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Abstract: This paper proposes a feature selection method that is effective in distinguishing colorectal
cancer patients from normal individuals using K-means clustering and the modified harmony
search algorithm. As the genetic cause of colorectal cancer originates from mutations in genes, it is
important to classify the presence or absence of colorectal cancer through gene information. The
proposed methodology consists of four steps. First, the original data are Z-normalized by data
preprocessing. Candidate genes are then selected using the Fisher score. Next, one representative
gene is selected from each cluster after candidate genes are clustered using K-means clustering.
Finally, feature selection is carried out using the modified harmony search algorithm. The gene
combination created by feature selection is then applied to the classification model and verified
using 5-fold cross-validation. The proposed model obtained a classification accuracy of up to 94.36%.
Furthermore, on comparing the proposed method with other methods, we prove that the proposed
method performs well in classifying colorectal cancer. Moreover, we believe that the proposed model
can be applied not only to colorectal cancer but also to other gene-related diseases.

Keywords: feature selection; colorectal cancer; gene expression; K-means clustering; modified
harmony search

1. Introduction

Colorectal cancer (CRC) is the third most common cause of cancer mortality and
accounts for 11% of all cancer diagnoses worldwide [1,2]. Gender-wise, CRC is the third
most common cancer among men and the second most among women [3]. Furthermore,
as the incidence rate of young people with CRC is gradually increasing, the average age
of people with CRC is also decreasing. The average age for CRC diagnosis in the United
States was 72 years between 2001 and 2002, which decreased to 66 years between 2015 and
2016 [4]. Therefore, the importance of early diagnosis of CRC is being increasingly felt.

The major causes of CRC are smoking, obesity, and poor lifestyle and eating habits, all
of which are acquired factors. It has been statistically shown that the risk for CRC is higher
in developed countries [5]. Excessive consumption of animal fat and meat, especially red
meat, acts as a risk factor for CRC. Nevertheless, cancer incidence due to various acquired
or environmental factors can be substantially reduced by changing lifestyle patterns.

Meanwhile, genetic factors account for 10–30% of all CRC cases. However, the inci-
dence of CRC due to genetic factors is significantly higher than that due to acquired factors.
Representative examples include familiar adenomatous polyposis (FAP) and hereditary
non-polyposis colorectal cancer (HNPCC). FAP causes several or thousands of adenomas
to develop on the wall of the colon, and almost 100% of them develop into cancer in
adulthood. Considering 95% of patients develop cancer before 45 years of age, prevention
through early diagnosis is necessary. HNPCC develops at an early age and is more common
than FAP, and the risk of CRC in immediate family members increases by 2–3 times [6].
Therefore, it is important to identify through testing the genes involved in the development
of CRC.
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Cancer is caused by genetic mutations in normal cells. Genes, the unit of function in
human DNA, encode proteins, and these proteins then determine cell functions [7]. Gene
expression refers to the process of producing a protein, the final product of DNA. Genetic
information is transcribed into mRNA and translated by the amino acid sequence of the
protein. Translated genetic information catalyzes biological reactions or forms of specific
structures and is expressed in cells and individuals. During this process, when a gene
becomes abnormal, it creates the wrong protein and mutations take place. CRC due to
genetic reasons is caused when one such process occurs. Mutant genes that cause disease
can be identified through special genetic tests. These state-of-the-art tests enable early
diagnosis, treatment, and active prevention, but they are expensive and suffer from the
disadvantage that the patient has to wait for approximately a month for the test results. In
addition, it is not easy to identify the mutant gene using these tests as the probability of
having a gene that causes CRC is 3–5%, considering the total number of genes that make up
the human body [8]. It is difficult to choose a small number of genes compared to the high
cost of genetic testing and the total number of genes. Our proposed method can overcome
the aforementioned difficulties and help diagnose genetic CRC.

We propose the following feature selection method. First, candidate genes are selected
for distribution between normal and abnormal classes using the Fisher score [9]. Based on
the data selected as a subset, K-means clustering is performed and representative genes for
each cluster are found [10]. Subsequently, using the harmony search (HS) algorithm, repre-
sentative genes are searched for the optimal combination, which leads to high classification
accuracy by using only a few genes [11].

2. Related Work

DNA information is an important factor in predicting genetic diseases. However,
diagnosis can be difficult in unpredictable situations due to the large amount of data
or genetic mutations. In recent years, with the progress made in the field of artificial
intelligence, research on predicting diseases using only biological data has been actively
conducted. Several studies have predicted CRC using the information on CRC genes
published by the Princeton University Gene Expression Project.

In the above study, data were analyzed with random ensembles, and a support
vector machine (SVM) was used as a classifier to predict CRC based on cancer gene
information [12]. They created a random ensemble application using a new C++ class and
the NEURObjects library [13].

There is also a study on feature selection using K-means clustering [14], wherein
classification performance was compared using known methods, such as mRMR, Clus-
tering+mRNR, SVM-RFE, Clustering+SVM-RFE, HSIC-LASSO, and Clustering+HSIC-
LASSO.

3. Materials and Methods

For the 6500 human genes provided in [15], the expression levels of 40 tumors and
22 normal colon tissues were used. In this study, we used the information of 2000 genes
with the highest minimum intensity among all samples. We attempted to classify CRC
using the information on 2000 CRC genes from 62 people provided by the Princeton
University Gene Expression Project. All data used in the experiment is either 3′ UTR or
gene. 3′ UTR strictly controls gene expression in normal cells [16].

Figure 1 represents the step-by-step process proposed in this paper. The parameters
and their corresponding values used in the experiment are described in the process of each
step.
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Figure 1. Scheme of proposed methods.

First, the data are normalized using Z-normalization [17]. Candidate genes are selected
using the Fisher score with normalized data. Next, candidate genes selected using K-means
clustering are classified, after which representative genes to be used for CRC prediction
are selected within each cluster. Finally, the selected representative genes are searched
for multiple gene combinations using the HS method. The combination obtained is then
verified using a 5-fold validation method.
• Z-normalization

Normalization plays a role in reflecting all data values with the same degree of
importance. The formula for Z-normalization is the same as in (1), where x is the original
normalized value, µ is the mean of the data, and σ is the standard deviation of the data.
As for the normalized value, the mean of the genetic information values has a significant
influence on the normalization. If the extracted value matches the mean of the genetic
information, it is normalized to zero. If the extracted value is less than the mean, it is
normalized to a negative number, and if the extracted value is greater than the mean, it
is normalized to a positive number. The normalized negative and positive numbers are
determined by the standard deviation of the genetic information value. If the range of
the data values is large, that is, if the standard deviation is large, the normalized value
approaches 0.

z =
x− µ

σ
(1)

We normalized by substituting the original genetic information value into (1). Table 1
shows the values applied with Z-normalization of Attribute 1—one of each genetic infor-
mation values for each patient. The number of patients included in the actual experiment
was 62, but Table 1 only shows, as an example, the value of Attribute 1 for 12 patients.
The average of Attribute 1 gene information of 62 people was 7015.78671. The average of
Attribute 1 is subtracted from the patient’s genetic information value and divided by the
standard deviation of the gene information, 3092.970584. As a result of this, a normalized
number is obtained, as listed in Table 1, which applies to all data.
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Table 1. Z-normalized values of 12 patients corresponding to Attribute 1.

Patient Number Attribute 1 After Z-Normalization

1 8589.4163 0.508776126

2 9164.2537 0.694628976

3 3825.705 −1.031397365

4 6246.4487 −0.248737577

5 3230.3287 −1.223890725

6 2510.325 −1.45667784

57 4653.2375 −0.763844707

58 4972.1662 −0.660730665

59 9112.3725 0.67785507

60 6730.625 −0.092196709

61 6234.6225 −0.252561151

62 7472.01 0.147503275

• Fisher Score
The combination to consider for selecting a small number of genes that distinguish

colorectal cancer with 2000 genetic information values is near infinite. The main purpose
of this process is to select candidate genes that are easy to classify using the Fisher score.
Incidentally, this process reduces the number of combinations and serves as the basis for
the selection of representative genes. It also reduces redundancy for genes with similar
characteristics and reduces the time complexity for experiments. The Fisher score is one
of Newton’s methods and is used for maximum likelihood estimation in statistics [18].
The score calculated using the Fisher score is represented by (2). Xi

A and Xi
B indicate

the average gene information value of gene i for a normal person and a person with a
cancer gene, respectively, and σi

A and σi
B indicate the standard deviation of the gene i for

a normal person and a person with a cancer gene, respectively.

Si =

(
Xi

A − Xi
B
)2

(σi
A)

2
+ (σi

B)
2 (2)

Here, the i data refer to the gene information values of normal people and patients
with CRC gene information. As the original data are already labeled for classification,
the level of expression of gene i for classification can be evaluated. As the Fisher score
increases, the difference between the distribution of the ith class and the jth class also
increases. Therefore, we selected the top 1000 genes in the order of the highest Fisher score
as candidate genes to be used in the next feature selection step.
• K-means Clustering

We used K-means clustering, an unsupervised learning method, to find representative
genes from 1000 candidate genes selected using the Fisher score. In K-means clustering,
clusters are created based on the nearest centroid, that is, the mean, in a group. Here,
K-means clustering is carried out using the average of the data. When n data of (x1, x2, ...,
xn) are divided into k clusters, the process can be expressed as

C =
k

∑
i=1

k

∑
i=1

rnk||xn − uk||2 (3)

From each cluster’s data, the sum of the distances to the mean of the cluster is squared,
and each value must be obtained when C becomes the minimum. Uk means that the vector
belongs to the kth cluster and is placed in the center of the kth cluster. Therefore, the first
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Uk is an arbitrary initial value and is the center of the cluster. After fixing the Uk value, the
rnk value that minimizes C is found. When xn belongs to the kth cluster, the value of rnk is
1; otherwise, it is 0. When the value of rnk is obtained, the newly obtained value of rnk is
fixed and Uk is determined again. This process is repeated for a predetermined number of
times or until the result of repetitive learning becomes meaningless.

In this study, the number of clusters was set to 20. The cluster consists of samples
divided for the classification of CRC. Using all 1000 genes for feature selections, 20 repre-
sentative genes were selected to account for diversity. In each cluster, the gene whose infor-
mation data were closest to the median value was designated as the representative gene of
the cluster. We used the cosine distance to calculate the distance between the data and the
median. The cosine distance between u and v can be calculated using (4). The weights for
each value is u and v. We compute the cosine distance using a scipy.spatial.distance library.

w = 1− u · v
||u||2||v||2

(4)

• Modified Harmony Search (MHS)
The HS algorithm is an evolutionary computation algorithm inspired by the process

involved in musicians’ improvising a harmony. Harmony Search is being applied to
research using biodata. Hickmann et al. conducted a weekly prediction of seasonal
influenza based on Wikipedia access and CDC influenza-like illness (ILI) reports [19].
They formed 50% and 95% confidence intervals for the 2013–2014 ILI observations. In the
HSWOA method that combines HS and WOA (Whale Optimization Algorithm), a study
was conducted to show the accuracy of hybridization reactions through DNA sequence [20].
Comparative analysis was conducted with NACST/.Seq [21], DEPT [22], H-MO-TLBO [23],
and MO-ABC [24], and the average fitness of HSWOA was higher than that of the four
algorithms. Additionally, there is a COA-HS algorithm that combines Harmony Search
with cancer gene selection [25]. Their algorithm seeks to overcome the dimensional curse
problem and is aimed at selecting meaningful genes. There is also a study proposing a
metaheuristic harmony search algorithm that effectively predicts the structure of RNA
as well as DNA [26]. Harmony Search is also applied to studies to reduce hand tremors
for Parkinson’s disease rehabilitation and the intensity of magnetic fields transmitted to
the brain [27]. In this study, the existing HS process was modified and used as a feature
selection method. The existing HS algorithm involves a total of four steps.

Step 1. Initializing parameters and harmony memory
The first step is to initialize the variables and harmony so as to implement the harmony

memory. To use this algorithm, we need to know the meaning of the parameters. As HS is
an evolutionary algorithm, it can be compared to a genetic algorithm. The genes, which
are basic elements of the chromosome in the genetic algorithm, are the same as the musical
tones, which are the basic elements of a harmony vector. Harmony memory size (HMS)
refers to the number of harmonies in one harmony memory. Harmony vectors are randomly
initialized at the start of the HS method implementation, and previous harmony values are
used when an iteration is performed later.

Step 2. Creating a new harmony
This is the stage where one can adjust the ratio for combination and create a new

harmony and obtain a wide range of combinations. A group of harmonies as many as HMS
is created within one harmony memory. One harmony vector is randomly selected within
the same location of each harmony memory. The selected harmony vector becomes a new
harmony vector at the corresponding position. New values at a location corresponding to
each variable in the harmony are gathered to create a new harmony. Harmony memory
considering rate (HMCR) is a probability value for creating a new harmony mentioned in
the above process. 1-HMCR is the probability of randomly initializing a harmony vector
when creating the first harmony, after which a new harmony is created and added to the
harmony memory. The pitch adjusting rate (PAR) is the probability of providing a variation
to the harmony vector. This is to obtain a diverse set of combinations.
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Step 3. Updating harmony memory
In this step, the newly generated harmony vector is evaluated. The importance of the

harmony is tested based on the objective function value (fitness value) of the harmony. If
the new harmony vector generated in Step 2 has better function value than the worst fit
one in the harmony memory, the new vector is included in the harmony memory and the
lowest one is removed.

Step 4. Repeating Steps 2 and 3.
Steps 2 and 3 are repeated as many times as the specified iteration. With each iteration,

the harmony with the lowest fitness is removed, and thus, various combinations are
generated with the harmony of high fitness.

However, we propose a new method of feature selection by modifying the existing
HS. The related pseudocode is shown in Algorithm 1.

Algorithm 1. Pseudocode of Modified Harmony Search Algorithm

1. Set the parameters BDR, HMS, HMCR, PAR
2. Set itr: =0 {iteration initialization}
3. Initialize Harmony with 0 and 1 (binary value)
4. BDR = HMS*0.2 //set the upper and lower area boundary
5. For (i = 1: i ≤ HMS) then
6. generate initial Harmony
7. End for
8. Repeat
9. For (J = 1: N) then //Harmony search in upper area
10. xnew = Randomly select from x1J to x(BDR)J
11. end for
12. generate new Harmony (xnew)
13. If (Rand(0,1) < HMCR) then //Harmony search in lower area
14. For (J = 1: N) then
15. xnew = Randomly select from x(BDR+1)J to x(HMS)j
16. If (Rand(0,1) < PAR) then
17. xnew = |xnew − 1|
18. end if
19. end for
20. generate new Harmony (xnew)
21. else
22. generate new Harmony randomly
23. end if
24. if (fit(HMnew(upper, lower)) < fit( HMold))
25. update harmony memory
26. end if
27. set itr+=1
28. until (itr < maxit)
29. Get the best harmony

Step 1. Initializing variable and harmony
To create a combination with 20 representative genes, the harmony vector is first

initialized to 0 and 1. Zero means that the representative gene information value in the
index is not used as a feature for classification, and 1 means that it is used as a feature for
classification. HMCR is 0.9, PAR is 0.1, and the number of iterations (itr) is 500. HMS is set
to 30.

Step 2. Creating new harmony and dividing harmony memory
This step is a modified part of the existing HS for this study. The process of creating a

new harmony memory is the same as the existing HS algorithm, but the experiment was
conducted by dividing the harmony memory into two areas, as shown in Figure 2.
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Figure 2. Divided harmony memory.

The upper area is composed of harmonies having the fitness of the top 20% within one
harmony memory. HMCR and PAR are not used for this area. Therefore, new harmony
is not added by initialization. Rather than creating the diversity of combinations, when
the combination is recombined within the harmony of the upper area, a combination of
higher fit could be found, after which new harmonies are created. In the second area, which
is the lower area in harmony memory, new harmonies are created using the existing HS
algorithm, that is, by using HMCR and PAR.

Step 3. Updating harmony memory
Goodness-of-fit is the classification accuracy obtained by applying the classification

model used in the paper with the combination selected from the harmony. The fit is
calculated according to each harmony value and is arranged in the order of the harmony
with high fitness. As two new harmonies are created in Step 2, the two old harmonies with
the lowest fit that are aligned as shown in Figure 3 are removed to match the size of the
HMS that was initially specified.
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Figure 3. Elimination of two worst harmonies.

Step 4. Repeating Steps 2 and 3
There is no newly modified process at this stage. Repeat Steps 2 and 3 as many as the

iteration. As the number of repetitions increases, the upper region finds harmonies with a
higher degree of fitness within the combination with higher suitability, whereas the lower
region maintains the advantages of the existing HS, that is, finding combinations according
to diversity. As the number of iterations increases, the highest classification accuracy of
two areas within one harmony memory is stored in a text file, and the accuracy changes as
the iterations’ progress is confirmed.
• Classification and Validation

We used an artificial neural network (ANN) as a classifier [28]. An ANN is a network
created by abstracting neurons in the brain. Figure 4 shows the structure of the ANN used
in our study. The input and the hidden layers are composed of five nodes. The output
layer consists of one node, and the sigmoid function is used as the activation function.
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Figure 4. Structure of ANN (artificial neural network).

We used K-fold cross-validation as an experimental verification technique [29]. All
data were used as a test set at least once to increase the reliability of data verification.
Figure 5 shows the process of training and testing data divided using 5-fold cross validation.
Furthermore, the combination of features selected for HS was verified through 5-fold cross-
validation.
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Figure 5. 5-fold cross-validation data segmentation.

4. Results

A total of 1000 candidate genes selected out of 2000 genes through the Fisher score
were divided into 20 clusters by using K-means clustering. The optimal number of clusters
was determined using the inertia value in the scikit. Figure 6 shows the inertia value
according to the number of clusters. The lower the inertia value, the closer the distance
between the values inside the cluster and the centroid. The smaller the inertia value, the
higher the degree of aggregation of the data in the cluster can be evaluated. However, too
many clusters can confuse the classification.
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LogitBoot 2000 85.48 

Random Forest 2000 84.10 

SVM 2000 82.26 

Two-way clustering 2000 87.10 

Chameleon algorithm 5 85.48 

Figure 6. Inertia value according to the number of clusters.

The representative genes selected through cosine distance from 20 clusters are as
follows: attribute357, attribute457, attribute750, attribute722, attribute1635, attribute982,
attribute936, attribute1897, attribute1515, attribute316, attribute1069, attribute1170, at-
tribute158, attribute737, attribute640, attribute482, attribute109, attribute980, attribute43,
and attribute1244. Table 2 summarizes the gene information of 62 gene values for 20
representative genes. All values in Table 2 are displayed only to four decimal places. Each
row represents a gene value according to a patient’s attribute, and each column represents
a patient’s gene information value for each attribute.

We selected eight genes from 20 representative genes using the HS feature selection
method. The selected genes were attribute43 (ribosomal protein; Nicotiana tabacum),
attribute737 (monoamine oxidase B), attribute936 (proteasome component), attribute1170
(GST1-Hs mRNA for GTP-binding protein), attribute1244 (mRNA for upstream binding
factor), attribute1515 (grancalcin mRNA), attribute1635 (vasoactive intestinal peptide
mRNA), attribute1897 (zinc finger protein mRNA), and the classification accuracy by using
the ANN was 93.46%. Each attribute is closely related to CRC or cancer, and the evidence
for this is supported by several studies [30–36].
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Table 2. 20 representative genes used in modified harmony search expression levels.

357 457 750 722 1635 982 936 1897 1515 316 1069 1170 158 737 640 482 109 980 43 1244 AA

1 −0.1992 0.5071 0.1017 −0.0684 −0.6675 −0.0300 −0.5490 −0.6626 0.1372 −0.0531 −0.3638 −0.6533 −0.5021 −0.3102 −0.2184 −0.8842 −0.8417 0.4786 −0.2234 −0.2627 0

2 −0.7666 0.4399 0.5756 0.3717 0.9967 0.4240 −0.2509 0.4489 −0.0195 −0.6426 1.8825 −0.3336 −0.1146 1.2792 0.3798 −0.4430 0.1098 0.7575 −0.7258 0.0056 1

3 3.0568 −0.1159 1.2351 −0.5044 −0.8140 −0.9917 −0.7655 −0.8108 −1.2720 −1.2896 0.7242 −1.1906 −0.5315 −0.8249 −0.8806 −1.1246 −1.1643 0.2576 −1.3183 −1.0884 0

4 1.2695 −0.0903 0.8739 −0.2384 −0.5939 −0.8132 −0.7175 −0.5897 −0.5017 −0.9306 −0.3337 −0.9889 −0.6994 0.1333 −0.4219 −0.8763 −1.1293 0.3639 −1.0305 −0.7914 1

5 −0.0648 −0.3319 −0.6814 −0.8450 −0.6507 −0.9795 −0.5607 −0.4224 −1.1695 −0.6220 −0.3618 −0.5248 −0.3469 −1.0208 −0.3840 −0.3813 −0.3577 0.3520 0.1902 −0.6380 0

6 −0.2609 −0.4963 −1.1186 −1.2516 −0.2586 −1.0143 −0.7658 0.0749 −1.2676 −0.6466 −0.7588 −0.9889 −0.5115 −0.7993 −0.9140 −0.7159 −1.1862 −0.0364 −0.9349 −0.6244 1

7 −0.6730 0.9887 −0.1339 −0.0290 −0.7465 −0.3074 −0.3726 −0.6688 −0.8856 −0.6814 −0.8619 −0.8984 −0.3543 −1.0381 −0.2699 −0.5531 −0.5336 −0.0188 −0.5576 −0.7322 0

8 −0.6308 −0.1363 −0.8422 −0.4778 −0.3815 −0.7124 −0.3125 −0.6811 −1.2536 −0.3774 −0.3012 −1.0148 −0.1874 −0.3649 −0.6253 −0.4677 −1.0593 1.0362 −1.0438 −0.3638 1

9 −1.0475 2.2475 1.6391 0.1700 −0.8709 0.5576 0.8973 −0.5581 1.4764 0.8136 −0.5818 −0.8986 −0.2457 −0.3360 0.9101 0.9838 −1.0531 0.2195 1.7120 −1.6739 0

10 −0.2550 0.3901 −0.1093 −0.4833 0.5957 −0.7036 −0.5306 0.5286 −1.0627 −0.5627 −0.3806 0.1106 0.9938 −0.5130 −0.1034 −0.2700 0.5369 0.2222 −0.5102 0.4171 1

11 0.4643 3.1825 −0.3754 2.5536 0.3393 3.0958 0.8291 −0.2470 −0.7839 1.0607 −0.1222 3.4112 3.1890 −0.8244 5.5061 2.0606 3.0506 1.6047 1.6041 −0.0807 0

12 1.0635 0.8152 0.8134 0.7939 0.4041 0.7287 −0.3338 0.6967 0.2758 0.0028 1.3968 −0.2761 0.2502 1.4674 0.5655 −0.3176 0.1029 0.0466 0.0120 −0.3680 1

13 −0.3604 −0.3781 −0.5081 −0.0171 −0.2191 −0.6880 0.0041 −0.3768 −0.9954 −0.2205 −0.5420 −0.2176 −0.5044 −0.7372 −0.5431 −0.4008 0.2132 0.3524 −0.0848 −0.2478 0

14 0.6732 −0.6340 −0.5889 −0.7660 −0.0504 −0.9001 −0.5282 −0.1615 −0.7677 −0.4724 −0.5403 −0.8730 −0.8915 −0.5668 −0.7117 −0.7386 −0.4462 0.0252 −0.4674 −0.5418 1

15 0.1503 −0.4892 −0.0644 −0.6390 −0.4183 −0.6987 −0.1476 −0.4740 −0.3908 0.3067 −0.1940 −0.4529 −0.2461 −0.2099 −0.6133 −0.1809 −0.3371 2.8237 0.4598 0.3234 0

16 0.1676 −0.7636 −0.6108 −1.2205 −0.5852 −1.1287 −0.2759 −0.8298 −0.8891 0.1060 −0.8727 −0.8725 −0.8945 −1.0600 −0.9146 −0.3240 −0.0326 0.4168 0.0068 −1.1281 1

17 −0.5718 −0.8460 −1.2704 −0.3834 −0.8923 −0.3836 −0.5605 −0.6439 −1.2231 −0.7155 −0.8652 −0.9879 −1.1323 −0.8553 −0.4576 −0.6124 −0.9954 −1.0213 0.5998 −0.9727 0

18 −0.9664 −0.6742 −1.2115 −0.7833 −0.0885 −0.4719 −0.8443 −0.5524 −1.2840 −1.1437 −0.9806 −1.0695 −1.2193 −0.9612 −0.4430 −0.8493 −1.1887 −0.3629 −1.0256 −0.6510 1

19 −1.0436 −0.2089 −0.6123 −0.2747 −0.9536 −0.6383 −0.2481 −0.6895 −0.7374 −0.1340 −0.7427 −0.7266 −0.9080 −0.8854 −0.0453 −0.1587 −1.2486 −0.3400 0.2375 −0.9134 0

20 −0.2527 0.1530 −1.2221 −0.8715 0.4357 −0.9488 −0.5732 0.0302 −1.3058 −0.5522 −0.7981 −0.6371 −0.1376 −0.9913 −0.6748 −0.6001 −0.9203 −0.0483 −0.3883 −0.1806 1

21 −0.9218 1.0238 0.1857 0.1325 −0.5060 0.6150 −0.0497 −0.6540 0.1856 −1.4646 −0.7467 0.1420 0.1219 −0.2450 −0.0476 −0.2655 −0.1910 0.7110 −0.2819 0.5922 0

22 1.1915 0.5421 0.6284 0.2280 1.4242 0.2572 −0.6487 0.1901 0.1229 −0.4806 0.2446 0.2541 0.4371 0.5256 0.0108 −0.8016 0.4805 1.4955 −0.7911 1.9297 1

23 −0.9997 −1.2956 −1.3319 −0.9966 −0.7991 −1.0448 −0.1708 −0.6968 −1.1930 0.0079 −0.9208 −0.8099 −0.7786 −1.0369 −0.5300 0.1939 −0.1510 0.2602 0.2545 −0.6840 0

24 −1.1251 −1.3200 −1.5176 −1.5869 −0.5999 −1.2172 −1.0349 −0.8018 −1.3932 −1.3848 −1.0472 −1.1924 −1.2572 −1.0503 −0.9622 −1.0551 −1.2676 −1.0237 −1.4197 −1.2531 1

25 2.1527 −0.3799 0.4128 0.0581 −0.6111 −0.2685 −0.0154 −0.5231 0.5592 0.7240 −0.7720 −0.2615 0.0890 −0.5596 −0.3297 0.5333 0.3943 −0.8399 1.5212 −0.0460 0

26 −0.8154 −0.3332 −0.5275 −0.2076 −0.7800 −0.6859 −0.7967 −0.6935 0.0172 −0.8118 −0.7327 0.0515 −0.1746 −0.8941 −0.5018 −0.6701 0.5713 −1.2620 −0.8807 −0.9011 0

27 −0.7735 −0.6015 −0.6106 −0.5381 −0.4543 −0.2415 −0.7473 −0.5819 0.0240 −0.7150 −0.6884 −0.0911 −0.1966 −0.7717 −0.5844 −0.6931 0.1300 −1.3225 −0.7485 −0.8737 0

28 −0.9109 0.5173 1.0975 0.5547 −0.6970 0.2649 0.2318 −0.5522 2.1660 1.0763 −0.0386 0.3183 0.7718 0.4314 0.4805 0.5893 1.3612 −0.5206 0.9256 −0.2098 0

29 −0.5721 2.7545 3.1274 1.9689 −0.0094 1.1863 −0.0478 −0.1891 2.9906 0.4199 0.3571 2.0584 3.0102 −0.1471 1.0052 −0.1387 2.7865 −0.6162 −0.1087 0.4574 0

30 −0.9161 1.6600 1.1954 2.3194 −0.4940 1.7943 0.4048 −0.3110 1.4713 0.4678 −0.3249 1.0437 1.8333 0.1317 0.9502 0.3860 2.1646 −0.3548 0.6085 −0.0898 0

31 −1.1165 0.8826 1.8629 0.2982 −0.3599 0.2675 0.3571 0.3901 2.5001 0.9578 4.1938 0.2754 1.2105 1.0568 −0.0928 0.2485 0.4813 −0.8199 0.3256 0.5439 0

32 −0.9831 −0.1959 −1.3571 −0.4143 0.4154 0.5795 −0.5073 0.1110 −0.9439 −0.7458 −0.4805 0.1408 −0.2808 −1.0085 −0.2011 −0.2811 −0.3807 −1.1552 −0.5167 −0.8709 0

33 −0.4961 −0.0128 −1.1792 −0.2391 −0.5376 −0.3355 −0.3795 −0.6084 −0.9436 −0.1182 −1.0148 −0.3036 −0.0893 −1.0762 −0.4375 0.3608 −0.3553 −1.2858 0.4535 −0.4651 0

34 0.9835 0.1354 0.8543 0.1376 −0.4418 0.0355 0.7054 −0.2009 0.8813 1.0063 0.3341 −0.1728 0.4361 0.3466 −0.1904 0.1423 0.3706 −0.4896 0.3484 −0.3974 0

35 −0.4833 −0.3394 −0.6218 −0.1287 −0.6790 0.1834 −0.3002 −0.5671 −0.1395 −0.4042 −0.2245 −0.3249 −0.6001 −0.8524 −0.2944 −0.3355 −1.0430 −1.0594 −0.8860 −0.8007 0

36 −0.7281 −0.8700 −1.0871 −0.8550 −0.8165 0.0969 0.5636 −0.5480 −0.1181 0.3411 −0.6805 −0.2281 −0.8138 −0.8964 −0.6067 0.6057 −0.4189 −0.8495 0.5910 −1.1440 0
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Table 2. Cont.

357 457 750 722 1635 982 936 1897 1515 316 1069 1170 158 737 640 482 109 980 43 1244 AA

37 −0.3399 3.0909 2.7314 0.6380 −0.2966 −0.2066 −0.4223 −0.7412 0.7620 −0.6222 −0.1975 0.1739 3.1760 −0.7350 0.3958 −0.5145 0.1316 −0.5937 −0.5462 −0.0562 0

38 −1.1911 −0.9283 −1.0429 −1.0896 −0.8135 −0.6132 0.2649 −0.7337 −0.1926 0.4481 −0.8865 0.0863 −0.7292 −1.0073 −0.6858 0.5026 0.2004 −1.0883 1.3413 −1.1143 0

39 −0.3071 −1.2474 0.0860 −1.0948 1.0319 −0.8550 −0.5113 0.4325 −0.1901 −0.4962 0.3330 −0.4471 −0.5249 1.0173 −0.7199 −0.5768 −0.2850 −0.7477 −0.7928 0.4443 1

40 0.2579 −0.6935 −0.3056 0.8062 −0.5388 0.4405 −0.2563 −0.1171 0.4400 0.0777 −0.3132 0.0615 −0.4472 −0.1293 0.3970 −0.2903 0.0332 −0.5678 0.7060 −0.1725 0

41 −0.6221 −1.2147 −0.2310 −0.9927 −0.8238 −0.7229 −0.5687 −0.6551 0.2961 −0.7430 −0.0772 −0.9459 −1.1104 −0.4439 −0.3033 −0.6929 −1.0863 −1.1514 −0.7252 −0.9379 0

42 0.3246 0.1301 −0.0365 0.7536 1.1815 −0.1630 0.2493 0.8735 −0.3192 0.2676 −0.1930 −0.4060 −0.2470 0.7416 0.3565 −0.0454 −0.7271 −0.2528 −0.6329 1.2129 1

43 1.9695 0.9077 0.8436 2.2059 2.5041 1.1565 1.2523 5.0353 0.3198 0.6450 2.0593 1.5501 0.7583 2.0433 0.0396 1.7493 0.7779 0.7293 0.2850 2.0997 1

44 −0.6286 1.0261 0.3036 2.5481 −0.0714 3.8247 2.3460 0.2476 0.7710 1.8683 0.1706 2.3022 0.3095 −0.1948 2.7512 2.0757 1.7530 0.9490 1.9587 0.6909 0

45 1.0009 0.7865 2.4011 1.5617 3.0845 0.8111 0.5197 1.2789 1.8771 1.1289 0.6236 2.5353 1.8333 3.4374 1.2130 0.4487 2.2789 −0.2895 0.0593 3.5573 0

46 2.1343 0.7579 0.0162 2.6774 0.1163 2.1145 3.2065 0.5759 1.0534 3.2313 −0.4136 1.3026 0.8483 0.3653 1.9049 3.1342 0.7206 −0.2964 2.7839 1.5164 0

47 0.7965 0.3297 0.7166 0.4364 0.0677 0.8326 4.9333 −0.0258 1.9736 2.0418 −0.3203 2.9719 1.5455 0.5613 1.3445 4.5603 1.3877 2.1283 2.2865 2.0161 0

48 −0.2596 −0.3361 0.4716 −0.1349 4.0534 −0.1928 0.0167 1.3918 0.4278 −0.2243 1.5200 0.8905 1.2019 1.4025 0.0835 0.0383 0.5237 −0.1815 −1.0054 1.6031 1

49 −0.0226 −0.4900 −0.4330 −0.3172 1.4328 0.0199 −0.6444 0.1271 −0.5104 −0.9655 −0.0533 0.3951 −0.3541 0.9183 0.1715 −0.7495 −0.5247 −0.9193 −1.0624 0.2604 0

50 0.2691 −0.7205 −0.2008 0.2954 1.0927 −1.0150 −0.3882 3.2096 −0.1876 0.6101 0.8424 0.0779 −0.4090 1.3963 −0.1282 −0.0492 1.0513 1.5847 −0.0730 0.8097 1

51 −1.0684 −0.6466 −0.6541 −0.6908 −0.1836 0.3447 −0.5880 −0.5316 0.4261 −0.2238 −0.7169 −0.1310 −0.0254 −0.4201 −0.5104 −0.3398 −0.0721 1.8853 −0.1081 1.6590 1

52 0.3214 −0.0499 0.1444 1.4566 −0.3449 2.2177 2.1168 0.0888 1.0617 3.9229 −0.6109 0.4205 −0.0079 0.4511 0.6379 1.6055 1.0541 3.2448 3.2324 0.6117 0

53 −0.6844 −0.8219 −0.0865 −0.7453 −0.5648 −0.0203 −0.0723 −0.4516 0.3664 0.3297 0.2201 −0.4875 −0.5796 −0.2607 −0.4161 −0.4218 −0.4390 −0.3909 0.5963 −0.0209 0

54 −0.2355 −0.6462 0.6279 −0.3769 0.6364 −0.7139 0.0674 1.7679 0.6581 0.3100 1.5562 −0.2193 0.1656 2.0470 −0.4447 0.0956 −0.7435 0.4457 −0.1701 1.7074 1

55 2.1278 −0.4153 −0.3230 −0.1529 −0.5469 −0.2273 −0.4385 −0.1479 −0.3919 −0.0556 0.1997 0.0787 −0.3176 −0.1840 −0.2261 −0.4615 −0.2847 −0.8512 −0.6685 −0.2232 1

56 0.2032 −0.4662 −0.6407 −0.5504 0.8009 −0.6042 −0.0797 1.3601 −0.4682 −0.4208 0.5604 −0.3195 −0.4353 0.4957 −0.7274 −0.1458 −0.4557 −0.6586 −0.5978 −0.1099 0

57 2.0444 −0.8584 0.8658 −0.9170 −0.7307 −0.6747 −0.7436 −0.2323 −0.0305 −0.4500 3.1704 −0.4119 −0.6079 1.3337 −0.8944 −0.6458 −0.6273 0.9960 −0.7052 −0.3002 0

58 −0.6652 −0.9762 −0.4155 −0.7555 −0.9611 −0.8140 −0.7491 −0.8122 0.0495 −1.1010 0.0414 −0.8919 −1.0581 −0.5954 −0.5056 −0.7965 −0.8875 −1.2378 −0.6453 −1.1103 0

59 −0.3915 −0.6791 −0.6367 −0.6560 −0.3747 0.3404 0.4901 −0.1944 −0.5081 0.3228 −0.3809 0.6629 −0.5926 0.1046 −0.5600 0.3525 1.1441 −0.1059 0.7094 0.4779 0

60 −0.0889 −0.5860 −0.1552 −0.2093 1.5965 0.1178 −0.6404 0.4750 0.2935 −1.1046 0.8902 0.6335 −0.0928 1.8118 0.3945 −0.3636 −0.1894 −0.2347 −1.0748 0.5274 1

61 0.2936 −0.5280 −0.8700 −0.2632 −0.6020 0.0362 −0.0931 −0.6343 0.1302 −0.6866 −0.5733 −0.4376 −0.7027 −0.3033 −0.1950 −0.3600 −0.6969 −0.7171 −0.5882 −0.5232 0

62 1.5230 −0.4513 −0.1981 −0.1999 0.6194 −0.3169 −0.2257 1.2388 −0.3746 −0.2321 0.6893 −0.2619 −0.3217 1.6116 −0.1817 −0.0748 −0.4894 0.3250 −0.4697 0.0995 1
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5. Comparisons with Other Method Surveys

Many researchers have experimented with various classification algorithms using
the colon cancer data provided by the Princeton University Gene Expression Project.
Table 3 shows the number of genes selected in the present study in relation to other
studies and the corresponding classification accuracies. As the range of accuracy can cause
ambiguity in comparison, the representative accuracy of the research papers is shown.
There are comparative papers that perform classification without using feature selection.
Furthermore, there are studies that have used random forest (RF) algorithm [37], support
vector machine (SVM) models [13], two-way clustering [38], and LogitBoot for 10-cross
validation on the data provided by the Princeton University Gene Expression Project [39].
In addition, there are studies that derive classification accuracy through feature selection
by using the Chameleon algorithm [40] and supervised group Lasso [41].

Table 3. Performance comparison of various algorithms.

Method Number of Genes Accuracy (%)

LogitBoot 2000 85.48
Random Forest 2000 84.10

SVM 2000 82.26
Two-way clustering 2000 87.10

Chameleon algorithm 5 85.48
Supervised group Lasso 22 85.48

Z-FS-KM-MHS (our method) 8 93.46

The proposed method achieved the highest accuracy when compared with other
studies, regardless of features being selected and no features being selected. The Chameleon
algorithm selected the fewest features among the comparative studies. However, our
proposed method achieved better accuracy compared with the Chameleon algorithm
(93.46% vs. 85.48%, respectively).

6. Conclusions and Future Works

In this study, in order to classify CRC using gene information, a hybrid method of
normalizing gene information values using Z-normalization, reducing redundant genes
using the Fisher score, selecting representative genes using K-means clustering, and feature
selection using the HS algorithm was proposed. In K-means clustering, selecting represen-
tative genes using the cosine distance is straightforward and effective. The feature selection
method modified from the original HS algorithm maintains high accuracy and improves
classification performance by applying various combinations to the model. The experimen-
tal results showed a classification performance of 93.46% with only eight genes selected
using the proposed method: attribute1635, attribute936, attribute1897, attribute1515, at-
tribute1170, attribute737, attribute43, attribute1244. This can lead to cost-effectiveness due
to fewer genetic tests. In addition, the results of the present study will greatly contribute
in the prediction of not only the CRC gene but also various other genes causing diseases.
For example, hereditary breast or ovarian cancer can also be predicted through genetic
testing using the proposed method [42,43]. It is important to confirm the likelihood of
a cancer gene through genetic testing for people with a family history of cancer-related
diseases or for people who are likely to develop cancer. Therefore, research to predict
cancer by finding a small number of genes according to gene mutations will be actively
conducted in the future. There is a possibility of conducting experiments in different ways.
For example, we can analyze genetic data used in our paper using other methods including
single-particle tracking experiments. Additionally, our proposed methods can be applied
to cancer-tracking time series data or non-genetic data (dietary, smoking or exercise) as
well as genetic data to increase the objectivity and suitability of our model and data [44,45].
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