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Abstract: Various Monte Carlo techniques for random point generation over sets of interest are widely
used in many areas of computational mathematics, optimization, data processing, etc. Whereas for
regularly shaped sets such sampling is immediate to arrange, for nontrivial, implicitly specified do-
mains these techniques are not easy to implement. We consider the so-called Hit-and-Run algorithm,
a representative of the class of Markov chain Monte Carlo methods, which became popular in recent
years. To perform random sampling over a set, this method requires only the knowledge of the
intersection of a line through a point inside the set with the boundary of this set. This component of
the Hit-and-Run procedure, known as boundary oracle, has to be performed quickly when applied
to economy point representation of many-dimensional sets within the randomized approach to
data mining, image reconstruction, control, optimization, etc. In this paper, we consider several
vector and matrix sets typically encountered in control and specified by linear matrix inequalities.
Closed-form solutions are proposed for finding the respective points of intersection, leading to
efficient boundary oracles; they are generalized to robust formulations where the system matrices
contain norm-bounded uncertainty.

Keywords: big data; point representation of sets; random sampling; linear matrix inequalities;
optimization; boundary oracle; control and stabilization

1. Introduction

One of the first issues in data mining and pattern recognition is an economy repre-
sentation of implicitly specified massive data arrays with the subsequent extraction of
specific features and classification [1–3]. Every element of the data set can be associated
with a vector of which the components are the numerical values of certain properties of the
phenomenon of interest under one or another operating condition. As a rule, a complete
description of the data is not available due to high dimensions and cardinality, and the very
absence of an explicit “generating” mechanism. Instead, a representative enough sample
from the data set may be considered, leading to a point representation of the respective
continuum domain, and the desired characteristics can then be measured just at these
sample points.

There exist many ways to organize such samples. The most obvious one is to arrange
a deterministic rectangular grid over the respective many-dimensional domain. However,
this approach suffers several drawbacks. First, for high dimensions, the density of the grid
needed for a reasonable representation of the set is very large; second, it can be efficiently
implemented only for box-shaped sets; finally, sets that differ from rectangles may be
embedded into larger boxes, however, the so-called rejection rate (the amount of “idle”
grid points lying outside the domain of interest) may grow very quickly with the growth of
dimension. A more efficient technique relates to the generation of quasi-random points in
the feasible domain; they are also referred to as LPτ sequences introduced in [4]; however,
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this mechanism heavily exploits the box shape of the set. For the discussion of these
questions, see [5] and the references therein.

Since recently, a purely randomized approach to the solution of various problems
in the above-mentioned fields became very popular [6]. The overall idea is to embed a
deterministic formulation of the problem into a stochastic setup and to obtain an approx-
imate solution, which is “close” to that of the original problem with certain probability.
Often, such a reformulation considerably diminishes computational efforts; moreover,
the associated probabilities can be efficiently estimated. This is particularly important
for many-dimensional problems involving massive data arrays and containing various
uncertainties and inaccuracies.

As compared to deterministic techniques, straightforward random sampling can be
applied to a much wider class of sets; still, its application is limited to “regular” sets in a
sense, for example, such as those bounded in some vector or matrix norm [6]. However,
it often happens that the only information about the set is available in the form of the
so-called boundary oracle, which is formulated as follows. Given a point inside the set and
an arbitrary line through it, the oracle returns the intersection points of this line and the
boundary of the set. The term “boundary oracle” introduced presumably in [7] originates
in the optimization theory, where various assumptions on the available information about
the function under minimization and the constraint set lead to estimates of complexity of
the corresponding optimization methods [8,9]. For instance, search methods assume just
the knowledge of the function value at any point; in first-order methods, the derivative
is also available, i.e., we possess the gradient oracle; in second-order methods, on top of
that we also have a Hessian oracle. The same goes for the constraint set, for which various
assumptions (such as membership oracle, separation oracle) are adopted [9].

One of the efficient sampling procedures that are based on the availability of boundary
oracles is the Hit-and-Run (HR) algorithm, which was proposed in [10] with the primary
goal to facilitate numerical calculation of multi-dimensional integrals over convex domains.
It became popular after the publication of [11], and later, various modifications and ramifi-
cations of this algorithm were proposed; for example, see [12,13]. In particular, a promising
Markov chain sampler, the billiard walk exploits “reflections” of a moving particle from the
boundary of a convex set. It was deeply analyzed in [14] and showed itself rather efficient;
however, it requires not only the availability of a boundary oracle but also the information
about the curvature of the boundary, and is more time-consuming in implementation.

The basic HR procedure is very simple in implementation and requires little informa-
tion about the problem. It was proved to have a polynomial mixing time; i.e., the number
of iterations required to “approximately” reach the desired theoretical distribution grows
polynomially in the dimension [12]. In applications, it possesses quite fast practical conver-
gence for so-called isotropic sets. It also can be generalized to deal with non-convex sets
and to produce limiting distributions that differ from the uniform one. At the same time,
the algorithm is not free of drawbacks. First, the proved theoretical convergence is very
slow. Also, the method tends to get stuck at the corners of “thin” non-isotropic sets; on the
other hand, there exist modifications of the HR algorithm, which are capable of escaping
the corners [15].

Overall, the Hit-and-Run is widely considered to be one of the preferred practical
and theoretical tools for uniform sampling inside large-dimensional convex bodies; for
example, see [14,16,17]. Moreover, in [17], a comparison tool was proposed to quantify
the performance of several commonly used Markov chain sampling techniques, and it
turned out that the basic HR procedure outperforms other approaches and is less intensive
computationally.

Those interested in the history of the HR algorithm are referred to [10–12]; later
developments can be found in [18] and also in [19,20], where a promising modification
using barrier functions was proposed; of the most recent papers we mention [17,21,22].

The HR algorithm has found applications in random sampling inside various sets
(non-convex and not connected as well), approximate computation of the volume of convex
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sets [23] and, most efficiently, in the probabilistic approach to numerical optimization.
For the latter, see, for example, [24,25], where the authors proposed new versions of the
cutting plane scheme for use in efficient methods of optimization. Namely, the HR points
were generated with the aim of approximating the center of gravity of the support set of
the optimized function. Other applications include random walks in graph spaces [26],
machine learning [16,27], etc. In particular, for a specific determinantal point process
problem, a version of the HR sampler based on the zonotopic structure of the problem was
proposed in [16]. This approach, though being faster than the conventional HR, requires
solving additional linear programs and is not easy to implement.

However, in spite of a wide range of applications of the Hit-and-Run sampler, to
the best of our knowledge, almost no research was devoted to its use in control. Perhaps
the only paper in this direction is [28], where this method was applied to the design of
stabilizing controllers in the simplest form.

In this paper we do not deal with applications of the HR to specific control problems;
this is the subject for future research. Nor do we analyze the convergence and optimization
of the performance of the HR algorithm. Instead, we limit ourselves to the considerations re-
lated to its BO component, and propose several numerical schemes for the implementation
of this component.

In principle, instead of having a BO, the availability of a weaker membership oracle
might be assumed, and a straightforward line search can then be used. However, this
search has to be performed many times, so that it is important to provide a “closed-form”
solution to this operation in order to improve the performance of the algorithm. By closed-
form solution we also mean various numerical procedures such as finding the roots of
a polynomial or the eigenvalues of a matrix, solving semidefinite programs (SDPs) of
moderate size and the like. These operations are indeed very fast and numerically efficient
in the standard MATLAB implementation.

In this paper, we propose efficient computations of several BOs for various vector and
matrix sets defined by linear matrix inequalities (LMIs).

The sets that we analyze in the paper appear in control problems in a natural way, and
we consider sets specified by LMIs in the canonical form, the classical matrix Lyapunov
inequality, and algebraic matrix Riccati inequalities. We also pay attention to various robust
versions of these inequalities, where the matrix coefficients contain additive uncertainty.

We focus on the sets defined by LMIs because of the generality and flexibility of this
technique and it is wide spread in systems theory; see the classical book [29] and the
recent survey paper [30]. Overall, LMI-sets describe a wast variety of convex sets. Notably,
because of convexity, only two intersection points are to be found.

One of the few works in this research direction is the conference paper [31], where
first attempts were made to the implementation of such boundary oracles. Since then,
possible applications of the HR algorithm became broader, and some of them motivated
us to get back to this subject and consider it in a different context. For instance, one of the
novel applications of this technique might be processing huge data arrays obtained from
ultrasound computed tomography in medical diagnostics; for example, such as in [32]. This
may lead to fast image reconstruction algorithms and improve the quality of the image.

In the current paper several major changes are performed as compared to [31]. The
introduction section is completely re-written to better substantiate the importance of the
research; for the same purpose, the order of the exposition and the overall wording is
changed, the bibliography list is considerably extended to account for the new available
developments, some proofs are added and some of them are corrected and made more
transparent, several mathematical inaccuracies in the exposition are also corrected, many
new notations are introduced to facilitate the understanding of the material, and typos
are removed.

The notation used in the paper is very standard. Namely, Rn and Rk×m denote the
space of real column vectors of length n and real k× m matrices; > is the transposition
sign; ⊕ and ⊗ stand for the Kronecker sum and Kronecker product of two matrices; the
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signs ≺,�,4,< denote the negative (positive) definiteness (semidefiniteness) of a matrix;
‖ · ‖ is the Euclidean vector norm or the spectral or the Frobenius matrix norm (this will be
clear from the context); W1/2 is the matrix square root of the positive-definite matrix W.

We use the following acronyms:

• BO—Boundary Oracle;
• HR—Hit-and-Run;
• LMI—Linear Matrix inequality;
• LQR—Linear Quadratic Regulation;
• SDP—SemiDefinite Programming.

2. Background and an Illustration
2.1. The Hit-and-Run Procedure

We briefly formulate the main components of the HR procedure as applied to convex
sets and uniform distributions.

Denote by x0 ∈ Rn an initial point in the interior of a closed convex bounded do-
main D ⊂ Rn, and let xj denote the point generated at the jth step of the procedure. The
next point is generated as follows. First, a random unit-length vector y ∈ Rn is generated
uniformly on the sphere in Rn and the line xj + λy through this point in the direction y is
considered. Denote by xj and xj the points of intersection of this line and the boundary ofD;
they are assumed to be obtained with the use of BO. Then the next point xj+1 is generated
uniformly randomly on the segment [xj, xj], a new random direction is generated, etc. The
scheme of the HR algorithm is presented in Figure 1 for n = 2.
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Figure 1. The Hit-and-Run scheme.

In the HR-related literature it is shown that, under mild conditions on the setD and the
choice of initial x0, the resulting sequence of random points tend to the uniform distribution
over D as the number of points grow.

It is interesting to note that the HR method and particularly, its BO component can be
used not only for generating points inside sets, but also for approximate point description
of the boundary of implicitly specified sets. This description is obtained at no extra cost
by simply memorizing the “side-product” endpoints xj and xj. We note that there exist
specialized methods that generate points exactly on the boundary of the sets of interest [33].
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2.2. Illustration: Static Output Feedback Stabilization

Let us consider a linear time invariant system in the state-space description

ẋ = Ax + Bu, (1)

y = Cx.

Here the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×m are fixed and known.
Assume that there exists a static output control u = Ky that makes the closed-loop matrix
A + BKC Hurwitz stable, and let the set D ⊂ Rk×m of all such stabilizing gain matrices K
be bounded. A typical control problem is to optimize certain “engineering” performance
indices over the set of these matrix gains, such as overshoot, oscillation, damping time.

First, it is well known that the very existence of a stabilizing output feedback is hard
to establish [34], not talking about optimizing such a control. Second, the engineering
performance indices mentioned above are not easy to formalize and optimize even in a
much simpler situation where state feedback is considered.

As an alternative to the existing techniques we can instead arrange random sampling
over the domain D, compute the value of the performance index for each sample, and
pick the best one. This approach to optimal controller design suggests the availability of a
representative enough sample set inD, and it can be obtained by using the HR-algorithm. In
its simplest form this approach was considered in [35,36], where only low-order controllers
were considered and the domain D was two-dimensional. No random sampling was used,
but the authors suggested to pick a point in D with a mouse on the computer screen and
compute the respective performance index. Such a “manual” semi-heuristic approach,
being very simple, often leads to controllers that outperform those obtained by the methods
available in the literature.

To arrange the HR algorithm in the general many-dimensional setting, assume that
we possess a feasible K ∈ D, denote by L ∈ Rk×m a matrix direction, take K + λL instead
of K, and consider the λ-dependent n× n matrix A + B(K + λL)C, where λ ∈ R. Then the
goal of the BO is to find the minimum λ and maximum λ values of λ ∈ R that guarantee
the stability of A + B(K + λL)C over the whole segment [λ, λ].

To further simplify notation, denote A0 : = A + BKC and A1 : = BLC; then we have
A + B(K + λL)C = A0 + λA1, where A0 is stable. Hence, the boundary oracle reduces to
finding the so-called unidirectional stability segment of maximum length [37].

For the clarity of the overall exposition, we present the corresponding result.

Lemma 1 ([37]). Let A0, A1 ∈ Rn×n, and let A0 be Hurwitz stable. The minimal and the maximal
values of the parameter λ ∈ R that guarantee the stability of A0 + λA1 are defined by

λ =


1

min
λi<0

λi
,

−∞, if all λi > 0;

(2)

λ =


1

max
λi>0

λi
,

+∞, if all λi < 0,

(3)

where λi are real eigenvalues of the matrix −(A0 ⊕ A0)
−1(A1 ⊕ A1), and A⊕ A denotes the

Kronecker sum.

We recall that the Kronecker sum of the two square matrices A and B is defined as
A⊕ B = A⊗ Ia + Ib ⊗ B, where Ia, Ib are identity matrices of appropriate dimensions and
⊗ stands for the Kronecker product of matrices.
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Back to our problem, we see that the matrix segment [K + λL; K + λL] obtained with
the use of the lemma above belongs to the setD of output stabilizing gain matrices. Therefore,
the next matrix (i.e., the next HR point) is then generated randomly on this segment.

Unfortunately, in Lemma 1 one has to compute eigenvalues of n2 × n2 matrices,
which makes computations slow for high dimensions. For instance, already for n = 25,
the computations would take about a second on a standard laptop, which is considered
rather slow, keeping in mind multiple executions of this procedure as required in the
HR-algorithm. On the other hand, (i) typically, problems arising in control are of lower
dimensions, and (ii) the availability of boundary oracle can be relaxed to the assumption of
having a membership oracle, so that a boundary oracle can always be constructed by means
of a linear search. However, for a wide range of problems, a boundary oracle can be easily
formulated in closed form, and below we present particular boundary oracles for matrix
sets specified by linear matrix inequalities.

3. LMI Sets in Canonical Form

We turn to formation of boundary oracles related to sets defined by linear matrix
inequalities and consider LMIs in the canonical form.

3.1. The Uncertainty-Free Setup

Introduce the following matrix-valued function of a vector variable:

F0 +
n

∑
i=1

xiFi
.
= F(x), (4)

where x = (x1, . . . , xn)> ∈ Rn is the variable and Fi = F>i ∈ Rm×m, i = 0, . . . , n, are fixed
matrix coefficients.

Consider the convex domain defined as

D = {x ∈ Rn : F(x) 4 0}, (5)

where the sign 4 denotes the negative semidefiniteness of a matrix, and we assume that D
as nonempty.

Let x, y ∈ Rn be, respectively, a point in the interior of D and a direction. To formulate
a boundary oracle for this domain, we need to compute the minimal and the maximal
values λ, λ of the scalar parameter λ ∈ R that guarantee the sign-definiteness of F(x + λy)
over the interval [λ, λ]. We have

F(x + λy) = F0 +
n

∑
i=1

(x+λyi)Fi
.
= A0 + λA1.

where we denoted A0 : = F(x) and A1 : = ∑n
i=1 yiFi.

It is seen that A0 ≺ 0 and A1 = A>1 ; hence, similarly to the above, the goal is
to compute the minimum and the maximum values of λ ∈ R that guarantee the sign-
definiteness of the affine matrix function A0 +λA1. The lemma below is a slight modification
of the result in [7] it shows that this can be done by computing the generalized eigenvalues
of the matrix pair (A0,−A1).

Lemma 2. Let A0 ≺ 0 and A1 = A>1 , then the critical values of the scalar λ that guarantee
negative semidefiniteness of the matrix function A0 + λA1 are obtained as:

λ =


max
λi<0

λi,

−∞, if all λi > 0;

(6)
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λ =


min
λi>0

λi,

+∞, if all λi < 0,

(7)

where λi are the generalized eigenvalues of the matrix pair (A0,−A1); i.e., A0ei = −λi A1ei.

Proof. The proof is nearly trivial: The critical value of λ that makes the matrix A0 + λA1
sign indefinite is also responsible for the loss of nonsingularity; by definition, this means
that there exists a nonzero e ∈ Rm such that (A0 + λA1)e = 0.

This result of the lemma above applies to symmetric matrices; i.e., it is a special case
of Lemma 1, since a symmetric matrix is stable if and only if it is negative definite.

As far as the initial point x0 ∈ intD is considered, it can be found as a solution {x̂, η̂}
of the following SDP:

min η subject to F(x) 4 η I. (8)

If η̂ > 0, the set D (5) is empty; otherwise we adopt x0 = x̂.

3.2. A Robust Formulation

We now consider the situation where the matrix coefficients Fi in (4) contain uncertain-
ties. Specifically, they have the form Fi + ∆i, where ∆i ∈ Rm×m are bounded in the spectral
norm ‖∆i‖ ≤ εi, i = 0, . . . , n, and mutually independent, and εi ≥ 0 are given levels of
uncertainty. To retain the symmetric structure of the matrices (Fi + ∆i), the ∆i’s are also
assumed to be symmetric. We call such uncertainties admissible.

As a result, we obtain the uncertain linear matrix-valued function

F(x, ∆) = (F0 + ∆0) +
n

∑
i=1

xi(Fi + ∆i)

of the vector variable x ∈ Rn and the respective (convex) robustly feasible domain

Drob = {x ∈ Rn : F(x, ∆) 4 0 for all admissible ∆i}.

Likewise the uncertainty-free setup, having an x ∈ intDrob and a directional vector y ∈
Rn, we aim to compute the minimal λrob and maximal λ

rob
values of the parameter λ that

guarantee that the uncertain LMI F(x + λy, ∆) 4 0 holds for all admissible uncertainties ∆i

over the segment [λrob, λ
rob

]. This procedure will be referred to as robust boundary oracle.
The construction of the feasible and the associated robustly feasible domains is de-

picted in Figure 2 for x ∈ R2, the same symmetric matrices F0, F1, F2 ∈ R3×3 that were used
in the example of Figure 1, and certain numerical values of εi.

Here, λ and λ denote the critical values of the parameter λ obtained via formulae (6)
and (7) for the corresponding uncertainty-free formulation in Lemma 2.

From the lemma below, Reference [7] presents the robust BO for the uncertain LMI
F(x, ∆) 4 0; it amounts to solving certain nonlinear equations in one scalar variable.

Lemma 3. Let x ∈ intDrob and y ∈ Rn be given. Consider the two functions in the variable
λ ∈ R:

φ(λ) =
∥∥∥(F0 +

n

∑
i=1

(xi + λyi)Fi

)−1∥∥∥,

ε(λ) =
1

ε0 +
n
∑

i=1
|xi + λyi| εi

.
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The critical values λrob and λ
rob of the parameter λ, which guarantee that the matrix F(x +

λy, ∆) is negative definite for all admissible ∆, are found as the two solutions of the equation
φ(λ) = ε(λ) on the segment [λ, λ] obtained in (6) and (7).

−10 −8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

D

D
rob

λ__

λ

__

λ
rob

__

λ
rob

__

Figure 2. Feasible and robustly feasible linear matrix inequalities (LMI) domains.

Clearly, the robust BO is more laborious than its uncertainty-free analog; indeed, not
only a specific nonlinear equation is to be solved numerically, but the nonrobust bounds λ
and λ are to be computed as well.

The proof of Lemma 3 uses the same basic reasonings: The loss of robust sign-
definiteness of the matrix function F(x + λy, ∆) coincides with the loss of nonsingularity
for some admissible ∆is. The proof heavily exploits the independence of the ∆is and uses
the symmetric analog of Theorem 3 in [38] on the radius of matrix nonsingularity.

In Figure 3, the plots of the functions φ(λ) and ε(λ) are depicted for an uncertain LMI
with x ∈ R4, and the desired segments for λ are shown.
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Figure 3. The robust boundary oracle.

4. Quadratic Stabilization

From this section onward we switch our attention from “abstract” LMIs in vector vari-
ables to those encountered in control problems; namely, to specific LMIs in matrix variables.
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4.1. The Lyapynov Boundary Oracle

First of all we consider the Lyapunov inequality

AX + XA> + G ≺ 0, (9)

where G = G> and A are given and X = X> is the n× n matrix variable.
This inequality naturally appears in the design of stabilizing state feedback controllers

for continuous-time systems. Specifically, consider the system ẋ = Ax + Bu (1) with
controllable pair (A, B); then the gain matrix K for the stabilizing control u = Kx may be
found as K = −B>X−1, where X � 0 is a solution of the LMI (9) with G = −2BB>, and
V(x) = x>X−1x is a quadratic Lyapunov function for the closed-loop system [29].

Therefore, the convex closed set of matrices

D = {X ∈ Rn×n : AX + XA> + G 4 0, X < 0} (10)

specified by the LMI (9) is of obvious interest in control design, and we formulate its
boundary oracle.

Such an oracle is seen to be computed with the use of Lemma 2. Given an X ∈ intD
and a matrix direction Y = Y>, we obtain

A(X + λY) + (X + λY)A> + G 4 0.

Denoting A0 : = AX + XA> + G and A1 : = AY +YA> and keeping in mind that A0 ≺ 0
and A1 = A>1 , we find ourselves in the conditions of Lemma 2, which gives us the interval
ΛA of sign-definiteness of the λ-dependent function A0 + λA1. Since the matrix X + λY is
to be positive definite (as the matrix of a Lyapunov function), we again use Lemma 2 to
calculate the corresponding range ΛX of λ retaining the sign-definiteness of X + λY. Then
adopt Λ = ΛA ∩ ΛX as the desired maximal interval of λ for which the matrix X + λY
belongs to D (10).

4.2. A Robust Formulation

The Lyapunov BO of the previous subsection can be generalized to the situation where
the matrix A in (9) contains uncertainty. We consider the model of structured uncertainty,
which often appears in control applications:

A(∆) = A + M∆N. (11)

Here the matrix perturbation ∆ ∈ Rp×q is only known to be bounded in some norm
‖∆‖ ≤ 1, and the matrices M ∈ Rn×p, N ∈ Rq×n are given.

In such a setup, the uncertain Lyapunov inequality

A(∆)X + XA>(∆) + G 4 0 (12)

is used for the construction of a common quadratic Lyapunov function with matrix X for
the uncertain system and yields robustly stabilizing controllers.

This gives rise to the robust Lyapunov set

Drob =
{

X < 0 : inequality (12) holds for all ‖∆‖ ≤ 1
}

, (13)

and the goal is to devise a boundary oracles for it.
The main technical trick for operating with uncertainty (11) is the so-called Petersen

lemma proposed in [39]; it provides necessary and sufficient conditions for an uncertain
matrix to be sign-definite.
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Lemma 4. Assume that R = R> ∈ Rn×n, P ∈ Rn×p, Q ∈ Rq×n. Then, for the inequality

R + P∆Q + (P∆Q)> 4 0 (14)

to hold for all ∆ ∈ Rp×q, ‖∆‖ ≤ 1, it is necessary and sufficient that there exist ε > 0 such that

R + εPP> +
1
ε

Q>Q 4 0. (15)

We stress that, with the lemma above, checking the robust sign-definiteness of a
continuum matrix family reduces to a convex problem in one scalar variable. To see this,
using the Schur complement, represent inequality (15) in the equivalent form R + εPP> Q>

Q −εI

 4 0, (16)

which is an LMI in the scalar variable ε.
Moreover, with this machinery, the maximal admissible span for the uncertainty ∆

can be found:

γmax = sup{γ : inequality (14) holds for all ‖∆‖ ≤ γ}. (17)

It is sometimes called the radius of robust sign-definiteness of the uncertain matrix
R + P∆Q + (P∆Q)>; computing this quantity reduces to the solution of a semidefinite
program in two scalar variables and a “scaled” LMI constraint of the form (16), see [40].

With the Petersen lemma in mind, we are ready to formulate the boundary oracle for
the set (13); it will be referred to as the robust Lyapunov BO.

Theorem 1. Assume that X ∈ Drob (11)–(13) and Y = Y> ∈ Rn×n are given. Denote ΛA =
[λ, λ], where λ and λ are found as the solutions of the two semidefinite programs:

min / max λ subject to AX + XA> + G + λ(AY + YA>) + εMM> XN> + λYN>

NX + λNY −εI

 4 0, X + λY < 0

in the scalar variables λ, ε.
The maximum interval of λ ∈ R that guarantees X + λY ∈ Drob is given by Λ = ΛA ∩ΛX ,

where ΛX ⊂ R denotes the maximal interval of sign-definiteness of the pencil X + λY.

Proof. Having a feasible X ∈ Drob defined by (11)–(13), and a matrix direction Y, we are
aimed at finding the minimum and the maximum values of λ for which the inequality

(A + M∆N)>(X + λY) + (X + λY)(A + M∆N) + G 4 0 (18)

is satisfied for all ‖∆‖ ≤ 1.
To simplify notation, let us denote

R(λ) = AX + XA> + G + λ(AY + YA>)

and
P = M; Q(λ) = N(X + λY);

then (18) takes the compact form

R(λ) + P∆Q(λ) +
(

P∆Q(λ)
)>

4 0.
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By Petersen lemma, this inequality holds for all admissible ‖∆‖ ≤ 1 and for some λ if
and only if there exist ε > 0 such that R(λ) + εPP> Q>(λ)

Q(λ) −εI

 4 0.

Since the functions R(λ) and Q(λ) are affine in λ, the last inequality is seen to be an LMI
in the two scalar variables λ and ε. Therefore, finding the critical values of λ reduces to
the minimization and maximization of the variable λ subject to the LMI constraint above.
Finally, the maximum interval of the sign-definiteness of the matrix X + λY is found using
Lemma 2.

We make two comments at this point.
First, an initial X ∈ intDrob can be obtained from the solution {X̂, η̂, ε̂} of the following

SDP in the matrix variable X and two scalar variables η, ε:

min η subject to AX + XA> + G + εMM> XN>

NX −εI

 4 η I, X < 0. (19)

In complete analogy with (8), if η̂ < 0, adopt X = X̂; otherwise the set Drob (13)
is empty.

This observation leads to the second comment. If the LMIs (19) are infeasible, we
decrease the level of uncertainty and re-solve the SDP to test the nonemptiness of Drob. On
the other hand, by solving a similar semidefinite program, the maximal allowed level

γrob = max{γ : ∃X < 0 : inequality (12) holds for all ‖∆‖ ≤ γ},

the radius of robust quadratic stabilizability can be calculated in advance; cf. (17) and see [30,40]
for the details.

5. Optimal Control

Assume now that, on top of stabilizing system (1) by means of linear control u = Kx,
we want to optimize a certain performance index.

In one of the classical optimal control problems, the linear quadratic regulation (LQR)
problem, the quadratic cost functional has the form

J(K) =
∫ ∞

0
(x>Wxx + u>Wuu)dt,

where Wx � 0 and Wu � 0 are weight matrices. The minimization of this cost leads to the
algebraic Riccati equation

XWxX + AX + XA> − BW−1
u B> = 0

in the matrix variable X; under certain conditions on A, B its unique positive-definite
solution defines the optimal gain K = −W−1

u B>X−1.

5.1. The Riccati Boundary Oracle

In a slightly more general formulation consider the set

D = {X ∈ Rn×n : XWxX + AX + XA> − G 4 0, X � 0}, (20)
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where G < 0 is a given real n× n matrix. This set accumulates all possible solutions X � 0
of the algebraic Riccati inequality, and the boundary oracle for this set is formulated in much
the same way as in Section 4.1, with Lemma 2 as the main tool.

Indeed, let us first take the Schur complement and represent the quadratic inequality
in the LMI form:  AX + XA> − G XW1/2

x

W1/2
x X I

 4 0.

Next, considering X + λY instead of X, we arrive at

A0 + λA1 4 0,

with

A0 =

 AX + XA> − G XW1/2
x

W1/2
x X I

 4 0

and

A1 =

 AY + YA> YW1/2
x

W1/2
x Y I

 = A>1 .

Hence we are again in the conditions of Lemma 2, which gives us the associated
segment ΛA.

Next, accounting for the sign definiteness of the matrix X + λY and using Lemma 2
once again, we obtain the corresponding feasible segment ΛX and adopt ΛA ∩ΛX as the
final answer.

Overall, the computation of the boundary oracle for the set defined by the quadratic
inequality reduces to the Lyapunov BO described in Section 4.1; the only essential difference
is that now the size of the constraint matrices is twice as large as before.

5.2. A Robust Formulation

Let now the matrix A be subjected to the uncertainty of the same structured form (11).
The corresponding robust counterpart of the LQR problem can be formulated and solved
in several ways; for example, see [41]. However, following the logic of the current paper
we consider the set

Drob = {X ∈ Rn×n : XWxX + A(∆)X + XA>(∆)− G 4 0, X � 0} (21)

defined by the uncertain Riccati inequality and propose a boundary oracle for it.
From the exposition of the two previous subsections it is seen that the robust version

of the Riccati boundary oracle can be formulated by exploiting the Schur complement
(to transform quadratic inequalities into linear ones) and Petersen lemma (to handle the
uncertainty). We omit the obvious and not quite insightful derivations and formulate the
result in the theorem below.

Theorem 2. Let X ∈ intDrob (21), (11) and let Y = Y> ∈ Rn×n. The maximal and the minimal
values of λ, which guarantee that the matrix segment X + λY belongs to the set Drob (21) are
obtained from the solutions of the two semidefinite programs

min / max λ subject to A1(ε) + λA2 λZ

λZ> −I

 4 0, X + λY < 0,
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where

A1(ε) =

 XWxX + AX + XA> − G + εMM> XN>

NX −εI

;

A2 =

 XWxY + YWxX + AY + YA> YN>

NY 0

;

Z =

(
YW1/2

x
0

)
,

and the optimization is performed in the two scalar variables λ and ε.

6. Implementation Issues

We briefly discuss some technical implementation issues and report on the processor
time required for the computation of the boundary oracles proposed above.

First, to generate a vector uniformly distributed on the surface of the unit ball in Rn,
we use the MATLAB routine randn to obtain a random vector y with the standard Gaussian
distribution and then normalize it to obtain y = y/‖y‖, which is distributed uniformly
on the unit sphere. As far as the generation of matrix directions Y in Sections 4 and 5 is
considered, we generate them randomly uniformly on the surface of the unit ball in the
Frobenius norm (i.e., on the surface of the ball in Rn2

) with the subsequent symmetrization.
The main tool for computing the Lyapunov and Riccati BOs, Lemma 2 requires finding

generalized eigenvalues of a pair of matrices, and it can be efficiently applied to matrices
of rather high dimensions.

The robust boundary oracles in Sections 4.2 and 5.2 require solving semidefinite pro-
grams in two scalar variables with LMI constraints having dimension 2n× 2n (Theorem 1)
or 4n× 4n (Theorem 2). To solve these problems, we used the MATLAB-compatible software
cvx [42].

The following illustrative experiment was performed. We generated randomly N =
1000 samples of the data required in Lemma 2 and Theorems 1 and 2. For each of these
samples, we measured the execution time for the four boundary oracles proposed in
the paper, and averaged over N samples. The results obtained on a standard laptop are
presented in Table 1.

Table 1. Execution time (milliseconds) of the four boundary oracles for various dimensions n.

Oracle/Dim n = 5 n = 10 n = 15 n = 20 n = 30 n = 50

Lyapunov 0.0156 0.0374 0.0883 0.1249 0.3030 0.7279
Riccati 0.0383 0.1241 0.3041 0.4831 1.0686 3.4392
robust Lyapunov 16.0069 22.3414 29.0850 38.2422 62.3214 217.0089
robust Riccati 25.1414 41.5722 67.4951 139.0988 332.3392 1385.8729

From the first two rows of the table we see that nonrobust oracles are indeed very
fast, since they exploit just the eigenvalue computation, and this operation is “perfectly”
implemented in various available toolboxes. Instead, robust boundary oracles are based on
solving a specific optimization problem, which is more time-consuming. The last row of
the table clearly shows that up to n = 30, the robust Riccati oracle is fast enough, whereas
for n = 50 the required execution time is approximately one and a half second, which
may be considered slow. Note however, that in the latter case, the matrices in the LMI
constraints are of quite large size 200× 200.

In the experiment, we considered “full” matrices and used the standard freeware cvx
for solving semidefinite programs. To speed up the computations in higher dimensions,
one may exploit a sparse structure of the system matrices, which is typically the case for
control problems, or try to use alternative optimization methods and software. On the other
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hand, practical control problems have lower dimensions, usually not exceeding n = 15;
see [43], a popular collection of control-related test problems. In other words, in practice,
all the proposed BOs seem to be fast enough to be used in sampling the respective sets.

Another observation is that the execution time grows nonlinearly with increase of
problem dimension n. This is because the coefficient matrices in the respective LMIs
contain n2 elements and because of a specific representation of the LMI constraints in the
internal language of cvx solvers. It is also seen that, for a given n, the execution time of
the robust Riccati oracle is not exactly the same as that of the robust Lyapunov oracle for
the doubled dimension (recall the relative sizes of the respective LMI constraints). This
is because the structure of these constraints in the robust Riccati oracle is slightly more
complicated.

7. Concluding Remarks and Directions for Future Research

In this paper, we focused on boundary oracles, one of the key components of Hit-
and-Run, a popular approach to random generation of points inside bounded sets. We
proposed simple computational schemes that implement boundary oracles for several
typical control-related matrix sets defined by linear matrix inequalities. At the nucleus
of these oracles is the computation of the generalized eigenvalues of a pair of matrices or
solving low-dimensional semidefinite programs in scalar variables. These operations are
fast as implemented in the MATLAB environment, which makes the proposed BOs efficient
for use in various random walk methods.

Future research will be targeted at the implementation of boundary oracles for broader
classes of sets (e.g., the sets of Schur stable polynomials, positive polynomials, uncertain
affine matrix families), which account for the presence of exogenous unknown-but-bounded
disturbances, and speeding up the numerical implementation of the HR procedure in these
specific problems for higher dimensions. We also note that the results in Sections 4 and 5
can be easily extended to discrete-time systems by using the discrete-time Lyapunov and
Riccati inequalities.

Of the most interest is the application of the machinery presented here to problems
of practical interest, in particular, to the design of stabilizing controllers subject to several
engineering specifications as mentioned at the beginning of Section 2.2.

Author Contributions: Conceptualization, P.S.; methodology, P.S.; software, M.Y. and P.S.; valida-
tion, M.Y.; formal analysis, P.S. and M.D.; investigation, P.S., M.D. and M.Y.; resources, M.D.; data
curation, M.D. and M.Y.; writing—original draft preparation, P.S.; writing—review and editing,
P.S., M.D. and M.Y.; visualization, M.Y.; supervision, P.S. and M.D.; project administration, M.D.;
funding acquisition, M.D., M.Y., and P.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by the National Key Research and Development Program
of China under Grant 2016YFE0203900, and in part by the National Natural Science Foundation of
China under Grant 82072089. The research of P. Shcherbakov in Theorems 1 and 2, and Section 6 was
supported by the Russian Science Foundation (project No. 21-71-30005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aggarwal, C.C. Data Mining: The Textbook; Springer: Cham, Switzerland, 2015.
2. Bruni, R.; Bianchi, G. Effective classification using a small training set based on discretization and statistical analysis. IEEE Trans.

Knowl. Data Eng. 2015, 9, 2349–2361. [CrossRef]
3. Blum, A.; Hopcroft, J.; Kannan, R. Foundations of Data Science. Available online: https://www.cs.cornell.edu/jeh/book.pdf

(accessed on 8 March 2021).

http://doi.org/10.1109/TKDE.2015.2416727
https://www.cs.cornell.edu/jeh/book.pdf


Mathematics 2021, 9, 580 15 of 16

4. Sobol, I.M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys.
1967, 4, 86–112. [CrossRef]

5. Polyak, B.; Shcherbakov P. Why does Monte Carlo fail to work properly in high-dimensional optimization problems? J. Optim.
Theory Appl. 2017, 2, 612–627. [CrossRef]

6. Tempo, R.; Calafiore, G.; Dabbene, F. Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications; Springer:
London, UK, 2013.

7. Polyak, B.T.; Shcherbakov, P.S. The D-decomposition technique for solving linear matrix inequalities. Autom. Remote Control 2006,
11, 1847–1861. [CrossRef]

8. Nesterov, Y. Lectures on Convex Optimization; Springer: Cham, Switzerland, 2018.
9. Lee, Y.T.; Sidford, A.; Vempala, S.S. Efficient convex optimization with membership oracles. arXiv 2017, arXiv:1706.07357v1.
10. Turchin, V.F. On calculation of multi-dimensional integrals via the Monte Carlo method. Theory Probab. Appl. 1971, 4, 720–724.

[CrossRef]
11. Smith, R.L. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 1984,

6, 1296–1308. [CrossRef]
12. Lovász, L. Hit-and-run mixes fast. Math. Program. 1999, 86, 443–461. [CrossRef]
13. Lovász, L.; Vempala, S. Hit-and-Run Is Fast and Fun. Technical Report MSR-TR-2003-05. 2003. Available online: https:

//web.cs.elte.hu/~lovasz/logcon-hitrun.pdf (accessed on 8 March 2021).
14. Gryazina, E.N.; Polyak, B.T. Random sampling: Billiard Walk algorithm. Eur. J. Oper. Res. 2014, 2, 497–504. [CrossRef]
15. Lovász, L.; Vempala, S. Hit-and-run from a corner. SIAM J. Comput. 2006, 4, 985–1005. [CrossRef]
16. Gautier, G.; Bardenet, R.; Valko, M. Zonotope Hit-and-run for efficient sampling from projection DPPs. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1223–1232.
17. Rudolf, D.; Ullrich, M. Comparison of hit-and-run, slice sampling and random walk Metropolis. J. Appl. Probab. 2018, 4, 1186–1202.

[CrossRef]
18. Brooks, S.; Gelman, A.; Jones, G.; Li, M.X. (Eds.) Handbook of Markov Chain Monte Carlo; Chapman & Hall/CRC: Hoboken, NJ,

USA, 2011.
19. Kannan, R.; Narayanan, H. Random walks on polytopes and an affine interior point method for linear programming. Math. Oper.

Res. 2012, 37, 1–20. [CrossRef]
20. Polyak, B.T.; Gryazina E.N. Markov chain Monte Carlo method exploiting barrier functions with applications to control and

optimization. In Proceedings of 2010 IEEE International Symposium on Computer-Aided Control System Design (CACSD),
Yokohama, Japan, 8–10 September 2010.

21. Chen, Y.; Dwivedi, R.; Wainwright, M.J.; Yu, B. Fast MCMC sampling algorithms on polytopes. J. Mach. Learn. Res. 2018,
1, 2146–2231.

22. Speagle, J.S. A conceptual introduction to Markov Chain Monte Carlo methods. arXiv 2020, arXiv:1909.12313v2.
23. Cousins, B.; Vempala, S. A practical volume algorithm. Math. Program. Comput. 2016, 2, 133–160. [CrossRef]
24. Bertsimas, D.; Vempala S. Solving convex programs by random walks. J. ACM 2004, 51, 540–556. [CrossRef]
25. Dabbene, F.; Shcherbakov, P.; Polyak, B.T. A randomized cutting plane method with probabilistic geometric convergence. SIAM J.

Optim. 2010, 6, 3185–3207. [CrossRef]
26. Alyami, S.; Azad, A.K.M.; Keith, J. A new version of the hit-and-run algorithm to sample graph spaces. In Proceedings of the 39th

Australasian Conference on Combinatorial Mathematics and Combinatorial Computing, Brisbane, Australia, 7–11 December 2015.
27. Gartrell, M.; Paquet, U.; Koenigstein, N. Low-rank factorization of determinantal point processes for recommendation. In Pro-

ceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017, pp. 1912–1918.
28. Polyak, B.T.; Gryazina E.N. Hit-and-Run: New design technique for stabilization, robustness and optimization of linear systems.

IFAC Proc. Vol. 2008, 4, 376–380. [CrossRef]
29. Boyd, S.; El Ghaoui, L.; Ferron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA,

USA, 1994.
30. Polyak, B.T.; Khlebnikov, M.V.; Shcherbakov P.S. Linear matrix inequalities in control systems subject to uncertainty. Autom.

Remote Control 2021, 1, 1–40. [CrossRef]
31. Shcherbakov, P. Boundary oracles for control-related matrix sets. In Proceedings of the 19th International Symposium Mathemati-

cal Theory of Networks and Systems, Budapest, Hungary, 5–9 July 2010; pp. 665–670.
32. Fang, X.; Song, J.; Liu, K.; Wu, Y.; Zhang, Q.; Ding, M.; Yuchi, M. A prior-information-based combination solution for picking the

difference of time-of-flight in ultrasound computed tomography. J. Med. Imaging Health Inform. 2020, 3, 763–768. [CrossRef]
33. Boender, C.G.E.; Caron, R.J.; McDonald, J.F.; Rinnooy Kan, A.H.G.; Romeijn, H.E.; Smith, R.L.; Telgen, J.; Vorst, A.C.F. Shake-

and-bake algorithms for generating uniform points on the boundary of bounded polyhedra. Oper. Res. 1991, 6, 945–954.
[CrossRef]

34. Blondel, V.L.; Tsitsiklis J.N. A survey of computational complexity results in systems and control. Automatica 2000, 9, 1249–1274.
[CrossRef]

35. Kiselev, O.N.; Polyak, B.T. Design of low-order controllers with H∞ or maximal robustness performance index. Autom. Remote
Control 1999, 3, 393–402.

http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1007/s10957-016-1045-4
http://dx.doi.org/10.1134/S0005117906110063
http://dx.doi.org/10.1137/1116083
http://dx.doi.org/10.1287/opre.32.6.1296
http://dx.doi.org/10.1007/s101070050099
https://web.cs.elte.hu/~lovasz/logcon-hitrun.pdf
https://web.cs.elte.hu/~lovasz/logcon-hitrun.pdf
http://dx.doi.org/10.1016/j.ejor.2014.03.041
http://dx.doi.org/10.1137/S009753970544727X
http://dx.doi.org/10.1017/jpr.2018.78
http://dx.doi.org/10.1287/moor.1110.0519
http://dx.doi.org/10.1007/s12532-015-0097-z
http://dx.doi.org/10.1145/1008731.1008733
http://dx.doi.org/10.1137/080742506
http://dx.doi.org/10.3182/20080706-5-KR-1001.00064
http://dx.doi.org/10.1134/S000511792101001X
http://dx.doi.org/10.1166/jmihi.2020.2930
http://dx.doi.org/10.1287/opre.39.6.945
http://dx.doi.org/10.1016/S0005-1098(00)00050-9


Mathematics 2021, 9, 580 16 of 16

36. Shcherbakov, P.S. Fixed order controller design subject to engineering specifications. Autom. Remote Control 2010, 6, 1217–1229.
[CrossRef]

37. Fu, M.; Barmish, B.R. Maximal unidirectional perturbation bounds for stability of polynomials and matrices. Syst. Control Lett.
1988, 11, 173–179. [CrossRef]

38. Polyak, B.T. Robust linear algebra and robust aperiodicity. In Directions in Mathematical Systems Theory and Optimization; Rantzer,
A., Byrnes, C.I., Eds.; Springer: Berlin, Germany, 2003; pp. 249–260.

39. Petersen, I. A stabilization algorithm for a class of uncertain systems. Syst. Control Lett. 1987, 8, 351–357. [CrossRef]
40. Shcherbakov, P.S.; Topunov M.V. Petersen’s lemma on matrix uncertainty and its generalizations. Autom. Remote Control 2008,

11, 1932–1945.
41. Khlebnikov, M.V.; Shcherbakov, P.S. Linear quadratic regulator II. Robust formulations. Autom. Remote Control 2019, 10, 1847–1860.

[CrossRef]
42. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.2, January 2020. Available online:

http://cvxr.com/cvx (accessed on 22 February 2021).
43. Leibfritz, F. COMPleib: Constraint Matrix-Optimization Problem Library—A Collection of Test Examples for Nonlinear Semidefinite

Programs, Control System Design and Related Problems; Technical Report; Department of Mathematics, University of Trier: Trier,
Germany, 2004. Available online: http://www.complib.de (accessed on 22 February 2021).

http://dx.doi.org/10.1134/S0005117910060226
http://dx.doi.org/10.1016/0167-6911(88)90056-4
http://dx.doi.org/10.1016/0167-6911(87)90102-2
http://dx.doi.org/10.1134/S0005117919100060
http://cvxr.com/cvx
http://www.complib.de

	Introduction
	Background and an Illustration
	The Hit-and-Run Procedure
	Illustration: Static Output Feedback Stabilization

	LMI Sets in Canonical Form
	The Uncertainty-Free Setup
	A Robust Formulation

	Quadratic Stabilization
	The Lyapynov Boundary Oracle
	A Robust Formulation

	Optimal Control
	The Riccati Boundary Oracle
	A Robust Formulation

	Implementation Issues
	Concluding Remarks and Directions for Future Research
	References

