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Abstract: In previous work, we considered a four-quadrant Riemann problem for a 2 × 2 hyperbolic
system in which delta shock appears at the initial discontinuity without assuming that each jump
of the initial data projects exactly one plane elementary wave. In this paper, we consider the case
that does not involve a delta shock at the initial discontinuity. We classified 18 topologically distinct
solutions and constructed analytic and numerical solutions for each case. The constructed analytic
solutions show the rich structure of wave interactions in the Riemann problem, which coincide with
the computed numerical solutions.

Keywords: Riemann problem; conservation laws; hyperbolic system

1. Introduction

The two-dimensional scalar conservation law is given by

ut + f (u)x + g(u)y = 0, (1)

where u(x, y, t) is a conserved quantity, and f and g are nonlinear fluxes. Even though the
existence and uniqueness theory for scalar hyperbolic equations in multiple dimensions is
complete [1–4], it provides little insight into the qualitative behavior of wave interactions.

In 1975, Guckenheimer [5] initiated the construction of a solution for the two-dimensional
(2-D) Riemann problem (RP) by developing an interesting example called the Guckenheimer
structure. In 1983, Wagner [6] constructed a solution for the four-quadrant RP of a 2-D scalar
conservation law with convex f = g. Lindquist showed that the Riemann solutions are
piecewise smooth when f = g [7] and outlined the construction method [8].

In contrast, because general theory does not exist for multidimensional systems, 2-D
RP for systems must be investigated on a case-by-case basis. Glimm et al. [9] provided
a list of generic waves expected in the 2-D RP solutions to the Euler equations. In 1990,
Zhang and Zheng [10] proposed the structure for a solution to a four-quadrant RP for a
2-D gas dynamics system:

ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2 + p)y = 0.

(2)

To prove this conjecture, many studies have been conducted on simplified gas-dynamics-
like models, including pressure gradient, transportation, and Chaplygin gas dynamics
models [11–21]. A good summary is provided in [22–24].

Most of the aforementioned RPs were conducted under the assumption [25]:

(H) Outside a neighborhood of the origin, each jump of the initial data projects
exactly one plane elementary wave.
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Since 2002, only a few studies [26–30] have been conducted without assumption (H).
Hwang and Lindquist [26,27] initiated the removal of assumption (H) in the 2-D RP for
the generalized model of the 1-D Keyfitz–Kranzer–Isaacson-Temple model [31–33].

Shen et al. [28] classified and constructed ten solutions for the system (3) without (H)
using the transformation ξ̃ = (x + y)/2 and η̃ = (y − x)/2 because it is an isotropic model.{

ut + (u2)x + (u2)y = 0,
ρt + (ρu)x + (ρu)y = 0.

(3)

Hwang et al. [30] classified and constructed 12 solutions for the system (3) in three constant
states. In [34], a four-quadrant RP in which a delta shock appears at the initial discontinuity
was considered. In this study, without assuming (H), we consider a four-quadrant RP for
the hyperbolic system (3) with initial data that do not involve a delta shock. Four-quadrant
RPs for system (3) are formally classified into 5! = 120 cases . The cases including a delta
shock were reduced to 52 cases, which resulted in 14 topologically distinct solutions [34].
By contrast, the cases that did not include a delta shock were reduced to 68 cases. In this
study, we classified and constructed 18 topologically distinct solutions.

In Section 2, the construction method is described. Analytic and numerical solutions
are presented in Section 3, and the discussion follows in Section 4. We present the conclusion
in Section 5.

2. Construction Method

From the initial discontinuity between the two sides (ul , ρl) and (ur, ρr) in the coun-
terclockwise direction, we use the notation Rlr, Jlr, Slr for the rarefaction wave, contact
discontinuity, and shock, respectively.

The rarefaction wave Rlr(η), contact discontinuity Jlr(η), and shock Slr(η) that are
parallel to the ξ-axis can be expressed as

Rlr(η) : η = 2u,
ρ

u
=

ρl
ul

,
(
ur ≤ u ≤ ul for η > ξ, ul ≤ u ≤ ur for η < ξ

)
. (4)

Jlr(η) : η = ul = ur, (5)

Slr(η) : η = ul + ur, ρr
ur

= ρl
ul

,(
0 < ul < ur or ul < ur < 0 for η > ξ, 0 < ur < ul or ur < ul < 0 for η < ξ

)
,

(6)

respectively. The waves parallel to the η-axis can be described in a similar manner.
The rarefaction Rlr, contact Jlr, and shock Slr are directed to singular points (2u, 2u), (u, u),
and (ul + ur, ul + ur), respectively.

We consider a four-quadrant RP for the system (3) in which the initial data do not
involve a delta shock. We remove the assumption (H); hence, there are one or two waves
at infinity for each discontinuity.

Figure 1 shows wave curves in the phase plane for u2 < u3 < u4 < 0 < u1. In the
figure, from (u1, ρ1) to (u2, ρ2) we have one wave: a rarefaction wave R12. From (u2, ρ2) to
the intermediate state (ub, ρb), there is a contact J2b, and we have a shock Sb3 from (ub, ρb)
to (u3, ρ3). From (u3, ρ3) to the intermediate state (uc, ρc), there is a rarefaction R3c, and we
have a contact Jc4 from (uc, ρc) to (u4, ρ4). Finally, from (u4, ρ4) to (u1, ρ1), we have one
wave which is a rarefaction R41. Using the wave curves in the phase plane in Figure 1,
we can locate the solution at infinity for each initial discontinuity in Figure 2. All the
planar waves are parallel to each axes of initial discontinuity, and they are directed to
their respective singular points. A new state (ub, ρb) is developed between J2b and Sb3,
and the state (ub, ρb) is determined. The state (ub, ρb) satisfies ub = u2 and ρb

ub
= ρ3

u3
. A new

state (uc, ρc) is developed between R3c and Jc4, and the state (uc, ρc) is again determined.
The state (uc, ρc) satisfies uc = u4 and ρc

uc
= ρ3

u3
. The wave interactions in center region D in

Figure 2 are then determined.
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Figure 1. Wave curves in phase plane for u2 < u3 < u4 < 0 < u1.
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Figure 2. The solution at infinity (R + JS + RJ + R) for u2 < u3 < u4 < 0 < u1.

For the numerical solution, we modify the semi-discrete central upwind scheme by
changing the flux functions to reduce the numerical dissipation of the contact discontinuity.
Further details can be found in [30,35,36]. In this study, the computational domain is
[−4, 4]× [−4, 4] and t = 0.2. ρi = 0.77 for i = 1, · · · , 4. We used 1200 × 1200 cells, and the
CFL was 0.05. We construct the solution on a case-by-case basis.

3. Construction of the Solution

For the classification of waves at the initial discontinuities, we count the exterior waves
that come from the positive η-axis before those at the axes in the counterclockwise direction.
In the classification of initial data, 03241 and 30412 indicate that 0 < u3 < u2 < u4 < u1
and u3 < 0 < u4 < u1 < u2, respectively.
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3.1. No Shock

Case 1 : RJ + RJ + JR + JR(03241, 03421), JR + JR + RJ + RJ(32410, 34210)
Case 2 : R + JR + R + JR(32041), RJ + R + RJ + R(34021)
Case 3 : R + JR + RJ + R(32401, 34201), RJ + R + R + JR(30241, 30421)

Case 1. JR + JR + RJ + RJ (u3 < u4 < u2 < u1 < 0)

From the initial discontinuity, contact rarefaction is formed at each discontinuity.
New states (ua, ρa), (ub, ρb), (uc, ρc) and (ud, ρd) satisfy ua = u1, ρa

ua
= ρ2

u2
, ub = u2, ρb

ub
=

ρ3
u3

, uc = u4, ρc
uc

= ρ3
u3

, and ud = u1, ρd
ud

= ρ4
u4

, respectively. The contact discontinu-
ities J1a, J2b, Jc4, and Jd1 are directed to the singular points (u1, u1), (u2, u2), (u4, u4), and
(u1, u1), respectively.

The rarefactions Ra2, Rb3, R3c, and R4d are directed to the singular points (2u, 2u) for
u2 ≤ u ≤ u1, u3 ≤ u ≤ u2, u3 ≤ u ≤ u4, and u4 ≤ u ≤ u1, respectively.

J2b completely penetrates Ra2 at point A(2u2, u2), and the curved contact discontinuity

η = η(ξ) from A to B(2u1, 2u1u2−u2
1

u2
) satisfies

dη

dξ
=

η − u
ξ − u

, ξ = 2u,
ρ

u
=

ρ2

u2
, u2 ≤ u ≤ u1, (7)

which gives,

η = ξ +
ξ2

4u2
, 2u2 ≤ ξ ≤ 2u1. (8)

The straight contact discontinuity continues from point B to C(u1, u1); it has the form:

η − u1 =
u2 − u1

u2
(ξ − u1), 2u1 ≤ ξ ≤ u1. (9)

The rarefaction waves Rb3 and R3c, Rb3 and R4d, Ra2 and R4d meet at the same singular
point (2u, 2u) between D(2u3, 2u3) and E(2u4, 2u4), E and F(2u2, 2u2), F and G(2u1, 2u1),
respectively. By contrast, Jc4 completely penetrates the rarefaction wave R4d at point
H(u4, 2u4); then, the curved contact discontinuity satisfies

dη

dξ
=

η − u
ξ − u

, η = 2u,
ρ

u
=

ρ4

u4
, u4 ≤ u ≤ u1, (10)

which gives

ξ = η +
η2

4u4
, 2u4 ≤ η ≤ 2u1. (11)

The straight contact discontinuity continues to the point C(u1, u1), and it satisfies:

η − u1 =
u4

u4 − u1
(ξ − u1), 2u1 ≤ η ≤ u1. (12)

Thus, the four contact discontinuities meet at the singular point C. The solutions are shown
in Figure 3. The initial conditions for the numerical computation are u1 = −0.15, u2 = −0.37,
u3 = −0.56, u4 = −0.43.
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(a) Analytical solution
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Figure 3. Case 1. JR + JR + RJ + RJ.

Case 2. R + JR + R + JR (u3 < u2 < 0 < u4 < u1)

From the initial discontinuity, a rarefaction is formed at the positive η-axis and neg-
ative η-axis, and contact rarefaction is formed at the negative ξ-axis and positive ξ-axis.
The new states (ub, ρb) and (ud, ρd) satisfy ub = u2, ρb

ub
= ρ3

u3
, and ud = u4, ρd

ud
= ρ1

u1
,

respectively. The rarefactions R12, Rb3, R34, and Rd1 are directed to the singular points
(2u, 2u) for u2 ≤ u ≤ u1, u3 ≤ u ≤ u2, u3 ≤ u ≤ u4, and u4 ≤ u ≤ u1, respectively.
The contact discontinuities J2b and J4d are directed to the singular points (u2, u2) and
(u4, u4), respectively.

The contact discontinuity J2b meets the rarefaction wave R12 at point A(2u2, u2); then
the curved contact continues to point O(0, 0). The rarefaction waves Rb3 and R34, R12 and
R34, R12 and Rd1 meet at (2u, 2u) between B(2u3, 2u3) and C(2u2, 2u2), C and D(2u4, 2u4),
D and E(2u1, 2u1), respectively. By contrast, J4d meets the rarefaction wave R34 at point
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F(2u4, u4); then, the curved contact discontinuity continues to point O. The solutions are
shown in Figure 4. The initial condition is u1 = 0.56, u2 = −0.29, u3 = −0.37, u4 = 0.43.

η=ξ

J4d

0

Rd1

A

C

B

D

E

u4,ρ4

ub,ρb

u2,ρ2

u3,ρ3

u1,ρ1

F

Rb3

J2b

R12

R34

ud,ρd

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 4. Case 2. R + JR + R + JR.

Case 3. RJ + R + R + JR (u3 < 0 < u2 < u4 < u1)

From the initial discontinuity, contact rarefaction is formed at the positive η-axis and
positive ξ-axis, and the rarefaction wave is formed at the negative ξ-axis and negative η-axis.
The contact discontinuity Ja2 meets the rarefaction wave R23 at point A(u2, 2u2), and the
curved contact then continues to point O(0, 0). The rarefaction waves R23 and R34, R1a and
R34, R1a and Rd1 meet at (2u, 2u) between B(2u3, 2u3) and C(2u2, 2u2), C and D(2u4, 2u4),
D and E(2u1, 2u1), respectively. By contrast, J4d meets the rarefaction wave R34 at point
F(2u4, u4); then the curved contact discontinuity continues to point O. The solutions are
shown in Figure 5. The initial condition is u1 = 0.56, u2 = 0.37, u3 = −0.15, u4 = 0.43.
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η=ξ

R34

0
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Figure 5. Case 3. RJ + R + R + JR.

3.2. One Shock

Case 4 :
{

RJ + SJ + JR + JR (02341), RJ + RJ + JS + JR (04321)
JR + JR + RJ + SJ (32140), JS + JR + RJ + RJ (34120)

Case 5 :
{

RJ + RJ + JR + JS (03214), SJ + RJ + JR + JR (03412)
JR + JS + RJ + RJ (23410), JR + JR + SJ + RJ (43210)

Case 6 :
{

R + JS + R + JR (23041), R + JR + R + JS (32014)
SJ + R + RJ + R (34012), RJ + R + SJ + R (43021)

Case 7 :
{

R + JS + RJ + R (23401), R + JR + SJ + R (43201)
RJ + R + R + JS (30214), SJ + R + R + JR (30412)

Case 4. JR + JR + RJ + SJ (u3 < u2 < u1 < u4 < 0)

From the initial discontinuity, contact shock is formed at the positive ξ-axis, and con-
tact rarefaction is formed at the remaining three axes. The contact discontinuity J2b com-
pletely penetrates the rarefaction wave Ra2, and the straight contact discontinuity Jae

continues from A(2u1, 2u1u2−u2
1

u2
) to B(u1, u1). The rarefaction waves Rb3 and R3c, Ra2 and

R3c meet at (2u, 2u) between C(2u3, 2u3) and D(2u2, 2u2), D and E(2u1, 2u1), respectively.
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By contrast, Jc4 intersects with shock S4d at point F(u4, u4 + u1), and the new contact
discontinuity Jed from F to B satisfies:

η − u1 =
u4

u4 − u1
(ξ − u1), u1 ≤ ξ ≤ u4. (13)

Thus, four contact discontinuities J1a, Jae, Jed, and Jd1 meet at the singular point B.
The shock Sce(= S4d) satisfies the rarefaction wave R3c at point G(2u4, u4 + u1); the

curved shock then continues to point E. The curved shock from G to E satisfies:

dη

dξ
=

η − (u + ue)

ξ − (u + ue)
, ξ = 2u,

ρ

u
=

ρ3

u3
, u2 ≤ u ≤ u4, (14)

and we obtain
η = ξ +

1
ue − uc

( ξ

2
− ue

)2
, 2u2 ≤ ξ ≤ 2u4. (15)

The solutions are shown in Figure 6. The initial condition is u1 = −0.37, u2 = −0.43,
u3 = −0.56, u4 = −0.15.

η=ξ

Rb3

0

R3c

A

C

B

D

u4,ρ4

ua,ρau2,ρ2

u3,ρ3

u1,ρ1

F
E

ud,ρd

Ra2 J1a

S4d

Jd1
J2b

Jc4

ub,ρb

ue,ρe

uc,ρc
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(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 6. Case 4. JR + JR + RJ + SJ.
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Case 5. SJ + RJ + JR + JR (0 < u3 < u4 < u1 < u2)

From the initial discontinuity, contact shock is formed at the positive η-axis, and con-
tact rarefaction is formed at the remaining three axes. Ja2 penetrates the entire rarefaction
wave R2b and stops at the singular point A(u3, u3). The shock S1a meets R2b at point
B(u1 + u2, 2u2), and the curved shock then continues to point C(2u1, 2u1). The rarefaction
waves R2b and Rc4, R2b and Rd1 meet at (2u, 2u) between D(2u3, 2u3) and E(2u4, 2u4), E
and C, respectively. By contrast, the contact discontinuity J4d completely penetrates Rc4
and stops at the singular point A. Therefore, four contact discontinuities Jeb, Jb3, J3c, and Jce
meet at the singular point A. The solutions are shown in Figure 7. The initial condition is
u1 = 0.43, u2 = 0.56, u3 = 0.15, u4 = 0.37.

η=ξ

Rc4

0

Rd1

A

C

B

D

E

u4,ρ4

ua,ρau2,ρ2

u3,ρ3

u1,ρ1

ud,ρd

ub,ρb

uc,ρc

ue,ρe

R2b

Ja2 S1a

Jb3

J3c

J4d

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 7. Case 5. SJ + RJ + JR + JR.

Case 6. SJ + R + RJ + R (u3 < u4 < 0 < u1 < u2)
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From the initial discontinuity, rarefaction is formed at the negative ξ-axis and positive
ξ-axis, and contact shock and contact rarefaction are formed at the positive η-axis and
negative η-axis, respectively. The contact discontinuity Ja2 meets the rarefaction wave R23 at
point A(u2, 2u2), and the curved contact discontinuity then continues to point O(0, 0). S1a
meets R23 at point B(u1 + u2, 2u2). The curved shock then continues to point C(2u1, 2u1).
The rarefaction waves R23 and R3c, R23 and R41 meet at (2u, 2u) between D(2u3, 2u3) and
E(2u4, 2u4), E and C, respectively. By contrast, Jc4 meets the rarefaction wave R41 at point
F(u4, 2u4), and the curved contact discontinuity then continues to point O. The solutions are
shown in Figure 8. The initial condition is u1 = 0.43, u2 = 0.56, u3 = −0.37, u4 = −0.15.

η=ξ

R3c

0
R41

A

C

B

D

E

u4,ρ4

ua,ρau2,ρ2

u3,ρ3

u1,ρ1

F

uc,ρc

R23

S1aJa2

Jc4

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 8. Case 6. SJ + R + RJ + R.

Case 7. R + JS + RJ + R (u2 < u3 < u4 < 0 < u1)

From the initial discontinuity, rarefaction is formed at the positive η-axis and positive
ξ-axis, and contact shock and contact rarefaction are formed at the negative ξ-axis and
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negative η-axis, respectively. The contact discontinuity J2b meets the rarefaction wave
R12 at point A(2u2, u2), and the curved contact then continues to point O(0, 0). Sb3 meets
R12 at point B(2u2, u2 + u3), and the curved shock then continues to point C(2u3, 2u3).
Rarefaction waves R12 and R3c, R12 and R41 meet at (2u, 2u) between C and D(2u4, 2u4),
D and E(2u1, 2u1), respectively. By contrast, Jc4 meets the rarefaction wave R41 at point
F(u4, 2u4), and the curved contact discontinuity continues to point O. The solutions are
shown in Figure 9. The initial condition is u1 = 0.15, u2 = −0.56, u3 = −0.43, u4 = −0.37.

η=ξ

R41

0

R3c

A

CB
D

E

u4,ρ4

uc,ρc

u2,ρ2

u3,ρ3

u1,ρ1

Fub,ρb

R12

Sb3

Jc4

J2b

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 9. Case 7. R + JS + RJ + R.
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3.3. Two Shocks

Case 8 : SJ + RJ + JR + JS(01324, 01342), JR + JS + SJ + RJ(24130, 42130)

Case 9 :
{

RJ + SJ + JR + JS (02134), SJ + RJ + JS + JR (04132)
JR + JS + RJ + SJ (21340), JS + JR + SJ + RJ (41320)

Case 10 :
{

RJ + SJ + JR + JS (02314), SJ + RJ + JS + JR (04312)
JR + JS + RJ + SJ (23140), JS + JR + SJ + RJ (43120)

Case 11 : RJ + SJ + JS + JR(02413, 04213), JS + JR + RJ + SJ(13240, 13420)
Case 12 : RJ + SJ + JS + JR(02431, 04231), JS + JR + RJ + SJ(31240, 31420)
Case 13 : SJ + RJ + JR + JS(03124, 03142), JR + JS + SJ + RJ(24310, 42310)
Case 14 : R + JS + R + JS (23014), SJ + R + SJ + R (43012)
Case 15 : R + JS + SJ + R(24301, 42301), SJ + R + R + JS(30124, 30142)

Case 8. SJ + RJ + JR + JS (0 < u1 < u3 < u2 < u4)

From the initial discontinuity, contact shock is formed at the positive η-axis and positive
ξ-axis, and contact rarefaction is formed at the negative ξ-axis and negative η-axis. Ja2
penetrates the entire rarefaction wave R2b, and the straight contact discontinuity continues

from A(
2u2u3−u2

3
u2

, 2u3) to the singular point B(u3, u3). The shock S1a completely penetrates

R2b and continues from C( u2
1+u2

3−2u2u3
u1−u2

, 2u3) to the singular point D(u1 + u3, u1 + u3).
By contrast, J4d penetrates the entire rarefaction wave Rc4 from E(2u4, u4) to F, and

it satisfies
dη

dξ
=

η − u
ξ − u

, ξ = 2u,
ρ

u
=

ρ4

u4
, u3 ≤ u ≤ u4, (16)

and we obtain

η = ξ − ξ2

4u4
, 2u3 ≤ ξ ≤ 2u4. (17)

The straight contact discontinuity Jce continues from F(2u3, 2u3u4−u2
3

u4
) to the singular

point B; it has the form:

η − u3 =
u4 − u3

u4
(ξ − u3), u3 ≤ ξ ≤ 2u3. (18)

Therefore, four contact discontinuities Jeb, Jb3, J3c, and Jce meet at the singular point B.
The shock Sd1 penetrates the entire rarefaction wave Rc4 from G(2u4, u4 + u1) to H and
satisfies:

dη

dξ
=

η − (u + u1)

ξ − (u + u1)
, ξ = 2u,

ρ

u
=

ρ4

u4
, u3 ≤ u ≤ u4, (19)

which gives,

η = ξ +
1

u1 − u4

( ξ

2
− u1

)2
, 2u3 ≤ ξ ≤ 2u4. (20)

The straight shock continues from H(2u3, u2
1+u2

3−2u3u4
u1−u4

) to the singular point D. The solutions
are shown in Figure 10. The initial condition is u1 = 0.15, u2 = 0.43, u3 = 0.37, u4 = 0.56.
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η=ξ

R2b

0

Rc4

B
E

D

u1,ρ1

ue,ρe

u4,ρ4u3,ρ3

u2,ρ2

A

F

C
ub,ρb

ua,ρa

uc,ρc

ud,ρd

Ja2 S1a

Sd1

Jb3

J3c

J4d

G
H

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 10. Case 8. SJ + RJ + JR + JS.

Case 9. JR + JS + RJ + SJ (u2 < u1 < u3 < u4 < 0)

From the initial discontinuity, contact rarefaction is formed at the positive η-axis and
negative η-axis, and contact shock is formed at the negative ξ-axis and positive ξ-axis.
J2b completely penetrates Ra2, and the straight contact discontinuity Jae continues from

A(2u1, 2u1u2−u2
1

u2
) to the singular point B(u1, u1). The shock Sb3 completely penetrates the

rarefaction wave Ra2, and the straight shock Se3 continues from C(2u1, u2
1+u2

3−2u1u2
u3−u2

) to the
singular point D(u1 + u3, u1 + u3).

By contrast, Jc4 intersects with S4d at point E(u4, u4 + u1), and the new contact dis-
continuity Jed from E stops at the singular point B. Therefore, four contact discontinuities
Ja1, Jae, Jed, and Jd1 meet at the singular point B. The shock Sce(= S4d) penetrates the

entire rarefaction wave R3c, and the straight shock S3e continues from F(2u3, u2
1+u2

3−2u3u4
u1−u4

)
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to the singular point D. The solutions are shown in Figure 11. The initial condition is
u1 = −0.43, u2 = −0.56, u3 = −0.37, u4 = −0.15.

η=ξ
Ra2

0

R3c Jc4

S4d

Jd1

D

B
A

u4,ρ4

ue,ρe ud,ρd

uc,ρc

u3,ρ3

u2,ρ2
u1,ρ1

Sb3

J1a

ub,ρb

J2b

ua,ρa

E
F

C

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 11. Case 9. JR + JS + RJ + SJ.

Case 10. SJ + RJ + JS + JR (0 < u4 < u3 < u1 < u2)

From the initial discontinuity, contact shock is formed at the positive η-axis and
negative η-axis, and contact rarefaction is formed at the negative ξ-axis and positive ξ-axis.
Ja2 completely penetrates R2b, and the straight contact discontinuity Jeb continues from

A(
2u2u3−u2

3
u2

, 2u3) to the singular point B(u3, u3). The shock S1a meets the rarefaction wave
R2b at point C(u1 + u2, 2u2), and the curved shock continues to point D(2u1, 2u1). Both
rarefaction waves R2b and Rd1 meet at (2u, 2u) for u3 ≤ u ≤ u1 between E(2u3, 2u3) and D.

By contrast, J4d intersects with Sc4 at point F(u3 + u4, u4), and Jce stops at the singular
point B. Therefore, four contact discontinuities Jeb, Jb3, J3c, and Jce meet at the singular
point B. The shock Sed(= Sc4) meets the rarefaction wave Rd1 at point G(u3 + u4, 2u4),
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and the curved shock then continues to point E. The solutions are shown in Figure 12.
The initial condition is u1 = 0.43, u2 = 0.56, u3 = 0.37, u4 = 0.15.

η=ξ

R2b

0

Rd1

J4d

Sc4J3c

A

D
C

u1,ρ1

uc,ρc

ud,ρd

u4,ρ4u3,ρ3

u2,ρ2 ua,ρa

ub,ρb

Ja2

Jb3

S1a

ue,ρe

B

E

F
G

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 12. Case 10. SJ + RJ + JS + JR.

Case 11. JS + JR + RJ + SJ (u1 < u3 < u2 < u4 < 0)

From the initial discontinuity, contact shock is formed at the positive η-axis and
positive ξ-axis, and contact rarefaction is formed at the negative ξ-axis and negative η-axis.
J2b meets Sa2 at point A(u1 + u2, u2), and Jae stops at the singular point B(u1, u1). The shock
Seb(= Sa2) completely penetrates Rb3 and stops at the singular point D(u1 + u3, u1 + u3).

By contrast, Jc4 intersects with S4d at point C(u4, u4 + u1), and Jed stops at the singular
point B. Thus, four contact discontinuities J1a, Jae, Jed, and Jd1 meet at the singular point
B. The shock Sce(= S4d) completely penetrates R3c and stops at the singular point D.
The solutions are shown in Figure 13. The initial condition is u1 = −0.56, u2 = −0.37,
u3 = −0.43, u4 = −0.15.
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η=ξ

Rb3

0

R3c

B

D

u1,ρ1

ue,ρe

u4,ρ4u3,ρ3

u2,ρ2

A

C

ua,ρa

ub,ρb ud,ρd

J1aSa2

J2b

Jc4

S4d

Jd1

uc,ρc

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 13. Case 11. JS + JR + RJ + SJ.

Case 12. JS + JR + RJ + SJ (u3 < u1 < u4 < u2 < 0)

In this case, the exterior waves at the initial discontinuity were exactly the same
as those in Case 11. J2b intersects with Sa2 at point A(u1 + u2, u2), and Jae stops at the
singular point B(u1, u1). The shock Seb(= Sa2) meets the rarefaction wave Rb3 at point
C(u1 + u2, 2u2), and the curved shock then continues to point D(2u1, 2u1). Both rarefaction
waves Rb3 and R3c meet at (2u, 2u) for u3 ≤ u ≤ u1 between E(2u3, 2u3) and D.

By contrast, Jc4 intersects with S4d at point F(u4, u4 + u1), and Jed stops at the singular
point B. Thus, four contact discontinuities J1a, Jae, Jed, and Jd1 meet at the singular point
B. The shock Sce(= S4d) meets the rarefaction wave R3c at point G(2u4, u4 + u1), and the
curved shock then continues to point D. The solutions are shown in Figure 14. The initial
condition is u1 = −0.43, u2 = −0.15, u3 = −0.56, u4 = −0.21.
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η=ξ

Sa2

0

S4d

A

C B

D

E

u4,ρ4

ue,ρe

u2,ρ2

u3,ρ3

u1,ρ1

FG

uc,ρc

ub,ρb

ud,ρd

ua,ρa

J1a

Rb3

J2b

R3c Jc4

Jd1

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 14. Case 12. JS + JR + RJ + SJ.

Case 13. JR + JS + SJ + RJ (u2 < u4 < u3 < u1 < 0)

From the initial discontinuity, contact rarefaction is formed at the positive η-axis
and positive ξ-axis, and contact shock is formed at the negative ξ-axis and negative η-
axis. J2b completely penetrates Ra2, and the straight contact discontinuity continues from

A(2u1, 2u1u2−u2
1

u2
) to the singular point B(u1, u1). The shock Sb3 meets the rarefaction wave

Ra2 at point C(2u2, u2 + u3), and the curved shock continues to point D(2u3, 2u3). Both
rarefaction waves Ra2 and R4d meet at (2u, 2u) for u3 ≤ u ≤ u1 between D and E(2u1, 2u1).

By contrast, S3c meets Rce(= R4d) at point F(u3 + u4, 2u4), and the curved shock then
continues to point D. Jc4 completely penetrated R4d, and the straight contact discontinuity

continued from G(
2u1u4−u2

1
u4

, 2u1) to B, which is a singular point of the four contact disconti-
nuities J1a, Jae, Jed, and Jd1. The solutions are shown in Figure 15. The initial condition is
u1 = −0.15, u2 = −0.56, u3 = −0.21, u4 = −0.43.
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η=ξ
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0
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u4,ρ4

ue,ρe

u2,ρ2

u3,ρ3
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J2b

S3c

Sb3
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ud,ρd
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G

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 15. Case 13. JR + JS + SJ + RJ.

Case 14. R + JS + R + JS (u2 < u3 < 0 < u1 < u4)

From the initial discontinuity, rarefaction is formed at the positive η-axis and negative
η-axis, and contact shock is formed at the negative ξ-axis and positive ξ-axis. The contact
discontinuity J2b meets the rarefaction wave R12 at point A(2u2, u2), and the curved contact
continues to point O(0, 0). Sb3 meets R12 at point B(2u2, u2 + u3), and the curved shock
continues to point C(2u3, 2u3). Both rarefaction waves R12 and R34 meet at (2u, 2u) for
u3 ≤ u ≤ u1 between C and D(2u1, 2u1).

By contrast, J4d meets the rarefaction wave R34 at point E(2u4, u4), and the curved
contact discontinuity then continues to point O. Sd1 meets R34 at point F(2u4, u4 + u1); the
curved shock then continues to point D. The solutions are shown in Figure 16. The initial
condition is u1 = 0.43, u2 = −0.37, u3 = −0.15, u4 = 0.56.
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η=ξ
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0

Sd1

J4d
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A

F

u4,ρ4

ud,ρd
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u2,ρ2
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ub,ρb
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(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 16. Case 14. R + JS + R + JS.

Case 15. SJ + R + R + JS (u3 < 0 < u1 < u2 < u4)

From the initial discontinuity, contact shock is formed at the positive η-axis and posi-
tive ξ-axis, and rarefaction is formed at the negative ξ-axis and negative η-axis. The contact
discontinuity Ja2 meets the rarefaction wave R23 at point A(u2, 2u2), and the curved contact
then continues to point O(0, 0). S1a meets R23 at point B(u1 + u2, 2u2), and the curved
shock continues to point C(2u1, 2u1). Both rarefaction waves R23 and R34 meet at (2u, 2u)
for u3 ≤ u ≤ u1 between D(2u3, 2u3) and C.

By contrast, J4d meets the rarefaction wave R34 at point E(2u4, u4), and the curved
contact discontinuity then continues to point O. Sd1 meets R34 at point F(2u4, u4 + u1),
and the curved shock continues to point C. The solutions are shown in Figure 17. The initial
condition is u1 = 0.21, u2 = 0.43, u3 = −0.15, u4 = 0.56.
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η=ξ
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0
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A

C
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u4,ρ4
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(a) Analytical solution

x
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-4

-2

0

2
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(b) Numerical solution

Figure 17. Case 15. SJ + R + R + JS.

3.4. Three Shocks

Case 16 :
{

SJ + RJ + JS + JS (01432), SJ + SJ + JR + JS (01234)
JR + JS + SJ + SJ (21430), JS + JS + SJ + RJ (41230)

Case 17 :
{

RJ + SJ + JS + JS (02143), SJ + SJ + JS + JR (04123)
JS + JS + RJ + SJ (12340), JS + JR + SJ + SJ (14320)

Case 16. SJ + RJ + JS + JS (0 < u1 < u4 < u3 < u2)

From the initial discontinuity, contact rarefaction is formed at the negative ξ-axis,
and contact shock is formed at the remaining three axes. The contact discontinuity Ja2 com-
pletely penetrates R2b and stops at the singular point C(u3, u3). The shock S1a penetrates the

entire rarefaction wave R2b, and the straight shock S1e continues from E( u2
1+u2

3−2u2u3
u1−u2

, 2u3)

to the singular point F(u1 + u3, u1 + u3).



Mathematics 2021, 9, 592 21 of 25

By contrast, J4d intersects with the shock Sc4 at point G(u3 + u4, u4), and the new
contact discontinuity Jce from G meets three contact discontinuities, Jeb, Jb3, and J3c, at the
singular point C. The shock Sed(= Sc4) meets Sd1 at point H(u3 + u4, u4 + u1), and the new
shock Se1 from H then meets the shock S1e at the singular point F. The solutions are shown
in Figure 18. The initial condition is u1 = 0.15, u2 = 0.56, u3 = 0.43, u4 = 0.37.
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ud,ρd

u4,ρ4u3,ρ3
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ub,ρb
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S1a

J3c
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ua,ρa

ue,ρe

uc,ρc

F

G

H

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 18. Case 16. SJ + RJ + JS + JS.

Case 17. SJ + SJ + JS + JR (0 < u4 < u1 < u2 < u3)

From the initial discontinuity, contact rarefaction is formed at the positive ξ-axis,
and contact shock is formed at the remaining three axes. Ja2 intersects with S2b at point
A(u2, u2 + u3), and Jeb ends at the singular point B(u3, u3). The shock Sae(= S2b) meets
S1a at point C(u1 + u2, u2 + u3), and the new shock S1e ends at the singular point D(u1 +
u3, u1 + u3).

By contrast, J4d intersects with Sc4 at point E(u3 + u4, u4), and Jce ends at the singular
point B. Therefore, four contact discontinuities, Jeb, Jb3, J3c, and Jce, meet at the singular
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point B. The shock Sed(= Sc4) meets the rarefaction wave Rd1 at point F(u3 + u4, 2u4),
and the curved shock continues to G. The curved shock from F to G satisfies the following:

dη

dξ
=

η − (u + u3)

ξ − (u + u3)
, η = 2u,

ρ

u
=

ρ1

u1
, u4 ≤ u ≤ u1, (21)

and we obtain
ξ = η +

1
u3 − u4

(η

2
− u3

)2
, 2u4 ≤ η ≤ 2u1. (22)

The straight shock Se1 from point G(
u2

1+u2
3−2u1u4

u3−u4
, 2u1) meets S1e at the singular point D.

The solutions are shown in Figure 19. The initial condition is u1 = 0.37, u2 = 0.43,
u3 = 0.56, u4 = 0.15.
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ud,ρd

uc,ρc

ua,ρa

ub,ρb

Ja2 S1a
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Sc4J3c

J4d

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 19. Case 17. SJ + SJ + JS + JR.

3.5. Four Shocks

Case 18 : SJ + SJ + JS + JS(01243, 01423), JS + JS + SJ + SJ(12430, 14230)
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Case 18. SJ + SJ + JS + JS (0 < u1 < u2 < u4 < u3)

From the initial discontinuity, contact shocks were formed at each discontinuity. Ja2
intersects with the shock S2b at point A(u2, u2 + u3), and Jeb ends at the singular point
B(u3, u3). The shock Sae(= S2b) meets S1a at point C(u1 + u2, u2 + u3), and the new shock
S1e ends at the singular point D(u1 + u3, u1 + u3).

By contrast, J4d intersects with Sc4 at point E(u3 + u4, u4) and Jce meets three contact
discontinuities Jeb, Jb3, and J3c at the singular point B. The shock Sed(= Sc4) meets Sd1
at point F(u3 + u4, u4 + u1). The new shock Se1 from F meets the shock S1e at the singu-
lar point D. The solutions are shown in Figure 20. The initial condition is u1 = 0.15,
u2 = 0.37, u3 = 0.56, u4 = 0.43.

η=ξ

J4d

Ja2

0

η

ξ S1a

Sd1

B

u4,ρ4
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ud,ρd
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u3,ρ3
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D FJb3
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ub,ρb

uc,ρc

ue,ρe

J3c Sc4

(a) Analytical solution

x

y

-4 -2 0 2 4
-4

-2

0

2

4

(b) Numerical solution

Figure 20. Case 18. SJ + SJ + JS + JS.

4. Discussion

The solutions are separated into 14 cases [34] in which delta shock appears at the
initial discontinuity and 18 cases in which delta shock did not appear. Because we remove
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the assumption (H), there is either one or two waves at each initial discontinuity. If the
values of u on either side of the initial discontinuity have the same sign, then there are two
waves: contact shock(JS) or contact rarefaction(JR). If they have different signs, then there
is only one wave, either delta shock(Sδ) or rarefaction (R).

For 14 cases in [34], due to the delta shock, there is always one wave solution. They
are classified into six cases of two delta shocks (Sδ + Sδ), six cases of one delta shock
and one rarefaction (Sδ + R), and two cases of two delta shocks and two rarefactions
(Sδ + Sδ + R + R). Because each case includes one wave solution, they provide a relatively
simple wave interaction structure. Conversely, in this study, we have 18 cases that include
only six cases of two rarefactions (R + R) as one wave solution. This means that 12 cases
involve two waves (JS or JR) at each initial discontinuity, and they show a relatively
complicated wave interaction structure.

5. Conclusions

We consider a four-quadrant RP for system (3) without the assumption that each
jump of the initial data projects exactly one planar elementary wave. The main results
of this study include the classification of the solution and the construction of analytic
and numerical solutions for each case. In [34], we considered a case involving delta shock
appearing at the initial discontinuity. It was separated into 52 cases, resulting in 14 solutions.
In this paper, we considered initial data that do not involve delta shock, and it is separated
into 68 cases, resulting in 18 solutions. Hence, a four-quadrant RP for system (3) classified
a total of 32 topologically distinct solutions.

Because no general theory exists for systems in multiple space dimensions, 2-D RP for
systems must be investigated on a case-by-case basis. Furthermore, the theory provides
little insight into the qualitative behavior of wave interactions. Therefore, to understand
the qualitative behavior of the structures in wave interactions of the Riemann problem, we
need to construct the solutions of each individual system.

In both studies, all analytic solutions and numerical solutions of the four-quadrant RP
for system (3) are constructed; the numerical solutions are remarkably coincident with the
constructed analytic solutions. The results show the rich structures of the wave interactions
of RP and interesting phenomena.
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