation method for emotional evaluation is established. The calculation method
expresses abstract emotional EEG data as specific emotional indicators, through mathe-
matical formulas. Compared with the existing subjective emotional evaluation, it is more
objective and novel, while greatly reducing the difficulty of data processing. Therefore,
the computational approaches in this article also provide significant reference for the
application of mathematics in the biomedical data processing of EEG.

The rest of this article is summarized as follows: Section 2 introduces the experimental
method the classification algorithm and the corresponding mathematical analysis method.
Section 3 introduces the main results and evaluation. Section 4 analyzes and compares the
experimental results. Section 5 summarizes the contributions of this study and its future
application prospects.

2. Materials and Methods
2.1. Participants and Stimuli

In the preliminary study, our group recruited 21 college students (11 males and
10 females), who were right-handed, and aged 23–31 (Mean 25.24 ± SD 2.45). Each subject
participated in the experiment four times, for about 30 min each time. Before the start of
the experiment, all subjects completed and signed a questionnaire and an informed consent
form. All participants were shown to have no mental disorders, no history of substance
abuse, and no musical training.

A questionnaire survey is a commonly used method to evaluate emotions. It evaluates
the whole music, providing a kind of rough, subjective evaluation. In the first stage of the
experiment, music was selected subjectively from a given music library. In the second stage,
according to each individual’s emotion regulation goal, the reconfigurable music segments
were used to conduct personalized regulation of each individual’s emotion. The whole
music process involved more refined segmentation and precise matching. The process was
automatically matched, without human intervention. Thus, it made up for the deficiencies
of the questionnaire survey.

The test music used was Chinese and foreign music. The music material came from
the open web. The sound quality of all sound stimulation materials was 44,100 Hz, the
sound duration was 3–5 min, and the first 3 min were uniformly intercepted using the
Cool Edit Pro software version 2.1. The excess was discarded, and all of the music was
instrumental. Volunteers assessed the above-mentioned music, according to the self-
evaluation questionnaire of emotional experience, and scored the degrees of pleasure and
excitement. The degrees of pleasure and excitement were used as the X and Y axes, and
were averaged into four quadrants. Then, from the four quadrants, 15 songs were selected
from each, such that a total of 60 songs were used as the public music library. The sound
was played using the BOSE QC25 model wired active noise canceling headphones, and
participants wore blackout goggles. In the experiment, participants kept their eyes closed
during the listening and reduced their eye movements.

Referring to the international 10–20 system, we measured the EEG at forehead posi-
tions such as Fp1 and Fp2. In addition, electrodes were selected to be placed on both sides
of the left and right eyes, outward by 10%, to synchronously measure the electro-oculogram
(marked as E1 and E2), in order to effectively filter the ophthalmological artifacts in the
following. The reference electrode and the offset electrode were respectively placed at the
pre-auricular points, in front of the left and right ears (marked A1 and A2). The wearable
EEG measurement node (with TGAM module sampling rate of 512 Hz) was formed of the
TGAM chipset of NeuroSky and a dry electrode.

2.2. Emotional Calibration

With individuals being measured on the basis of the 2-D SAM scale and complete
1–9 Valence and Arousal score evaluation, we set up 3 and 7, respectively, to the Valence and
Arousal axes, each divided into three blocks (High valence (HV), middle valence (MV), and
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low valence (LV), and high arousal (HA), middle arousal (MA), low arousal (LA)), as shown
in Figure 1. This method of classifying emotional labels (i.e., according to the threshold
value) has been used many times in the existing literature [21,28]. It cannot be affected
by the established emotional model, by specifically quantifying each emotional type, and
compared with other studies [28], the granularity of the emotional labels classified in this
paper was more detailed, which can realize more specific identification of emotion types.

Figure 1. Emotional dimension model. On the left is the valence–arousal (V–A) plane dimensional model of emotion, and
on the right is the classification of category labels on the V–A plane.

A large number of EEG studies have shown that the right frontal area of the brain is
strongly associated with negative emotions, while the left frontal area is highly associated
with positive emotions, showing significant differences [29–31]; there are also significant
differences between the left and right brains [32]. Therefore, in order to quantitatively
evaluate the emotional state induced by music, the following formula was established to
evaluate it:

Arousal = (βFp1 + βFp2)/(αFp1 + αFp2) (1)

Valence = αFp2 − αFp1 (2)

where α and β represent the power of alpha and beta waves respectively, and Fp1 and Fp2
represent the positions of the left and right electrodes on the forehead, respectively; that is,
βFp1 represents the beta wave power of the left forehead electrode point, and others in the
same way. Arousal and Valence, respectively, represent the corresponding scores of the
emotional dimension.

2.3. Experiment Procedure

Each participant chose 18 from the 60 pieces of music provided in the library (the
music library was established by the self-evaluation scale of emotional experience). The
process of selecting music was not entirely selected by the participants randomly, but had
a certain degree of guidance (i.e., the music is selected according to like, average, and
dislike), in order to avoid the randomness of the emotional state. This also ensured that
the reconfigurable music-EEG library established covered enough emotional states, thus
improving the training efficiency of the emotional recognition model.

As shown in Figure 2a, the experiment in this paper had two stages: the first stage
established a personalized reconfigurable music-EEG library, while the second stage re-
alized the adaptive adjustment of reconfigurable music to emotions, based on stacked
sparse auto-encoder (SSAE). Each participant selected 6 songs each, according to their
like, average, and dislike sentiments, such that a total of 18 pieces of music were selected.
Experiments were conducted successively, and the corresponding EEG was collected. The
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EEG and music obtained in the experiment were segmented with 5 s as the step size. Then,
emotion classification was conducted for the segmented EEG, according to the emotion
recognition model in Figure 2b, in order to obtain a personalized music fragment library
corresponding to each participant. According to the different goals of emotional regulation,
from the corresponding personalized music segment libraries of participants, different
music segments were selected for reconstruction and combination, in order to obtain
reconfigurable music, which was used for emotional regulation.

Figure 2. System structure diagram: (a) Experimental procedures; and (b) Emotional classification process.

2.4. Data Analysis

In the experiment, participants performed a self-assessment of their current emotional
state, according to 2D-SAM, to determine emotional labels. The experiment was divided
into two stages. The first stage had a sample size of 378 and the second stage had a sample
size of 567, for a total of 945. The upper computer wrote the collected original EEG signal
into the SQL server database, to address the problem that the associated large amount of
data was not easy to store.

The MATLAB® (R2020a) software was used to perform subsequent processing on
the original data in this paper. The EEGLAB toolbox was used to perform FIR band-pass
filtering (1–50 Hz) for all trials and to perform baseline correction for some trials with
baseline drift. After artificially judging the presence of electrooculogram artifacts, combined
with the EOG signals of the E1 and E2 electrodes, the correlation coefficients between
the individual components extracted by ICA and the EOG signals were calculated. The
independent components were identified, which corresponded to those with correlation
coefficient greater than 0.7, and EOG artifact independent components. Finally, the EOG
artifact independent components were set to zero, in order to reconstruct a clean EEG
signal and realize the removal of ocular artifacts. Among them, the ocular artifact rejection
criteria were: The vertical EOG is a sharp pulse and the horizontal EOG is a horizontal
square wave; the time-domain waveform is spike-like; and the energy is concentrated in
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the low frequency (<5 Hz) in the power spectrum. Those meeting the above characteristics
were judged to have electrooculogram artifacts.

The pre-processed EEG signal was transformed into a wavelet packet and the db20
packet basis function was used to extract the EEG delta wave (<4 Hz), theta wave
(4 Hz–8 Hz), low alpha wave (8 Hz–10 Hz), high alpha wave (10 Hz–13 Hz), low beta
wave (13 Hz–20 Hz), and high beta wave (20 Hz–30 Hz) signals. This kind of frequency
division has appeared many times in the literature [33]. The power spectrum distribution,
the frequency value corresponding to the peak point of the power spectrum, approximate
entropy, Hurst index, wavelet entropy characteristics, and sample entropy were calculated.
In addition, together with the power spectrum ratio of alpha and beta waves, a total of 17
features, as shown in Table 1, were used as joint features.

Table 1. Joint features.

Delta Theta Low Alpha High Alpha Low Beta High Beta

PSD Pdelta Ptheta Plow_alpha Phigh_alpha Plow_beta Phigh_beta
Frequency Fdelta Ftheta Flow_alpha Fhigh_alpha Flow_beta Fhigh_beta

Addition Hurst index Wavelet
entropy Sample entropy Palpha/Pbeta

In order to more intuitively reflect the power variation trend induced by music, the
power of the first 20 s in the rest state before the start of the experiment was taken as the
reference base average power, Pbase. The following formula is established:

Pchange = 10log10
P

Pbase
(3)

According to the feature vectors extracted from EEG, the similarity between feature
vectors Vi(m× 1) and Vj(m× 1) for any two samples is defined:

ES(Vi, Vj) =
Vi

T ·Vj

‖Vi‖ ·
∥∥Vj
∥∥ (4)

Under the same label, the similarity between feature vectors of different samples
is called self-similarity. Under different labels, the similarity between feature vectors of
different samples is called cross-similarity. The difference between self-similarity and
cross-similarity is called diff-similarity. Among them, the higher the self-similarity between
similar labels and the greater the similarity difference, the better the sample separability.

2.5. Stacked Sparse Auto-Encoder (SSAE)

At present, Naive Bayes, KNN, and SVM are the widely used classifiers [34–36]. These
three classification methods are typical supervised learning methods; that is, they require a
large number of labeled training samples. In this paper, some samples contained class labels,
while others did not. The stacked auto-encoder neural network classification algorithm is
suitable for this kind of situation, which can carry out pre-learning on the characteristics of
the unlabeled samples, then carry out deep learning correction through the labeled samples.
Other unlabeled samples can also be used for the pre-learning of eigenvectors.

In this paper, a stacked sparse auto-encoder (SSAE) neural network is used, as shown
in Figure 3. The training methods were as follows. Let the sparse auto-encoder input be
xi, the weight matrix be W, and b, c correspond to bias parameters. The Sigmoid function
f (x) = 1/(1 + e−x) was selected as the activation function. Then, self-encoder encoding
and decoding can be expressed as follows:

H = f (Wxi + b), x̂i = WT H + c. (5)
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Figure 3. SSAE emotional recognition.

We continuously adjust the parameter weight matrix W to minimize the original input
and reconstruction error, where the loss function is

J(xi, x̂i) =
1
n

n

∑
i=1

1
2
(‖xi − x̂i‖)2. (6)

Sparse auto-encoders add a sparsity limitation to the hidden layer neurons, such
that their features are represented sparsely, which is more conducive to data classification.
Assuming that aj(xi) is the activation degree of the hidden layer neuron j, given input
vector xi, the average activation value of j is

ρ̂j =
1
n

n

∑
i=1

aj(xi). (7)

In order to satisfy the sparsity condition, the average activation value of all hidden
layer units is required to be close to 0.

The sparsity parameter ρ is introduced, where the target value of ρ is usually close to
0. To make ρ̂j = ρ, the KL divergence is used to measure the distance between them [37],
which has the formula:

m

∑
j=1

KL(ρ

∥∥∥∥∥ρ̂j) =
m

∑
j=1

ρlg
ρ

ρ̂j
+ (1− ρ)lg

1− ρ

1− ρ̂j
. (8)

where, m is the number of hidden layer units.
The loss function can be expressed as follows:

J(W, b; xi, x̂i) = J(xi, x̂i) +
λ

2 ∑ (W(l)
jk )

2
. (9)

After adding the sparsity condition, the final loss function is

Jsparse(W, b) = J(W, b; xi, x̂i) + β
m

∑
j=1

KL(ρ
∥∥ρ̂j ). (10)
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By using the gradient descent method, the values W, b can be obtained, through
iteration, by minimizing Jsparse(W, b):

W l
ij = W l

ij − α ∂
∂W l

ij
Jsparse(W, b)

bl
ij = bl

ij − α ∂
∂bl

ij
Jsparse(W, b)

(11)

where α is the learning rate. The sparse auto-encoder was pre-trained according to the
above process.

The extracted joint features were used as input to the SSAE, and the hidden layer was
pre-trained. After the unsupervised self-learning of features, the tagged data and Softmax
classifier were used to realize classification, where the weights of each layer were modified.

Suppose there are nt training samples and the number of class tags is k = 9. Softmax
classification can be achieved by minimizing the cost function J(s). In the actual operation,
a weight attenuation term needs to be added, in order to transform the cost function into a
strictly convex function:

J(s) = − 1
n

nt

∑
i=1

k

∑
j=1

1
{

Y(i),=, j
}

log
eθT

j H(2)(i)

k
∑

l=1
eθT

l H(2)(i)
+ λ′

k

∑
i=1

nθ

∑
j=0

θ2
ij. (12)

where 1
{

Y(i) = j} is an indicator function. When the expression is true, the value is 1;
otherwise, it is 0.

For the Softmax classifier, the probability of classifying the joint feature V(i) to be
classified as j is

P(Y(i) = j
∣∣∣V(i) ) =

eθT
j H(2)(i)

k
∑

l=1
eθT

l H(2)(i)
. (13)

Using a back-propagation algorithm for fine-tuning can greatly improve the perfor-
mance of stacked auto-encoder neural networks. From the Softmax output layer to the
hidden layer, the partial derivative of the cost function is obtained layer by layer, the
adjustment vector is calculated, and the fine adjustment of the weight matrix is itera-
tively obtained:

ε(s) = −∇J(s) f ′(θT H(2))

∇J(s) = θT(I− hθ(V))
(14)

where hθ(V) is the conditional probability vector, I is the class label corresponding to the
input data, and the fine-tuning amount of each hidden layer is calculated layer by layer:

ε(2) = (W(2))
T

ε(s) f ′(W(2)H(1))

ε(1) = (W(1))
T

ε(2) f ′(W(1)V(1))
(15)

In summary, the extracted joint feature vector was input into the double hidden layer
stack neural network after training. The output was the class label, in order to realize
the classification and recognition of emotional state. This method was selected for the
following two reasons:
1© We divided music and EEG, such that the emotional sample data contained a large

amount of unlabeled data. This classification algorithm can make full use of the
existing sample data for pre-learning training;

2© There is random uncertainty inherent to the extraction of EEG feature quantities and
the feature quantities differed, such that there is no unified consensus, at present.
A stack auto-encoder can fully explore the feature structure used for classification
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and improve the effect of emotion classification through the hierarchical learning of
data features.

3. Results
3.1. EEG Data

It has been widely accepted that alpha waves are associated with relaxation or brain
inactivation. Beta waves are related to the alert or excitatory state of the brain, and are
highly correlated with the longitudinal axis of the emotion that is, arousal [38,39], and
are also evident in the power spectral density map, as shown in Figure 4a. As arousal
decreases, the beta wave power decreases and alpha wave power increases. The emotional
horizontal axis—that is, valence—is not found in the power spectral density distribution
map. Before the start of the second phase of the experiment, the collected first 20 s were
taken as the reference average power Pbase, where the average power P of each band of EEG
obtained by the combination of reconfigurable music segments was converted, according
to Equation (3), in order to obtain the before and after change trend diagram of each band,
as shown in Figure 4b. A radar chart was adopted to visually express the variation of the
average power of each band of EEG under different emotional states. As can be seen from
Figure 4b, alpha wave power will increase relative to reference power with the emotional
state of low arousal LA, alpha wave power will decrease relative to reference power with
an increase in arousal, and beta wave power will increase relative to reference power.

Figure 4. Distribution characteristics of EEG in various emotional states: (a) shows the distribution characteristics of power
spectral density under three typical emotional states (grey is the measured value and black is the mean value); and (b) is the
distribution diagram of the change of the average power of each band of EEG relative to the baseline power under various
emotional states (10log10 (P/Pbase)).

3.2. Reconstruction and Combination of Music Segments

Through previous experiments, it was found that if the music reconstruction combi-
nation of soothing and excited music segments was reconstructed, according to the duty
cycle of 50%, 70%, and 90%, the Alpha and Beta wave power in the brain frontal EEG
signal would appear as shown in Figure 5. When the soothing and excited music were
reconstructed, according to the 90% duty cycle, the music had the most obvious effect on
the emotional regulation of the brain. According to the formula (Equations (1) and (2)) for
quantitative evaluation of arousal and valence, the same phenomenon also occurred, as
shown in Figure 5. Of course, as we could not run through all types of music, we first used
SSAE to perform emotional classification, and performed Arousal and Valence calculations
on the music segments under the same classification label, and sorted them from high to
low (according to Arousal and Valence, respectively) to provide participants with corre-
sponding personalized reconfigurable music-EEG libraries, as shown in Figure 6. In this
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way, we reconstructed the combination, according to the above-mentioned combination,
and adjusted the emotion adaptively.

Figure 5. The average power distribution of the music segment reconstructed with different duty cycles. The upper graph
shows the distribution characteristics of the average power variation of the α-β band under different duty cycles; the lower
graph shows the variation distribution characteristics of the quantized Arousal and Valence values (the light green broken
line in the graph is the percentage of the normal frequency and the total number of experiments).

Figure 6. Personalized reconfigurable music-EEG library.

3.3. Reconfigurable Music Segment Emotion Recognition

As shown in Figure 7, the original eigenvectors and the pre-trained SSAE eigenvectors
were evaluated, in terms of similarity. The result of the diff-similarity evaluation showed
that the self-similarity of the same emotional label was greater than the cross-similarity;
that is, the sample concentration under the same emotional label was better than the
cross-similarity of the emotional labels. The concentration and separability of samples
could be obviously improved by the stack auto-encoder after pre-learning, after which the
diff-similarity was increased by 31.2%.
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Figure 7. Similarity evaluation of eigenvectors between stacked sparse auto-encoder (SSAE0 pre-learning and original under
different emotion labels. Left, self-similarity evaluation (concentration); right, evaluation of diff-similarity (separability).

The distribution of the eigenvector self-similarity and diff-similarity under different
emotional labels in the V-A plane was shown in Figure 8a,b. The larger the color value,
the better the concentration or divisibility of the sample. When the degree of arousal was
‘HA’ or ‘LA’, the concentration or separability of the sample was good, while the degree of
arousal of ‘MA’ indicated, relatively poor results. The same pattern was found for valence.

Figure 8. Relationship between self-similarity, similarity difference, and emotional recognition rate: (a,b) show the
distribution of self-similarity and similarity difference in the V–A plane, respectively. (c) shows the variation trend of
similarity difference and emotion recognition rate under different emotional labels; and (d) shows the recognition and
comparison results of four commonly used emotion classification algorithms.

Figure 8c showed the corresponding relationship between diff-similarity and emotion
recognition rate under different emotional labels. As can be seen from the figure, the
emotion classification algorithm based on the SSAE was consistent with the variation rule
of similarity difference and, under high and low arousal, the two changes were the most
obvious. In this paper, NB, KNN (K = 9, Euclide distance), SVM (RBF kernel function),
and SSAE (α = 0.003, ρ = 0.06, double hidden layer) were used to classify the emotions of
reconfigurable music segments. The recognition rate was shown in Figure 8d. The SSAE
optimization feature vector showed a better classification effect than the original, compared
with the above three classification algorithms.
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3.4. Reconfigurable Music Segment Emotion Regulation

According to the different goals of emotional regulation, from the personalized music
segment libraries corresponding to the participants, different music segments were selected
for reconstruction and combination, in order to obtain reconfigurable music for use in
adaptive emotional regulation. Taking ‘HVHA’ as an example, the SSAE classification label
for ‘HVHA’ was selected from the music segment library, with arousal and valence scoring
ranked first and (if it was one) the second-highest score, from which two music segments
were selected, marked A1 and A2, respectively. Then, the music segment with the highest
Arousal score from the ‘HVLA’ corresponding to Low Arousal was selected, marked A3.
We intercepted A3 before 1 s, A2 after 4 s, and then recombined with A1 to obtain new
reconfigurable music.

From the personalized music segment library established in the first stage, accord-
ing to the music segment reconstruction and combination algorithm, we selected the
corresponding 3 reconstructed music segments for each emotion label, and obtained the
reconstructed music segments of 5, 10, and 20 s in length, respectively, which were used
for the reconfigurable music emotional regulation. Alpha and beta waves were selected
for intuitive comparison. As shown in Figure 9, the trend of power variation was clearly
reflected. According to Equation (3), alpha and beta Pchange were obtained under different
emotion labels. In the V–A plane, with the increase in the awakening degree, alpha and
beta waves showed an obvious decrease and increase, respectively. From the comparison
of the three durations in the figure, it can be seen that, when the length of the recon-
structed music segment was 10 s, a delicate balance between time consumption and the
phenomenon could be achieved; in other words, under the action of a relatively short
duration of music induction, alpha and beta waves of the brain showed obvious follow-up
changes. Therefore, the reconstruction of music with a 10 s duration was selected in this
paper for a comparative experiment with complete music.

Figure 9. The variation trend of alpha and beta power, corresponding to different length of reconfigurable music segments:
(a) The power change ratio of alpha and beta, corresponding to 5 s reconfigurable music segment (10 × log10(P/Pbase)); (b)
the power change ratio of alpha and beta, corresponding to 10 s reconfigurable music segment (10 × log10(P/Pbase)); and
(c) the power change ratio of alpha and beta, corresponding to 20 s reconfigurable music segment (10 × log10(P/Pbase)).

By comparing the reconfigurable music segments with complete music, in terms
of the emotional regulation of participants, it was found that the reconfigurable music
segments had obvious advantages, in terms of speed and emotional adjustment goals. In
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order to facilitate the quantitative comparison between reconfigurable music and complete
music, we used the time window translation method to intercept feature extraction and
classification of EEG.

The EEG corresponding to the reconfigurable music and the complete music were
respectively segmented by window (window width of 1 s). If the subjective emotion score
target was consistent three times or more, the judgment was taken as the duration of
the emotional start; when it was insufficient, the maximum duration was taken as the
emotional start time. As shown in Figure 10a, the time spent on reconfigurable music
segments was significantly shorter, being 76.29% lower than that for complete music. In
terms of time consumption, reconfigurable music segments had a clear advantage.

Figure 10. Contrast diagram of reconfigurable music and complete music: (a) a comparison chart of the duration of the
two under different emotional labels; (b) comparison of the number of emotional states between reconstructed music and
complete music for different participants; and (c) comparison diagram of the correct recognition rate of reconstructed music
and complete music for different participants.

According to the above experimental results, the EEG was segmented with a window
width of 10 s; that is, the number of corresponding emotional states was 1. In order to fully
reflect the general trend of the data and avoid the influence of the maximal minimum value,
the mode was selected as the number of emotional states. The result is shown in Figure 10b,
from which, it can be seen that, under the emotional adjustment of reconfigurable music
segments and complete music, the number of emotional states induced by reconfigurable
music was significantly lower than that of complete music, with the number of emotional
states being reduced by 69.92%. Therefore, reconfigurable music segments also have more
obvious advantages, in terms of changeable emotions.

The EEG corresponding to the reconfigurable music segment and the complete music
was used as a data sample for emotional state recognition, and the probability that the
emotion labels of different participants were correctly identified under reconfigurable
music segments and complete music were counted, as shown in Figure 10c. From the
figure, it can be seen that, under the guidance of reconfigurable music segments and
complete music, reconfigurable music segments could regulate emotions significantly
better than complete music segments, where the correct recognition rate of emotional labels
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was improved by 31.32%. Therefore, compared with complete music, reconfigurable music
segments had more obvious advantages for emotional regulation, in terms of adaptability
to different participants.

4. Discussion

Research assessing how different forms of music can be used to induce emotions,
and which form is superior, is still lacking. Common music types include classical music,
music clips, and so on [12,38,40]; however, these all apply to specific scenarios. Once the
application scenario is changed, it is difficult to guarantee the induction effect of music. As
each listener’s subjective perception of the same music is different, it is impossible to adapt
to each listener, and the music induction effect on each listener is different. In addition,
in the existing emotion-related music datasets, such as the DEAP and MAHNOB-HCI
dataset [20,21], the participants conducted subjective emotional evaluations induced by
given emotional materials and established a one-way correspondence between EEG and
emotional subjective evaluations, but not a two-way feedback adjustment of emotional
state, and were unable to adjust emotions individually. In this paper, through the first
stage of the experiment, a personalized reconfigurable music-EEG library was obtained
corresponding to each participant; meanwhile, in the second stage of the experiment, the
reconfigurable music was used to adaptively adjust emotions, thereby performing two-way
feedback adjustment.

At present, there is no uniform specification for EEG feature extraction. In this paper,
the features were extracted from the different EEG bands, which has been widely used
in the existing medical literature [21,41,42]. The fact that the power of the alpha wave
is related to the state of relaxation has been medically validated. Some indicators, such
as the power spectrum ratio of alpha and beta waves, can be extracted as recognition
characteristics of arousal values [38,41]; however, the correlations between the remaining
features remain unclear.

According to Schmidt et al., the total power of the EEG bands in the frontal area
decreases with the decrease in the emotional intensity of music, while the music intensity
was also related to the total alpha power of the frontal area. The total power of each frontal
EEG band was not fixed, but increases with the increase in music intensity, showing a
positive correlation [43]. Considering these results, soothing music with low intensity
and exciting music with high intensity were reconstructed and combined, according to
Figure 5. When soothing music and exciting music were reconstructed and combined,
according to a 90% duty cycle, the music induced the brain most obviously. Among them,
soothing music made the brain emotion relaxed, while exciting music made the brain
emotion intense. The arousal and valence also confirmed this phenomenon. For each
participant, a personalized reconfigurable music-EEG library was established, in order to
provide a music sample library for subsequent reconfigurable music emotion induction.
The library provided was a music sample library for subsequent reconfigurable music
emotion induction. According to the goal of emotional regulation, reconstruction and
combination were performed, according to the above-mentioned combination mode, and
the emotion was adaptively induced.

As shown in Figure 8, as the SSAE algorithm can perform unsupervised pre-learning
training on the feature vectors of unlabeled samples, compared with the other three
considered methods, it significantly improved the emotion classification recognition rate
corresponding to reconfigurable music segments. After pre-learning through the stack
auto-encoder, the concentration and separability of samples were improved significantly,
reflecting the advantages of double-hidden layer auto-encoders. The same phenomenon
was observed for arousal and valence. Compared with the common NB, KNN, and SVM
classification algorithms, the SSAE classification algorithm adopted in this paper has more
obvious advantages when using a large number of segmented unlabeled samples.

The emotional dimension model used was based on arousal and valence, with the
current common emotion classification systems using 2–4 dimensions [18,20,44]. The
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classification dimension used in this paper was 9-dimensional and the granularity of the
divided emotional labels was more detailed, which led to more specific classification of
the emotional labels, which inevitably led to a reduction in classification accuracy. The
focus of this paper was on the effectiveness of the emotional approach. Improvement of
the classification accuracy is our next key research direction.

According to the method of reconfigurable music combination, music of 5 s, 10 s, or
20 s duration was obtained from the personalized music fragment library. In Figure 9, the
corresponding alpha and beta power changes with arousal induced by music of 10 s and
20 s duration can be seen, which is consistent with existing research results; that is, alpha
and beta power are highly correlated with the arousal of emotion [38,39]. Music with a
duration of 5 s may have too short of an induction time to effectively achieve emotional
regulation, while music with a duration of 20 s may have a longer induction time while
achieving the same emotional regulation. When the length of the reconstructed music was
10 s, a delicate balance between time and emotional goal could be achieved.

Compared with complete music, reconstructed music has obvious advantages in
inducing emotions. As shown in Figure 10, in terms of time consumption, reconstructed
music was significantly less time-consuming. In terms of emotional changeability, with the
change of music through time, a number of emotional states will be produced; however,
some emotional states are not what we hope to produce. Therefore, when the emotional
states produced are more consistent with the target emotional states, there are fewer
corresponding emotional states, leading to better emotional adjustment; that is, the fewer
the irrelevant emotional states, the better. The reconfigurable music had no redundant
music segments and short length, compared with complete music; consequently, the
number of irrelevant emotional states was reduced by 69.92%. In terms of the adaptability
of different participants, the recognition rate of the emotional state due to reconfigurable
music segments increased by 31.32%, compared to complete music. The above phenomenon
may have been caused by the long duration of complete music, which tends to cause
changeable emotional states. After learning and training, the characteristic quantities
extracted from it will also produce fluctuation deviation, resulting in a decrease in the
correct recognition rate of emotional labels. Therefore, reconfigurable music had obvious
advantages over complete music. The results of this study are encouraging and suggest that
the approach could improve emotional regulation in the short-term, and could be extended
to sleep systems, anxiety relief, and adaptive music therapy for different individuals.

5. Conclusions

In this paper, we proposed an adaptive emotional adjustment model for personalized
reconfigurable music. By constructing a multi-channel EEG sensing network, a personal-
ized reconfigurable music-EEG library corresponding to each participant was established.
For each participant, the music fragments were reconstructed and combined, combined
with SSAE to identify and classify the emotional state, and the corresponding adaptive
emotional regulation model was established. The results showed that this method not only
improved the effect of emotional classification, but also made it easy to obtain the data
and greatly reduced the pressure on computing space and time. In addition, by expressing
abstract emotional EEG data as specific emotional indicators, it is more objective and
novel than the subjectively evaluated 2D-SAM scale and, at the same time, greatly reduces
the difficulty of data processing. Finally, a corresponding personalized reconfigurable
music-EEG database was established for each participant and, based on the SSAE emotion
recognition model, the emotion of each participant could be adaptively adjusted. Therefore,
the study of emotional EEG is expected to provide theoretical reference and a new technical
direction for the application of emotional regulation.

On the other hand, the greater the number of emotion classification labels, the lower
the classification accuracy. The emotion label classification can be optimized, according to
specific emotion regulation scenarios, which can improve the performance of emotional
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classification. In addition, further optimization of the SSAE classification algorithm is an
ongoing research direction.
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