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Abstract: We studied a particular class of well known error-correcting codes known as Reed–Solomon
codes. We constructed RS codes as algebraic-geometric codes from the normal rational curve. This
approach allowed us to study some algebraic representations of RS codes through the study of the
general linear group GL(n, q). We characterized the coefficients that appear in the decompostion of
an irreducible representation of the special linear group in terms of Gromov–Witten invariants of
the Hilbert scheme of points in the plane. In addition, we classified all the algebraic codes defined
over the normal rational curve, thereby providing an algorithm to compute a set of generators of the
ideal associated with any algebraic code constructed on the rational normal curve (NRC) over an
extension Fqn of Fq.
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1. Introduction

Let us denote by Fq the finite field of q elements with q a power of prime number
p. One can consider field extensions Fq of Fp as q varies through powers of the prime
p. Any Fpn field extension of Fp is a vector space over Fp of dimension n and an (n−
1)−dimensional projective space PG(n− 1, p).

Let V be an n + 1 dimensional vector space over the field Fq; we denote by PG(n, q)
or P(V) the n-dimensional projective space over V and by P1, the projective line. The set
of all subspaces of dimension r in V is a Grassmannian, and it is denoted by Gr,n(Fq) or by
PGr(n, q). The dual of an r−space in PG(n, q) is an (n− r− 1)−space.

Consider the Fq−rational points of Gr,n(Fq) as a projective system; we obtain a q-
ary linear code, called the Grassmann code, which we denote [n, r]q code. The length

l and the dimension k of G(r, n) are given by the q binomial coefficient l =

[
n
r

]
q
=

(qn+1−1)(qn+1−q)...(qn+1−qr)
(qr+1−1)(qr+1−q)...(qr+1−qr)

, and k = (n
r), respectively.

We study the relation between codes constructed from vector bundles and the repre-
sentation theory of the general linear group GL(n,Fq). Following [1], we consider the right
action of the general linear group GL(n,Fq) on Gk,n(Fq):

Gk,n(Fq)× GL(n,Fq) → Gk,n(Fq) (1)

(U , A) → UA.

Observe that the action is defined independently of the choice of the representation
matrix U ∈ Fk×n

q .
Let U ∈ Gk,n(Fq) and G < GL(n,Fq) be a subgroup; then C = {UA| A ∈ G} is an

orbit in Gk,n(Fq) of the induced action.
In order to classify all the orbits, we need to classify all the conjugacy classes of

subgroups of GL(n,Fq). In [2], we studied cyclic coverings of the projective line that
correspond to orbits defined by a cyclic subgroup of order p as the multiplicative group of
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pth roots of unity or the additive group of integers modulo p for some prime number p. In
particular, we showed that any irreducible cyclic plane cover of the projective line can be
given by a prime ideal

(ym − (x− a1)
d1 . . . (x− an)

dn) ⊂ Fq[x, y].

This ideal defines an affine curve in A2(Fq) which has singularities, if dk > 1 for some
1 ≤ k ≤ n. There exists a unique projective curve birationally equivalent to this affine curve
obtained by homogenization of the polynomial. Here we study the connection between
ideal sheaves on Fq[x, y] and its numerical invariants together with the combinatorics of
partitions of n and the representation theory of the general linear group GL(Fq, n). In other
words, we want to understand which subspaces are invariant by the action of elements of
the general linear group or finite subgroups of GL(n,Fq) and how the GL(n,Fq) group’s
action on the Grassmannian changes the Grassmann code, as this action simply permutes
basis elements of the Grassmann code.

When one considers as an alphabet a setP = {P1, . . . , PN} of Fq−rational points lying
on a smooth projective curve defined over a finite field, algebraic codes are constructed by
evaluation of the global sections of a line bundle or a vector bundle on the curve. Any cyclic
cover of P1 which is simply ramified corresponds to an unordered tuple of n points on P1.
More generally, in Section 4 we consider configurations of n points in a d−dimensional
projective space PG(d, q) which generically lies on a rational normal curve (NRC) and we
study the algebraic codes defined on it, providing a complete classification in terms of
divisors defined over the NRC; see Theorem 2. These are the so called Reed–Solomon
codes. Moreover, in the last section as an application of the Horn problem, we provide a
set of generators of the ideal associated with any algebraic code constructed on the NRC
over an extension Fn

q of Fq.
From now on, Fq will be a field with q = pn elements and C a non-singular, projective,

irreducible curve defined over Fq with q elements.

Notation

For d a positive integer, α = (α1, . . . , αm) is a partition of d into m parts if the αi
are positive and decreasing integers summing to n. We will denote as P(d) the set of
all partitions of d. We set l(α) = m for the length of α, that is, the number of cycles in α,
and li for the length of αi. The notation (a1, . . . , ak) stands for a permutation in Sd that
sends ai to ai+1. For λ ∈ P(d), we write [λ] for the corresponding character of Sn. We
write PGL(2, k) = GL(2, k)/k∗, where k is field of arbitrary characteristic and elements of

PGL(2, k), which will be represented by equivalence classes of matrices
(

a b
c d

)
, with

ad− bc 6= 0. A q−ary constant weight code of length n, distance d and weight w will be
denoted as an [n, d, w]q code.

2. Horn Problem: An Application to Convolutional Codes

In this section we present a description of the Horn problem, i.e., the study of the
eigenvalues of the sum C = A + B of two matrices, given the spectrum of A and B, in the
context of polynomial matrices with polynomial entries associated with torsion modules
or dually submodules of a polynomial ring with coefficients in a field. Next, we introduce
some important matrices that define a linear error-correcting code.

Let R be any complete valued field R with a closed coefficient field k of an arbitrary
characteristic, for example, a finite field or the ring R = C{x} of convergent power series.
If f ∈ R is a nonzero divisor, then we define the encoder A as the matrix associated
with the corresponding torsion module R/ f R. The matrix A can be diagonalized by
elementary row and column operations with diagonal entries xα1 , xα2 , . . . , xαn , for unique
non-negative integers α1 ≥ . . . ≥ αn. More precisely, these matrices are in correspondence
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with endomorphisms of Rn, with cokernels being torsion modules with at most n generators.
Such a module is isomorphic to a direct sum

R/xα1 R⊕ R/xα2 R⊕ . . .⊕ R/xαn R, α1 ≥ . . . ≥ αn.

The set (α1, . . . , αn) of invariant factors of A defines a partition α of size d = |λ|.
Reciprocally, when R = C{x} is the ring of convergent power series, any partition λ
defines a rank one torsion-free sheaf on C by setting Iλ = (xλ1 , xλ2 , xλ3 , . . . , xλn). In
particular, the ideal sheaf corresponding to the identity partition (1)n, defines a maximal

ideal I(1)n = (x,
n times︷︸︸︷. . . , x) in C[x]. The Horn problem is then equivalent to the following

question: which partitions α, β, γ can be the invariant factors of matrices A, B and C if
C = A · B?

In the case of convergent power series, this problem was proposed by I. Gohberg and
M.A. Kaashoek. By denoting the cokernels of A, B and C as A,B and C, respectively, one
has a short exact sequence:

0→ A → B → C → 0,

i.e., B is a submodule of C with C/B ∼= A; such an exact sequence corresponds to matrices
A, B and C with A · B = C.

If we specialize C to be the identity matrix I, by the correspondence between partitions
and ideal sheaves above, the invariant factors of the identity matrix are defined by the
partition (1)n, then the question becomes: which partitions α, β can be the invariant factors
of matrices A, B if A · B = I? The case of interest for us will be the case in which R is an
Fq[x]-module with q a prime power of p.

Duly, the code can be defined as an R−submodule of Rn, where R = F[z] is a poly-
nomial ring with coefficients in a field F and z is a uniformizing parameter in R (see [3]).
When F is a finite field, these are known as convolutional codes which have been very well
studied; see, for example, [4]. A full row rank matrix G(z) ∈ F[z]k×n with the property that

C = ImF[z]G(z) = { f (z)g(z) : f (z) ∈ [Fk(z)]}

is called a generator matrix. The degree d of a convolutional code C is the maximum of
the degrees of the determinants of the k× k submatrices of one, and hence any generator
matrix of C. The main difference between block and convolutional codes is that at the
encoder, in a convolutional code we may have different states. Linear block codes may be
considered as a particular case of convolutional codes with only one state. In next section
we describe an example of block codes known as Reed–Solomon codes.

Remark 1. The set of convolutional codes of a fixed degree is parametrized by the Grothendieck
Quot scheme of degree d, rank n− k coherent sheaf quotients of On on a curve X defined over F.
If the degree is zero, these schemes describe a Grassmann variety and constitute the so called class
of block codes of parameters (n, k). Namely, the space of all matrix divisors Dk(r, d) of rank r and
degree d can be identified with the set of rational points of Quotm

OX(D)n/X/k parametrizing torsion
quotients of OX(D)n and having degree m = r · deg D− d, see [5].

An Example with Algebraic-Geometric Codes: Reed–Solomon Codes

Let X be a smooth projective curve defined over a finite field Fq with q elements. The
classical algebraic-geometric (AG) code due to Goppa is defined by evaluating rational
functions associated with a divisor D at a finite set of Fq-rational points. From another
point of view, we are considering the evaluation of sections of the corresponding line
bundle OX(D) on X. Namely, let P := {P1, . . . , Pn} be a configuration of distinct Fq-
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rational points of X, the usual algebraic-geometric code is defined to be the image of the
evaluation map:

ϕD : L(D)→ Fn
q (2)

f 7→ ( f (P1), . . . , f (Pn)),

where L(D) denotes the vector space of sections associated with the line bundle OX . The
parameters of these codes, the length n, the dimension k and the minimum distance d
are determined by the theorem of Riemann-Roch and it is easy to see that they satisfy
the following bound k + d ≥ n + 1− g, where g is the genus of the curve X. Using this
definition, the notion of AG codes is easily generalized for varieties of higher dimension.

Namely, let E be a vector bundle of rank r on X defined over Fq. The Goppa code
C(X, D, G) takes as input a divisor D supported on the finite set P of Fq-rational points
and a divisor G associated with the vector bundle E and evaluates each section σ ∈ L(G)
in the linear series attached to the divisor G:

C(X, D, G) = {(σ(Pi))
n
i=1 : σ ∈ L(G)} ⊆ Fn

q .

Observe that C(X,P , E) is an Fq-linear subspace of Fn
qr and thus a point of the Grass-

mannian Gr,n(Fq). Moreover, for the same subset of evaluation points and any r ≤ k, we
have G(r, n) ⊆ G(k, n) ⊆ Fn

q , where r ≤ k. Further, we get a partial flag of Fq−vector
spaces {0} = Ek ⊂ Ek−1 ⊂ . . . ⊂ E1 ⊂ E0 = Fn

q such that dim (Ei−1/Ei) = λi, to which we
associate the partition λ = (λ1, . . . , λr) of n. In this way, each partition λ of n determines
a variety Fλ = Fλ(Fq) of partial flags of Fq-vector spaces.

The representation theory of the special linear group SL(n,Fq) can be viewed as a
form of Gale duality first proven by Goppa in the context of algebraic coding theory.

Let D and G be effective divisors supported over a smooth projective curve X defined
over Fq such that Supp(G) ∩ Supp(D) = ∅, then the geometric Goppa code associated
with the divisors D and G is defined by

C(D, G) = {(x(P1), . . . , x(Pn)), x ∈ L(G)} ⊆ Fn
q ,

where L(G) denotes the linear system associated with the divisor G.

Definition 1. Let C1 and C2 be the corresponding codes obtained by evaluating non-constant
rational functions f (x) and g(x) with non common roots on X over the support of the divisor D.
We define the quotient code of C1 and C2 to be the code associated with the quotient rational function
ϕ = f /g.

Since f and g take the value ∞, they are defined by non constant polynomials f (x)
and g(x) in Fq[x]. Here Fq denotes the algebraic closure of Fq. The degree of ϕ is defined
to be deg (ϕ) = max {deg(f), deg(g)}.

As ϕ is a finite morphism, one may associate to each rational point x ∈ X(Fq) a local
degree or multiplicity mϕ(x) defined as:

mϕ(x) = ordz=0ψ(z),

where ψ = σ2 ◦ ϕ ◦ σ1, y = ϕ(x), and σ1, σ2 ∈ PGL(2,Fq) such that σ1(0) = x and σ2(y) = 0.
With each non-constant rational function ϕ over X, one can associate a matrix A with

entries in the ring Fq[x]. Namely, let us call f0 := f (x) and call f1 the divisor polynomial
g(x), and f2 the remainder polynomial; then by repeated use of the Euclid’s algorithm, we
construct a sequence of polynomials f0, f1, . . . , fk, and quotients q1, . . . qk, K ≤ n. Then the
quotient matrix A is defined to be the diagonal matrix with entries q1, . . . , qk corresponding
to the continued fraction expansion of the rational function ϕ.
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Here we include a SAGE code [6] which implements the algorithm.

def euclid(f, g):
r = f % g
q = f // g
while r.degree() >= 0:
yield q
f = g
g = r
r = f % g
q = f // g

Let λi be the partition of the integer k, defining the degree multiplicities of the polyno-
mial qi. Then the Horn problem applied to this situation reads:

Which partitions α, β and γ can be the degree multiplicities of polynomials qA, qB and
qC such that the corresponding diagonal matrices A, B, and C satisfy C = A · B?

Another important family of Goppa codes is obtained considering the normal rational
curve Cn defined over Fq:

Cn := {Fq(1, α, . . . , αn) : α ∈ Fq ∪ {∞}}.

The points are distinct elements of Fq and L is the vector space of polynomials of degree
at most k− 1 and with coefficients in Fq. Such polynomials have at most k− 1 zeros, so
nonzero codewords have at least n− k + 1 non-zeros. Hence, this is a [n, k, n− k + 1]q code
whenever k ≤ n. Any codeword (c0, c1, . . . , cn−1) can be expressed into a q-ary k-vector
with respect to the basis {1, α, . . . , αk−1}.These codes are just generalized Reed–Solomon
codes of parameters [n, k, d]q over Fq with parity check polynomial h(x) = ∏k−1

i=1 (x− αi)

where α is a primitive root of Fq such that αk = α + 1. In other words, the GRS code is
an ideal in the ring Fq[x]/(xk − x− 1) generated by a polynomial g(x) with roots in the
splitting field Fl

q of xk − x− 1, where k|ql − 1. Since the NRC is a genus 0 curve, it is easy
to see that these codes satisfy the Singleton bound d ≥ n− k + 1.

Construction of Reed–Solomon codes over Fq only employs elements of Fq, hence
their lengths are at most q. In order to get longer codes, one can make use of elements of an
extension of Fq, for instance considering subfield subcodes of Reed–Solomon codes.

As in [2], where we considered a variant of the Horn problem in the context of cyclic
coverings of the projective line defined over an arbitrary field k, the problem is reduced to
study the representation theory of the general linear group GL(n,Fq).

3. Representation Theory of GL(n,Fq)

We focus on Grassman codes Gk,n(Fq) that were described in the introduction as
[n, k]q−codes by considering an action (1) of the general linear group GL(n, q) on the Grass-
mannian. The study of the representation theory of GL(n, q) will allow us to understand
better the orbits of this action that will be characterized in Section 5.

The multiplication in the finite field Fqn is a bilinear map from Fqn × Fqn into Fqn .
Thus it corresponds to a linear map from the tensor product m : Fqn ⊗ Fqn → Fqn . The
symmetric group Sn acts on Fqn via the permutation matrix:

σ · vi = vσ(i), vi ∈ Fqn . (3)

The d-Veronese embedding of Pn(Fq) maps the line spanned by the vector v ∈ Fqn to
the line spanned by v⊗d = v⊗ . . .⊗ v. Thus the symmetric group Sn acts diagonally on
the basis of simple tensors of Fqn .

σ · (vi1 ⊗ . . .⊗ vir ) = vσ(i1) ⊗ . . .⊗ vσ(ir). (4)
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For each partition λ = (λ1, . . . , λk) we consider its Young diagram. The diagram of λ
is an array of boxes, lined up at the left, with λi boxes in the ith row, with rows arranged
from top to botton. For example,

is the Young diagram of the partition λ = (5, 3, 3, 1) with l(λ) = 4 and |λ| = 12. We define
the Schur projection:

cλ :
d⊗

Fqn →
d⊗

Fqn .

Let Sn be the symmetric group of permutations over d elements. Any permutation σ ∈
Sn acts on a given Young diagram by permuting the boxes. Let Rλ ⊆ Sn be the subgroup
of permutations preserving each row. Let Cλ ⊆ Sn be the subgroup of permutations
preserving each column, let cλ = ∑σ∈Rλ

∑τ∈Cλ
ε(τ)στ.

The image of cλ is an irreducible GL(n,Fq)-module, which is nonzero iff the number
of rows is less or equal than dimVλ. All irreducible GL(n,Fq)-modules can be obtained in
this way. Every GL(n,Fq)−module is a sum of irreducible ones.

In terms of irreducible representations of GL(n,Fq), a partition η corresponds to a
finite irreducible representation that we denote as V(η). Since GL(n,Fq) is reductive, any
finite dimensional representation decomposes into a direct sum of irreducible represen-
tations, and the structure constant cη

λ,µ is the number of times that a given irreducible
representation V(η) appears in an irreducible decomposition of the tensor product of the
representations V(λ) ⊗ V(µ). These are known as Littlewood–Richardson coefficients,
since they were the first to give a combinatorial formula encoding these numbers (see [7]).
In terms of the Hopf algebra Λ of Schur functions, let sλ be the Schur function indexed
by the partition λ, we have sλ · sµ = ∑ν kν

λµsν for the product and we get the coefficients

kη
λµ as the structure constants of the dual Hopf algebra Λ∗. These are known as Kronecker

coefficients (see [8,9]) since they appear as expansion coefficients in the Kronecker product
[λ][µ] = ∑ν kλµ[ν] of characters of the symmetric group Sn, as the authors proved in Propo-
sition 4.3 of [2]. Recall that the Schur function sλ attached to the partition λ = (λ1, . . . , λn)
of length less or equal than n is defined by the quotient:

sλ(x1, . . . , xn) =
det(xλi+n−j

i )1≤i,j,≤n

det(xn−j
i )1≤i,j≤0

.

It is a homogeneous polynomial of degree |λ| in x1, . . . , xn. It easily seen that
sλ(x1, . . . , xn, 0) = sλ(x1, . . . , xn). Moreover we can define the Schur function sλ as
the unique symmetric function with this property for all n ≥ l(λ). It is well known that
the Schur functions constitute a basis for the ring Λ of symmetric functions. In addition,
there are at least other three well known bases for the ring Λ of symmetric functions. The
basis ek of k-elementary symmetric functions, the hk complete homogeneous symmetric
functions of degree k and the power sums pk = zk

1 + zk
2 + . . .. This has been applied in

Reed–Solomon coding, that is, for AG codes defined on the projective line P1, as a way
to encode information words. Namely, for each codeword a = (a0, a1, . . . , an), ai ∈ Fq,
let us define an+1 = ∑n

i=1 ai ∈ Fq which is nothing but the first elementary symmetric
function e1. If we consider the variables x1, . . . , xr as a fixed list of nonzero elements in Fq,
then the information word a can be encoded into the codeword d = (d1, . . . , dr), where
di = ∑n

j=1 ajx
j
i . The secret is a0 = −∑r

i=1 di, while the pieces of the secret are the dis.
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3.1. Relation between Littlewood–Richardson Coefficients and Kronecker Coefficients

One can stack Littlewood–Richardson coefficients cν
λµ in a 3D matrix or 3-dimensional

matrix. Intuitively a 3D matrix is a stacking of boxes in the corner of a room. The elements
of the principal diagonal are called rectangular coefficients and are indexed by triples
(λ, µ, ν) = ((in), (in), (in)) of partitions (in) with all their parts equal to the same integer
1 ≤ i ≤ n.

Consider B and C, two 3D matrices, then we define the product matrix B · C as the
3D matrix

B · C = ∏
ν∈P(n),Bν ,Cν∈Mp(n)×p(n)(Q)

Bν · Cν.

Namely, for each index ν fixed, λ and µ run over all partitions P(n) of n. Thus
the coefficients

(
cν

λ,µ

)
λ,µ∈P(n)

are encoded in a matrix of order p(n)× p(n), where p(n)

denotes the number of unrestricted partitions of n, that is, the number of ways of writing
the integer n as a sum of positive integers without regard to order. Thus the product
matrix Bν · Cν is the standard product of square matrices in Mp(n)×p(n)(Q). In particular,
the property of associativity follows easily from the associativity in the vector space
Mp(n)×p(n)(Q).

Proposition 1. Let C be the 3D matrix whose entries are the Littlewood–Richardson coefficients,
and K the 3D matrix of Kronecker coefficients. Then the matrices are inverse one to each other.

Proof. Since cν
λµ and kν

λµ correspond to the structure constants of the Hopf algebra of Schur
functions and its dual one respectively (see Proposition 4.3 of [2]), and the Hopf algebra of
Schur functions is self-dual (see [9]), one gets that the product matrix C · K is the identity
3D matrix I , that is, the matrix whose rectangular coefficients are identically 1. Thus both
matrices are inverse one to each other.

3.2. The Polytope of Triples (λ, µ, η) for Which cη
λ,µ Is Positive

The convex hull in R3 of all triples (λ, µ, ν) with cν
λ,µ > 0 is the Newton polytope

of f (x, y, z) = ∑λ,µ,ν cν
λ,µxλyµzν ∈ C[x, y, z]. Here xλ denotes the monomial xλ1 · · · xλn of

partition degree λ. In particular, when λ = (1r), we have x(1)
r
= er = ∑i1<...<ir xi1 . . . xir ,

the r−th elementary symmetric function. At the other extreme, when λ = (r) we have
x(r) = pr = ∑ xr

i , the r−power sum. As we have seen in the previous section, it is clear
that every symmetric function f ∈ Λ is uniquely expressible as a finite linear combination
of the (xλ)λ∈P . Moreover, the following theorem shows that f is the the generating series
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for the Gromov–Witten invariant Nd,g(λ, µ, ν) counting irreducible plane curves of given
degree and genus g passing through a generic configuration of 3d− 1 + g points on P2(C)
with ramification type at 0, ∞ and 1 described by the partitions λ, µ and ν and simple
ramification over other specified points with |λ| + |µ| + |ν| = d, and these have been
computed by Fomin and Mikhalkin in [10].

Theorem 1. The power series f (x, y, z) = ∑λ,µ,ν cν
λ,µxλyµzν ∈ C[x, y, z], is the generating

series for the Gromov–Witten invariants Nd,g(λ, µ, ν), counting irreducible plane curves of given
degree d and genus g passing through a generic configuration of 3d− 1 + g points on P2(C) with
ramification type at 0, ∞ and 1 described by the partitions λ, µ and ν and simple ramification over
other specified points with |λ|+ |µ|+ |ν| = d.

Proof. Whenever the coefficient cν
λ,µ > 0 is positive consider the corresponding ideal

sheaves Iλ, Iµ and Iν in C[x, y, z] associated with the partitions λ, µ and ν respectively.
Each ideal sheaf determines a curve in C[x, y] via homogenization of the corresponding
monomial ideals. Thus each coefficient represents the number of ideal sheaves on C3

of colength n and degree d equal to the size of the partition, that is the corresponding
3-point Gromov–Witten invariant 〈λ, µ, ν〉0,3,d of the Hilbert scheme Hilbn of n = 2d− 1 +
|ν|+ |µ|+ |λ|+ g distinct points in the plane, or the relative Gromov–Witten invariant
Nd,g(λ, µ, ν) counting irreducible plane curves of given degree d and genus g passing
through a generic configuration of 3d− 1 + g points on P2(C) with ramification type at
0, ∞ and 1 respectively, described by the partitions λ, µ and ν of n (see section 4 of [2]).

Remark 2. The Euler characteristic of each ideal sheaf is fixed and coincides with the Euler
characteristic χ of the polyhedra described in R3 by the convex hull of all triples (λ, µ, ν) with
cν

λ,µ > 0, that is, the Newton polytope of f (x, y, z) = ∑λ,µ,ν cν
λ,µxλyµzν ∈ R[x, y, z]. Thus each

coefficient represents the number of ideal sheaves on C3 of fixed Euler characteristic χ = n and
degree d equal to the size of the partition, that is the corresponding Donaldson-Thomas invariant of
the blow-up of the plane P1 × (C2) with discrete invariants χ = n and degree d.

Remark 3. The Hilbert scheme Hilbn of n points in the plane C2 parametrizing ideals J ⊂ C[x, y]
of colength n contains an open dense set in the Zariski topology parametrizing ideals associated
with configurations of n distinct points. Moreover there is an isomorphism Hilbn ∼= (C2)n/Sn.
In particular, as we showed in [2], any conjugacy class in the symmetric group Sn determines
a divisor class in the T−equivariant cohomology H4n

T (Hilbn,Q), for the standard action of the
torus T = (C∗)2 on C2. The T−equivariant cohomology of Hilbn has a canonical Nakajima basis
indexed by P(n). The map λ→ Jλ is a bijection between the set of partitions P(n) and the set of
T−fixed points HilbT

n ⊂ Hilbn.

Denote the series 〈λ, µ, ν〉Hilbn of 3-point invariants by a sum over curve degrees:

〈λ, µ, ν〉Hilbn = ∑
d≥0

qd〈λ, µ, ν〉Hilbn
0,3,d .

Corollary 1. Let H be the divisor class in the Nakajima basis corresponding to the tautological
rank n bundle O/J → Hilbn with fiber C[x, y]/J over J ∈ Hilbn and ν the corresponding
partition.Then we can recover inductively in the degree d, all the Littlewood–Richardson coefficients
(cν

λ,µ)λ,µ∈P(n).

Proof. The non-negative degree of a curve class β ∈ H2(Hilbn,Z) is defined by d =
∫

β H.

Then via the identification of cν
λ,µ with the 3-point Gromov–Witten invariant 〈λ, H, µ〉Hilbn

0,3,d
where [λ], [µ] are the corresponding classes in H4n

T (Hilbn,Q) associated with the partitions
λ and µ in P(n), we proceed by induction on the degree d as in section 3.6 of [11].
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Remark 4. If we choose the partition ν to be the empty partition ∅, we recover the relative Gromov–
Witten invariants Nd,g(λ, µ) studied by Fomin and Mikhalkin in [10], and by Caporaso and Harris
in [12].

4. Configurations of Points over a Normal Rational Curve

In this section, we study codes defined from a linear series attached to a divisor on the
normal rational curve NRC or equivalently Goppa codes on P1 and hence generalized Reed–
Solomon codes. Assume V is a vector space of dimension n + 1 over a field k equipped
with a linear action, that is, G acts via a representation G → GL(V). We denote by SdV the
d-th symmetric power of V.

Consider the d-Veronese embedding of Pn

PV∗ → PSdV∗ (5)

v 7→ vd,

mapping the line spanned by v ∈ V∗ to the line spanned by vd ∈ SdV∗. In coordinates, if we
choose bases {α, β} for V and {[ n!

k!(n−k)! ]α
kβd−k} for SdV∗ and expanding out (xα + yβ)d,

we see that in coordinates this map may be given as

[x, y]→ [xd, xd−1y, xd−2y2, . . . , xyd−1, yd].

In particular, the homogeneous coordinate ring for the natural projective embedding
of the geometric invariant theory (GIT) quotient (Pd)n//SLd+1 is the ring of invariants for
n ordered points in the projective space up to, projectivity, i.e, if one considers the function
field k(x1, . . . , xd) of the projective space (P)d, the ring of invariants is defined by:

{ f ∈ k(x1, . . . , xd) | ∀σ ∈ SLd+1, σ · f = f }.

Generators for this ring are given by tableau functions, which appear in many ar-
eas of mathematics, particularly representation theory and Schubert calculus. Consider
the hypersimplex:

4(d + 1, n) = {(c1, . . . , cn) ∈ Qn|0 ≤ ci ≤ 1, ∑ ci = d + 1},

for any 1 ≤ d ≤ n− 3 and choose a linearization c ∈ 4(d + 1, n), there is a morphism

ϕ : M̄0,n → (Pd)n//cSLd+1,

sending a configuration of distinct points on P1 to the corresponding configuration under
the dth Veronese map.

The symmetric power Symn Cd of the curve Cd is the quotient of the configuration
space Cn

d of n unordered tuples of points on the normal rational curve Cd by the symmetric
group Sn. Furthermore, we can identify the set of effective divisors of degree d on Cd with
the set of k-rational points of the symmetric power SymnC, that is, SymnC represents the
functor of families of effective divisors of degree n on C.

Lee-Sullivan List-Decoding Algorithm of Reed–Solomon Codes

By definition, the rational normal curve Cd is the image by the d−Veronese embedding
of PV∗ = P1 where V is a 2-dimensional vector space, therefore it is isomorphic to any
curve of genus 0. The action of PGL(2, k) on Pd preserves the rational normal curve Cd.
Conversely, any automorphism of Pd fixing Cd pointwise is the identity. It follows that
the group of automorphisms of Pd that preserves Cd is precisely PGL(2, k). These codes
are just generalized RS codes and they come with efficient decoding algorithms once we
choose a metric consistent with channel errors and search of a set of vectors with given
metric properties as a correcting code. In particular, these codes are consistent with the
Hamming metric ([13,14]). Recall that given two vectors of length n, say U and V, the
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Hamming distance dH(U, V) between U and V is the number of coordinates in which they
differ.

Given a [n, k] RS code C of length n and dimension k, we call d the minimum
(Hamming distance) which attains the Singleton bound n − k + 1. We shall identify
the code with the set of its codewords. A codeword of C is viewed as a polynomial
c0 + c1x + . . . + cn−1xn−1 in the F−vector space F[x], where F is a finite field. In the com-
munication process, when a codeword is transmitted, it can be affected by errors and
erasures. An error occurs when one codeword component is changed into another field
element and an erasure occurs when the received component has an unknown value. The
problem of minimum distance decoding is to find, for any given vector v, the set Cv of
all codewords c ∈ C at minimum distance from v. If Cv contains just one element c, then
the sent codeword coincides with the received codeword and no decoding is needed. The
codewords of minimum weight are the points lying in the intersection of any line and the
curve. K. Lee and M.E. O’Sullivan in [15] describe a list decoding algorithm consisting of
two steps: the interpolation step and the root-finding step. Starting with a set of generators
of the module induced from the ideal for the n points {P1, . . . , Pn}, they convert the gener-
ators to a Gröbner basis of the module in which the minimal polynomial is found. This
results in an efficient algorithm solving the interpolation problem.

Let v be the received vector, and fix n distinct points α1, . . . , αn from F, for each
1 ≤ i ≤ n, let Pi denote the point (αi, vi) by Lagrange interpolation we get the polynomial
hv = ∑n

i=1 vihi ∈ F[x]n, where hi = ∏n
j=1(x− αj), j 6= i so that hi(αj) = 1 if j = 1, and 0

otherwise. Now for m ≥ 1, we define the ideal

Iv,m = { f ∈ F[x, y]|multPi ( f ) ≥ m for 1 ≤ i ≤ n} ∪ {0}.

For f ∈ F[x, y] and u ≥ 1, denoted by degu( f ), the (1, u)−weighted degree of f , that
is, the variables x and y, are assigned weights 1 and u, respectively, and for a monomial
xiyj, we define degu(xiyj) = i + uj.

The goal of the interpolation step is to find a polynomial in Iv,m having the smallest
(1, k− 1)−weighted degree. The codewords of minimum weight are the points lying in the
intersection of any line and the curve. Moreover if wt(v− c) < n− w

m , where w = degk−1( f )
and f is the polynomial representing the word c, then the polynomial hc is a root of f as
a polynomial in y over F[x]. Moreover the set of polynomials (y− hc)iηm−i, 0 ≤ i ≤ m,
where η = ∏n

j=1(x− αj) is a set of generators of Iv,m.
Let Q be the minimal polynomial of Iv,m with respect to the monomial order >k−1

of F[x, y]. We can find Q by computing a Gröbner basis of Iv,m with respect to >k−1. In
Appendix A, we provide Horn’s algorithm to compute sets of indices which are admissible
for the Horn problem. As a result, we provide a set of generators for the algebraic code
induced on the NRC.

Proposition 2. If we consider the set of orbits of Cn
d by the action of finite subgroups of the

symmetric group Sn, we get all possible divisor classes in the group Divn(Cd) of degree n divisors
on Cd.

Proof. Since the symmetric group Sn is generated by 3 elements, a reflection of order 2, a
symmetry of order 3 and a rotation of order n, we get all the divisor classes by quotienting
the configuration space Cn

d of n points on the normal rational curve, by the cyclic group
generated by the rotation, or one of the triangle groups, the dihedral group Dn, the
alternated groups A4, A5 or the symmetric group S4.

5. Notion of Collinearity on the Normal Rational Curve

A permutation matrix σ ∈ GL(n,Fq) acts on the Grassmannian by multiplication
on the right of the corresponding representation matrix. In particular, we are interested
in understanding the orbits by the action of any permutation matrix of GL(n,Fq) and
moreover of any subgroup G contained in GL(n,Fq). Further, it is possible to count the
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orbits of the action in several cases and this is established by the correspondence given in
Theorem 2 between sets of points satisfying certain geometrical conditions and partitions.

Definition 2. An incidence structure S on V is a triple (P ,B, I), where P is a set whose elements
are smooth, reduced points in V, B is a set whose elements are subsets of points called blocks (or
lines in several specific cases) endowed with a relation of collinearity, and an incidence relation
I ⊂ P ×B. If (P, L) ∈ I, then we say that P is incident with L or L is incident with P, or P lies in
L or L contains P.

When the collinearity relation is a symmetric ternary relation defined on triples
(p, q, r) ∈ P ×P ×P by the geometric condition (p, q, r) ∈ B if either p + q + r is the full
intersection cycle of Cd with a k-line l ⊂ Pn(k) with the right multiplicities, or else if there
exists a k-line l ⊂ V such that, p, q, r ∈ l, then the triple (p, q, r) is called a plane section.

1. For any (p, q) ∈ P2(V∗), there exists an r ∈ P(SdV∗) such that (p, q, r) ∈ l. The triple
(p, q, r) is strictly collinear if r is unique with this property, and p, q, r are pairwise
distinct. The subset of strictly collinear triples is a symmetric ternary relation. When
k is a field algebraically closed of characteristic 0, then r is unique with this property,
and we recover the euclidean axioms.

2. Assume that p 6= q and that there are two distinct r1, r2 ∈ P with (p, q, r1) ∈ B and
(p, q, r2) ∈ B. Denote by l = l(p, q) the set of all such rs, then l3 ∈ B—that, is any
triple (r1, r2, r3) of points in which l is collinear. Such sets l are called lines in B.

If V is a 3-dimensional vector space defined over the finite field Fp, then the projective
plane P2(Fp) on V is defined by the incidence structure PG(2, p) = (P(V),L(V), I).

Definition 3.

1. A (k; r)-arc K in PG(2, p) is a set of k points such that some r, but not r + 1 of them are
collinear. In other words, some line of the plane meets K in r points and no more than r points.
A (k; r)−arc is complete if there is no (k + 1; r) arc containing it.

2. A k-arc is a set of k points, such that, every subset of s points with s ≤ n points is linearly
independent.

Let q denote some power of the prime p and PG(n, p) be the n-dimensional projective
space (Fp)n+1 ∼= Fq, where n ≥ 2.The normal rational curve C is defined as:

Vn
1 :=

{
Fq(1, x, x2, . . . , xn)| x ∈ Fq

⋃
{∞}

}
.

If q ≥ n + 2, the NRC is an example of a (q + 1)−arc. It contains q + 1 rational points,
and every set of n + 1 points are linearly independent. For each a ∈ (Fp)n+1, the mapping:

Fp(x0, . . . , xn)→ Fp(a0x0, . . . , anxn),

describes an automorphic collineation of the NRC.
All invariant subspaces form a lattice with the operations of “join” and “meet”.
For j ∈ N, let Ω(j) = {m ∈ N|0 ≤ m ≤ n, (m

j ) 6= 0 mod p}. Given J ⊂ {0, 1, . . . , n},
put Ω(J) =

⋃
j∈J Ω(j), Ψ(J) :=

⋃
j∈J{j, n− j}.

Both Ω and Ψ are closure operators on {0, 1, . . . , n}. Likewise the projective collineation
Fp(x0, x1, . . . , xn) → Fp(xn, xn−1, . . . , x0) leaves the NRC invariant whence Λ has to be
closed with respect to Ψ. Any algebraic-geometric code constructed by evaluation of a
function over the NRC with values in Fq is a generalized Reed–Solomon code of length at
most q. In order to get longer codes, one needs to use elements from any finite extension
Fr

q of Fq.
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Proposition 3. Each subspace invariant under collineation of the NRC is indexed by a partition in
P(t). If the ground field k is sufficiently large, then every subspace which is invariant under all
collineations of the NRC is spanned by base points kcλ, where λ ∈ P(t).

Proof. Let
Et

n := {(e0, e1, . . . , en) ∈ Nn+1| e0 + e1 + . . . + en = t},

be the set of partitions of t of n parts and let Y be the (n
t)−dimensional vector space over

Fp with basis
{ce0,e1,...,en ∈ Fq : (e0, e1, . . . , en) ∈ Et

n}.

Let us call V t
n the Veronese image under the Veronese mapping given by:

Fp(
n

∑
i=0

xibi)→ Fp(∑
Et

n

ce0,...,en xe0 xe1
1 · · · c

en
n ), xi ∈ Fp.

The Veronese image of each r-dimensional subspace of PG(n, p) is a sub-Veronesean
variety V t

r of V t
n, and all those subspaces are indexed by partitions in P(t). Thus by a

Theorem due to Gmainer are invariant under the collineation group of the normal rational
curve (see [16]).

The k-rational points (p0, p1, · · · , pn) of the normal rational curve C correspond to
collinear points on C that are defined over some Galois extension l of k and permuted by
Gal(l/k).

5.1. An Application: Three-Point Codes on the Normal Rational Curve

As we showed in Proposition 3, each subspace invariant under collineation of the
NRC is indexed by a partition λ ∈ P(d). Let us call the base point associated with the
partition λ as Pλ. As we are considering that the ground field is Fq, the Fq-points might
be defined over a finite extension Fqr of Fq. Observe that for any divisor r of n, one easily
obtains a extension field of Fq of degree r. Namely, let ξ a non-trivial r−root of unity,
one can consider the symbols ξqr

, . . . , ξq, ξ and the polynomial which has them as roots,
q(x) = ∏i=r

i=0(1− ξqi
) gives an extension field of Fq of degree r.

Theorem 2. Let σ1, σ2, σ3 be three generators for the symmetric group Sd and let λ1, λ2 and λ3 be
the partitions of d indexing the corresponding irreducible representations in the special linear group
SL(n,Fq). Then any algebraic code defined over the NRC is covered by a divisor defined as linear
combination of the base points (Pλi )1≤i≤3 on the NRC, where the λi are LR coefficients.

Proof. Consider the divisors associated with the rational maps f (x, y, z) = nx + my + lz
defined over the normal rational curve Cd defined over Fq, with n, m and l integer numbers.
In particular, if d| q2− 1, the points P = (α, 0, 0), Q = (0, β, 0) and R = (0, 0, γ) with αd = 1,
βd = 1 and γd = 1, are Fq2−rational points on Cd, and the divisors nP, mQ and lR define
codes on it. Reciprocally, given a code on the NRC, by Proposition 2, the corresponding
divisor defining the code is defined by a finite subgroup in the symmetric group. Since
the symmetric group is generated by the 3 elements σ1, σ2 and σ3, the divisor is a linear
combination of the base points (Pλi )1≤i≤3 on the NRC.

5.2. Conclusions

In [17], the authors considered a particular class of block codes known as quasi-cyclic
codes as orbit codes in the Grassmannian parameterizing constant dimension codes. In
the present paper we have focused on RS codes that can also be viewed as orbit codes
in the Grassmannian through the action of PGL(n, q), the collineation group of the NRC.
This approach could be extended to study a wide class of codes, including convolutional
codes with two states known as 2D finite support convolutional codes of rate k

n , which are
defined as free F[z1, z2]−submodules of F[z1.z2]

n with rank k.
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Appendix A. Explicit Presentation of 3-Point Codes

In this section, we provide Horn’s algorithm to compute sets of indices which are
admissible for the Horn problem. As a result, we provide a set of generators for the
algebraic code induced on the NRC. Given sets I, J, K ⊂ {0, 1, . . . , n}, of cardinality r, we
can associate to them partitions λ, µ and ν as follows. Let I = {i1 < . . . ,< ir} ⊂ {1, . . . , n};
then the corresponding partition is defined as λ = (ir − r, . . . , i1 − 1). We consider the
corresponding codes defined by the base points cλ, cµ and cν, whenever the corresponding
Littlewood–Richardson coefficient cν

λ,µ is positive. Next, we give an algorithm to compute
the Littlewood–Richardson coefficients cν

λ,µ. Horn defined sets of triples (I, J, K) by the
following inductive procedure (see [7]):

Un
r = {(I, J, K)| ∑

i∈I
+∑

j∈J
= ∑

k∈K
k + r(r + 1)/2},

Tn
r = {(I, J, K) ∈ Un

r | f or all p < r and all (F, G, H) ∈ Tr
p,

∑
f∈F

i f + ∑
g∈G

jg ≤ ∑
h∈H

kh + p(p + 1)/2}.

Note that Horn’s algorithm produces all the triples from the lowest values. Even if
it is possible to start with a random generator set I, you need first to compute the lower
values. As a consequence of the classification Theorem 2, for any triple (I, J, K) of indices
admissible for the Horn problem the polynomials defined by f (x) = ∏j∈J(x− αj), g(x) =
∏i∈I(x − αi), and h(x) = ∏k∈K(x − αk) where α is a primitive element of Fqm and m is
the least integer such that n + 1| pm − 1 constitute a set of generators for the ideal of the
corresponding algebraic code in the module of n + 1 Fqm -rational points lying on the NRC.

Here we present a Sage [6] code calculating the Un
r and Tn

r index sets, followed by a
table containing all the cases till n = 4 and r = 3. The algorithm is implemented using
Python: this involves calculate and iterate through r−combination of n−element. The
running time is O((n

r)
3).

from sage.combinat.subset import Subsets

def simple_cache(func):
cache = dict()
def cached_func(*args):
if args not in cache:
cache[args] = func(*args)
return cache[args]
cached_func.cache = cache
return cached_func
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@simple_cache
def getUnr(n, r):
if r >= n:
raise ValueError(‘‘r must be less than n: (n, r) =
(%d, %d)’’ %(n, r))
s = Subsets(range(1, n + 1), r)
candidates = [(x, y, z) for x in s for y in s for z in s]
return [tuple(map(sorted, (x, y, z))) for (x, y, z) in candidates if (
sum(x) + sum(y)) == (sum(z) + r * (r + 1)/2)]

def index_filter(sub_index, index):
if max(sub_index) > len(index):
raise ValueError(‘‘%s must be valid indexes for %s’’
% (sub_index, index))
# our indexes lists start at 1
return [index[i - 1] for i in sub_index]

def condition((f, g, h), (i, j, k)):
p = len(f)
return sum(index_filter(f, i)) + sum(index_filter(g, j)) <= sum(
index_filter(h, k)) + p*(p + 1)/2

def genTillR(r):
return [getTnr(r, p) for p in range(1, r)]

@simple_cache
def getTnr(n, r):
if r == 1:
return getUnr(n, 1)
else:
return [(i, j, k) for (i, j, k) in getUnr(n, r) if all(
all(condition((f, g, h), (i, j, k)) for (f, g, h) in triplets)
for triplets in genTillR(r))]

Here we list code’s remarks

• The sorted() mapping function in getUnr() is necessary because the order of ele-
ments in Subsets is unknown;

• There is a 1-offset between index in Python lists and index sets we use;
• The recursion in getTnr() is factored out in getTillR() call;
• The cache decorator mitigates the perils of performing the same calculation several

times in a function that is already heavily recursive;
• Results are limited by constraints Python has on recursive function calls;
• The filtering performed on Un

r to get Tn
r is implemented by two nested calls to all().



Mathematics 2021, 9, 578 15 of 16

(n, r) Un
r Tn

r

(2, 1)
({1}, {1}, {1}), ({1}, {2}, {2}),
({2}, {1}, {2})

({1}, {1}, {1}), ({1}, {2}, {2}),
({2}, {1}, {2})

(3, 1)
({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({2}, {1}, {2}),
({2}, {2}, {3}), ({3}, {1}, {3})

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({2}, {1}, {2}),
({2}, {2}, {3}), ({3}, {1}, {3})

(3, 2)

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {2, 3}, {2, 3}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}),
({2, 3}, {1, 2}, {2, 3})

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {2, 3}, {2, 3}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}),
({2, 3}, {1, 2}, {2, 3})

(4, 1)

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({1}, {4}, {4}),
({2}, {1}, {2}), ({2}, {2}, {3}),
({2}, {3}, {4}), ({3}, {1}, {3}),
({3}, {2}, {4}), ({4}, {1}, {4})

({1}, {1}, {1}), ({1}, {2}, {2}),
({1}, {3}, {3}), ({1}, {4}, {4}),
({2}, {1}, {2}), ({2}, {2}, {3}),
({2}, {3}, {4}), ({3}, {1}, {3}),
({3}, {2}, {4}), ({4}, {1}, {4})

(4, 2)

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {1, 4}, {1, 4}),
({1, 2}, {1, 4}, {2, 3}),
({1, 2}, {2, 3}, {1, 4}),
({1, 2}, {2, 3}, {2, 3}),
({1, 2}, {2, 4}, {2, 4}),
({1, 2}, {3, 4}, {3, 4}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {1, 4}),
({1, 3}, {1, 3}, {2, 3}),
({1, 3}, {1, 4}, {2, 4}),
({1, 3}, {2, 3}, {2, 4}),
({1, 3}, {2, 4}, {3, 4}),
({1, 4}, {1, 2}, {1, 4}),
({1, 4}, {1, 2}, {2, 3}),
({1, 4}, {1, 3}, {2, 4}),
({1, 4}, {1, 4}, {3, 4}),
({1, 4}, {2, 3}, {3, 4}),
({2, 3}, {1, 2}, {1, 4}),
({2, 3}, {1, 2}, {2, 3}),
({2, 3}, {1, 3}, {2, 4}),
({2, 3}, {1, 4}, {3, 4}),
({2, 3}, {2, 3}, {3, 4}),
({2, 4}, {1, 2}, {2, 4}),
({2, 4}, {1, 3}, {3, 4}),
({3, 4}, {1, 2}, {3, 4})

({1, 2}, {1, 2}, {1, 2}),
({1, 2}, {1, 3}, {1, 3}),
({1, 2}, {1, 4}, {1, 4}),
({1, 2}, {2, 3}, {2, 3}),
({1, 2}, {2, 4}, {2, 4}),
({1, 2}, {3, 4}, {3, 4}),
({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {1, 4}),
({1, 3}, {1, 3}, {2, 3}),
({1, 3}, {1, 4}, {2, 4}),
({1, 3}, {2, 3}, {2, 4}),
({1, 3}, {2, 4}, {3, 4}),
({1, 4}, {1, 2}, {1, 4}),
({1, 4}, {1, 3}, {2, 4}),
({1, 4}, {1, 4}, {3, 4}),
({2, 3}, {1, 2}, {2, 3}),
({2, 3}, {1, 3}, {2, 4}),
({2, 3}, {2, 3}, {3, 4}),
({2, 4}, {1, 2}, {2, 4}),
({2, 4}, {1, 3}, {3, 4}),
({3, 4}, {1, 2}, {3, 4})

(4, 3)

({1, 2, 3}, {1, 2, 3}, {1, 2, 3}),
({1, 2, 3}, {1, 2, 4}, {1, 2, 4}),
({1, 2, 3}, {1, 3, 4}, {1, 3, 4}),
({1, 2, 3}, {2, 3, 4}, {2, 3, 4}),
({1, 2, 4}, {1, 2, 3}, {1, 2, 4}),
({1, 2, 4}, {1, 2, 4}, {1, 3, 4}),
({1, 2, 4}, {1, 3, 4}, {2, 3, 4}),
({1, 3, 4}, {1, 2, 3}, {1, 3, 4}),
({1, 3, 4}, {1, 2, 4}, {2, 3, 4}),
({2, 3, 4}, {1, 2, 3}, {2, 3, 4})

({1, 2, 3}, {1, 2, 3}, {1, 2, 3}),
({1, 2, 3}, {1, 2, 4}, {1, 2, 4}),
({1, 2, 3}, {1, 3, 4}, {1, 3, 4}),
({1, 2, 3}, {2, 3, 4}, {2, 3, 4}),
({1, 2, 4}, {1, 2, 3}, {1, 2, 4}),
({1, 2, 4}, {1, 2, 4}, {1, 3, 4}),
({1, 2, 4}, {1, 3, 4}, {2, 3, 4}),
({1, 3, 4}, {1, 2, 3}, {1, 3, 4}),
({1, 3, 4}, {1, 2, 4}, {2, 3, 4}),
({2, 3, 4}, {1, 2, 3}, {2, 3, 4})
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