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Abstract: Nanoplates have been extensively utilized in the recent years for applications in nanoengi-
neering as sensors and actuators. Due to their operative nanoscale, the mechanical behavior of such
structures might also be influenced by inter-atomic material interactions. For these reasons, nonlocal
models are usually introduced for studying their mechanical behavior. Sensor technology of plate
structures should be formulated with coupled mechanics where elastic, magnetic and electric fields
interact among themselves. In addition, the effect of hygro-thermal environments are also considered
since their presence might effect the nanoplate behavior. In this work a trigonometric approach is
developed for investigating smart composite nanoplates using a strain gradient nonlocal procedure.
Convergence of the present method is also reported in terms of displacements and electro-magnetic
potentials. Results agree well with the literature and open novel applications in this field for further
developments.

Keywords: smart nanoplates; sensing plates; actuating plates; strain gradient theory; hygro-thermal
environment; magneto-electro-elastic plates; functionally graded material

1. Introduction

Recently, great attention has been paid to nanostructures composed of materials with
magneto-electro-thermo-elasitc (METE) properties, with a main focus on the magneto-
electro-thermo-mechanical coupling effects. Due to their properties, these materials have
an important role in nano- and micro-electro-mechanical systems (NEMS and MEMS), such
as sensors, actuators and transducers [1–4]. The fields of use of these devices are many and
range from medicine to aerospace and civil engineering [5–10]. Generally, graphene is the
main component of these devices since it is well-known for its stunning electro-mechanical
properties [11].

Due to the high computational cost of atomic models, more and more mechanical theo-
ries are being investigated to predict the nanoscale effects for small-scale structures [12,13]
by using simpler structural theories. These small-scale structures show mechanical size-
dependency in experiments and atomistic simulations [14,15], therefore, classical contin-
uum theories need to be modified to take the small-scale effect into account [16]. Nonlocal
theories have been widely used for the study of nanostructures since Eringen developed
his theory of nonlocal elasticity [17], which considers the nanoscale effects by introducing
one or more length scale parameters in addition to the well-known linear elastic Lamé
parameters. [18–21]. Nonlocal theories are generally presented as—strain gradient [22–25],
stress gradient [26], modified strain gradient [27–29], couple stress [30], modified couple
stress [31,32], integral type [33,34] and micropolar [35–37]. Among others nanobeams [38]
and stress-driven nonlocal integral elasticity has been investigated in [39].
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METE material properties and structures have been extensively studied in recent
years due to the ever-increasing nanoengineering applications. A matrix method for
evaluating effective elastic constants of generally anisotropic multilayered composites
with various coupled physical effects including piezoelectricity, piezomagnetism, ther-
moelasticity has been presented in [40]. Malikan et al. [41] presented the instabilities and
post-buckling behavior of piezomagnetic and flexomagnetic for Bernoulli-Euler type
nanostructures. In [42] a homogenization micromechanical method for the prediction
of the effective moduli of electro-magneto-thermo-elastic composites was developed.
Vinyas et al. in [43,44] investigated the effect of the particle arrangement on the static
response of magneto-electro-thermo-elastic plates composed by BaTiO3–CoFe2O4 us-
ing a finite element formulation. In [45] the effects of different molar ratio on the
microstructure, dielectric and electromagnetic properties of BaTiO3–CoFe2O4 ceramic
were investigated experimentally. In [46], the pyroelectric and pyromagnetic effects on
the behavior of METE plate under different boundary conditions subjected to uniform
temperature is studied. Bacciocchi et al. [47] developed a finite element solution for
the static behavior of laminated nanoplates in a hygro-thermal environment, taking
into account the effect of material length scales, which is described by the nonlocal
strain gradient theory. Static and dynamic analyses of macro and nano functionally
graded (FG) plates was studied using exact three-dimensional elasticity considering
thermal effects in [48]. FG thin structures have recently been presented in [49,50] for
static and dynamic analysis when the inhomogeneity is present at the structural mid-
surface. Functionally graded structures with and without electro-magnetic effects have
been investigated for rectangular microplates [51,52] and circular plates [53–55] also.
The static and dynamic problems for thin and thick METE plates were studied by using
a third order shear deformation theory and the solution was obtained via finite element
method in [56] and via Navier’s solution method in [57]. Magneto-electro elastic effects in
Functionally Graded Materials (FGM) nanoplates were considered in [58]. In [59], bending
and buckling analyses of BaTiO3–CoFe2O4 nanoplates based on nonlocal strain gradient
and modified couple stress are developed. In [60], the thermo-electro-mechanical bending
behavior of a sandwich nanoplate integrated with two piezoelectric face sheets was studied
using the trigonometric shear and normal deformations plate theory. In [61], the free vibration
of magneto-electro-elastic nanoplates was investigated based on the nonlocal strain gradient
theory and Kirchhoff plate theory and considering thermal environment. Gholami et al.
in [62] present higher-order shear deformable plate model for METE rectangular nanoplates
by adopting the nonlocal elasticity theory and Navier’s solution method. In [63–65] a nonlocal
nonlinear first-order shear theory is used for investigating the buckling and free vibration
of METE nanoplates under magneto-electro-thermo-mechanical loads. Mota in [66] investi-
gated the influence of the shear correction factor used in the context of the first-order shear
deformation theory on FG porous materials. Brischetto et al. [67] analyzed the deformations
of a simply supported, functionally graded, rectangular plate subjected to thermo-mechanical
loads using Carrera unified formulation. Again, Brischetto and Carrera [68] investigated
coupled thermo-electro-mechanical effects of smart plates. In [69] an exact solution of static
behavior for nanobeams and nanoplates based on nonlocal elasticity theory is provided.
It is worth to mention recent contributions in the flexo- and piezo-magnetic properties of
nanobeams [70] and structures [71]. As well as hygro-thermo-electro-mechanical coupling
effects of beams [72].

The focus of this paper is the study of the static behavior of functionally graded
nanoplates subjected to mechanical, electrical and magnetic loads in a hygro-thermal envi-
ronment through the use of nonlocal strain gradient theory. After the present introductory
section, the paper is structured as follows. First, the fundamental equations governing
the problem of functionally graded (FG) thin plates in a hygro-thermal environment, con-
sidering piezo-magnetic coupling terms, are described and the governing equation are
carried out via principle of virtual work. The equations above include nonlocal effects by
considering the strain gradient theory. Electric and magnetic fields will be approximated
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by considering the satisfaction of Maxwell equations. Second, the trigonometric solution
is described according to Navier expansion and carried out in algebraic form. Finally,
numerical results are presented by varying mechanical loads and electro-magnetic density
loads. All computations have been performed using a MATLAB code. In the last section,
final considerations and remarks are given in order to describe the most important effects
observed for the present problem.

2. Theoretical Background

In the following, a magneto-electro-thermo-elastic (METE) rectangular thin nanoplate
is considered. A plate sketch is depicted in Figure 1, where its in-plane size a, b and
thickness h are indicated according to a Cartesian reference system (x, y, z) [73].

Figure 1. Functionally graded plate with applied electric ∆V and magnetic potentials ∆Ω.

In the present problem formulation, the METE nanoplate interacts with a hygro-
thermal environment together with electro-magnetic potentials (∆V and ∆Ω, respectively)
applied between the top and bottom surfaces of the plate (please note note vertical axis
points down so the bottom surface is the one for z = −h/2 and the top surface is identified
by z = h/2).

The displacement field considered in the present work is the one according to Kirchhoff
theory [73] where the in-plane displacements are u,v and the transverse motion is indicated
by w. At present, the constitutive equations for the present problem can be reported in
matrix form as

σ = Cε− eE− qH− Cα∆T − Cβ∆C

DE = e>ε + ξE + ζH− p∆T − h∆C

BM = q>ε + ζE + χH− λ∆T − η∆C,

(1)

in which σ is the classical stress vector including σi for i = 1, 2, . . . , 6 (according to Voigt-
Kelvin notation [74]). DE = [Dx, Dy, Dz]> and BM = [Bx, By, Bz]> are the electrical
displacement and magnetic flux vectors, respectively. ε is the classical strain vector in-
cluding εi for i = 1, 2, . . . , 6. E = [E1, E2, E3]

> and H = [H1, H2, H3]
> are the electric

and magnetic field vectors respectively. C is the classical stiffness matrix including Cij
for i, j = 1, 2, . . . , 6. ξ and χ represent the electrical and magnetic permittivity matrices,
respectively. Piezo-electric and piezo-magnetic properties are included in the matrices e, q,
respectively, which in general include 18 independent coefficients. Magneto-electro-elastic
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(MEE) properties are given by ζ. Finally, pyro-electric p, pyro-magnetic λ, hygro-electric h
and hygro-magnetic η are introduced to take into account the hygro-thermal effect on the
electric and magnetic fields. It is mentioned that hygro-thermal effects for the elastic part
are given by α and β, respectively.

For the stress plane state assumption (σ3 = 0), the normal strain ε3 can be carried
out and condensed in the other quantities. Then, the constitutive equations in the case of
orthotropic material and the stress plane state can therefore be rewritten as follows

σ1 =

(
C11 −

C2
13

C33

)
ε1 +

(
C12 − C13

C23

C33

)
ε2 −

(
e31 − C13

e33

C33

)
E3 −

(
q31 − C13

q33

C33

)
H3

−
[(

C11 −
C2

13
C33

)
α1 +

(
C12 − C13

C23

C33

)
α2

]
∆T −

[(
C11 −

C2
13

C33

)
β1 +

(
C12 − C13

C23

C33

)
β2

]
∆C

= Q11ε1 + Q12ε2 − ẽ31E3 − q̃31H3 − (Q11α1 + Q12α2)∆T − (Q11β1 + Q12β2)∆C,

(2)

similarly for σ2 it will be

σ2 = Q12ε1 + Q22ε2 − ẽ32E3 − q̃32H3 − (Q12α1 + Q22α2)∆T − (Q12β1 + Q22β2)∆C (3)

Dz can be written as

Dz =

(
e31 − e33

C13

C33

)
ε1 +

(
e32 − e33

C23

C33

)
ε2 +

(
ξ33 +

e2
33

C33

)
E3 +

(
ζ33 + e33

q33

C33

)
H3

−
(

p3 −
C13

C33
α1 −

C23

C33
α2

)
∆T −

(
h3 −

C13

C33
β1 −

C23

C33
β2

)
∆C

= ẽ31ε1 + ẽ32ε2 + ξ̃33E3 + ζ̃33H3 − p̃3∆T − h̃3∆C,

(4)

and, similarly, Bz will be

Bz = q̃31ε1 + q̃32ε2 + ζ̃33E3 + χ̃33H3 − λ̃3∆T − η̃3∆C. (5)

So the piezo-magnetic quantities defined in Equation (1) take the following reduced form

ẽ =

0 0 ẽ31
0 0 ẽ32
0 0 0

, q̃ =

0 0 q̃31
0 0 q̃32
0 0 0

, ξ̃ =

ξ1 0 0
0 ξ2 0
0 0 ξ̃3

, χ̃ =

χ1 0 0
0 χ2 0
0 0 χ̃3

,

ζ̃ =

ζ1 0 0
0 ζ2 0
0 0 ζ̃3

, p =


p1
p2
p̃3

, λ =


λ1
λ2
λ̃3

, h =


h1
h2
h̃3

, η =


η1
η2
η̃3

.

(6)

Differently from the classical continuum theory (e.g., Cauchy), nonlocal strain gradient
theory expresses that the stress at a point is not only a linear function of the strains but also
of the second gradient of the same. For this reason, the classical constitutive Equation (1)
for functionally graded materials can be reported in the form

σ(x, y, z) =
(

1− `2∇2
)[

Q(z)ε− ẽ(z)E− q̃(z)H
]
−Q(z)α(z)∆T −Q(z)β(z)∆C

DE(x, y, z) =
(

1− `2∇2
)[

ẽ>(z)ε + ξ̃(z)E + ζ̃(z)H
]
− p(z)∆T − h(z)∆C

BM(x, y, z) =
(

1− `2∇2
)[

q̃>(z)ε + ζ̃(z)E + χ̃(z)H
]
− λ(z)∆T − η(z)∆C,

(7)

where ` is the nonlocal parameter, ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian and the depen-
dency on the z coordinate is explicitly given. Please note that the stress and strain vectors
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in Equation (7) have 5 components because one has been reduced according to what has
been previously reported.

In addition, it is recalled that electric and magnetic fields depend on the Cartesian
coordinates (x, y, z) and hygro-thermal variations are assumed to have a linear variation
along the thickness [75] as

∆T(x, y, z) = T0(x, y) +
z
h

T1(x, y), ∆C(x, y, z) = C0(x, y) +
z
h

C1(x, y), (8)

where T0(x, y) and C0(x, y) represent a constant temperature and moisture concentration
whereas T1(x, y) and C1(x, y) indicate a linear temperature and moisture concentration varia-
tion on the plate middle surface. It is noted that T0(x, y) and T1(x, y) are described by the same
units (e.g., temperature), analogously C0(x, y) and C1(x, y) (e.g., moisture concentration).

2.1. Electric and Magnetic Potentials

The following assumption is considered for the magnetic and electric fields

Φ(x, y, z) = − cos
πz
h

φ(x, y) +
2z
h

∆V

Υ(x, y, z) = − cos
πz
h

γ(x, y) +
2z
h

, ∆Ω
(9)

where φ, γ represent the parameters for the electric and magnetic potentials in closed-
circuit configuration, respectively. ∆V and ∆Ω indicate the applied electric and magnetic
potentials in open-circuit configuration, respectively. Therefore, in this work a combination
of cosinusoidal and linear variations are taken into account and such selection satisfy the
Maxwell equations for the present problem [76]. It is convenient to report the electric and
magnetic fields in matrix form as shown below

E = ∇Φ = fEDEφ + E0, H = fHDHγ + H0, (10)

where

fE = fH =

cos πz
h 0 0

0 cos πz
h 0

0 0 −π
h sin πz

h

, DE = DH =


∂

∂x
∂

∂y
1


E0 =


0
0

− 2
h ∆V

, H0 =


0
0

− 2
h ∆Ω


(11)

2.2. Balance Equations

The principle of virtual work δHent + δV = 0 is used to carry out the balance equations,
where δHent is the variation of enthalpy and δV is the external potential done by applied
forces. The variation of enthalpy reads

δHent =
∫
A

∫ h
2

− h
2

{
σxxδεxx + σyyδεyy + σxyδγxy

− (DxδEx + DyδEy + DzδEz + BxδHx + ByδHy + BzδHz)

}
dzdA,

(12)

integrating along the thickness the classical stress resultants Nxx, Nyy, Nxy, Mxx, Myy, Mxy
should be introduced [77]. Moreover by defining the following quantities

Dx
Dy
Dz

 =
∫ h

2

− h
2

fEDE dz,


Bx
By
Bz

 =
∫ h

2

− h
2

fBBM dz (13)
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it is obtained

δHent =
∫
A

{
Nxx

(
∂δu
∂x

+
∂w
∂x

∂δw
∂x

)
+ Nyy

(
∂δv
∂y

+
∂w
∂y

∂δw
∂y

)
+ Nxy

(
∂δu
∂y

+
∂δv
∂x

+
∂δw
∂y

∂w
∂x

+
∂δw
∂x

∂w
∂y

)
+

+ Mxx

(
−∂2δw

∂x2

)
+ Myy

(
−∂2δw

∂y2

)
+ Mxy

(
−2

∂2δw
∂x∂y

)
+

−
(
Dx

∂δφ

∂x
+Dy

∂δφ

∂y
+Dxδφ + Bx

∂δγ

∂x
+ By

∂δγ

∂y
+ Bzδγ

)}
dA.

(14)

Integrating by parts Equation (14) the enthalpy becomes

δHent =
∫
A

{(
∂Nxx

∂x
+

∂Nxy

∂y

)
δu +

(
∂Nxy

∂x
+

∂Nyy

∂y

)
δv +

[
∂

∂x

(
Nxx

∂w
∂x

+ Nxy
∂w
∂y

)
+

∂

∂y

(
Nxy

∂w
∂x

+ Nyy
∂w
∂y

)
+

∂2Mxx

∂x2 +
∂2Myy

∂y2 + 2
∂2Mxy

∂x∂y

]
δw

−
(

∂Dx

∂x
+

∂Dy

∂y
+Dz

)
δφ−

(
∂Bx

∂x
+

∂By

∂y
+ Bz

)
δγ

}
dA +

−
∫

Γ

{(
Nxx nx + Nxy ny

)
δu +

(
Nxy nx + Nyy ny

)
δv +

[(
Nxxnx + Nxyny

)∂w
∂x

+
(

Nxynx + Nyyny
)∂w

∂y
+

(
∂Mxx

∂x
+

∂Mxy

∂y

)
nx +

(
∂Myy

∂y
+

∂Mxy

∂x

)
ny

]
δw

−
(

Mxxnx + Mxyny
)∂δw

∂x
−
(

Mxynx + Myyny
)∂δw

∂y

−
(
Dx nx +Dy ny

)
δφ−

(
Bx nx + By ny

)
δγ

}
dΓ

(15)

The potential due to external actions takes the form

δV =
∫
A

{
qδw + ρEδφ + ρHδγ

}
dA+

∫
Γ

{(
N̂xx nx + N̂xy ny

)
δu

+
(

N̂xy nx + N̂yy ny
)
δv−

(
M̂xx nx + M̂xy ny

)∂δw
∂x

−
(

M̂xy nx + M̂yy ny
)∂δw

∂y
+
(
Q̂x + Q̂y

)
δw
}

dΓ

(16)

where ρE represents the electric charge density and ρH the electric current density, also
referred to as the magnetic charge density for comparison with the electric field. By
introducing N (w) and P(w) as

N (w) =
∂

∂x

(
Nxx

∂w
∂x

+ Nxy
∂w
∂y

)
+

∂

∂y

(
Nxy

∂w
∂x

+ Nyy
∂w
∂y

)
P(w) =

(
Nxx

∂w
∂x

+ Nxy
∂w
∂y

)
nx +

(
Nxy

∂w
∂x

+ Nyy
∂w
∂y

)
ny.

(17)
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The balance equations can be written as follows

∂Nxx

∂x
+

∂Nxy

∂y
= 0

∂Nyy

∂y
+

∂Nxy

∂x
= 0

∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 +N (w) = −q

∂Dx

∂x
+

∂Dy

∂y
+Dz = −ρE

∂Bx

∂x
+

∂By

∂y
+ Bz = −ρH

(18)

and the boundary conditions become

δu = 0 or
(

Nxx − N̂xx
)
nx +

(
Nxy − N̂xy

)
ny = 0

δv = 0 or
(

Nyy − N̂yy
)
ny +

(
Nxy − N̂xy

)
nx = 0

δw = 0 or
(

∂Mxx

∂x
+

∂Mxy

∂y

)
nx+

+

(
∂Myy

∂y
+

∂Mxy

∂x

)
ny + P(w)−

(
Q̂x + Q̂y

)
= 0

∂δw
∂x

= 0 or
(

Mxx − M̂xx
)
nx +

(
Mxy − M̂xy

)
ny = 0

∂δw
∂y

= 0 or
(

Myy − M̂yy
)
ny +

(
Mxy − M̂xy

)
nx = 0

δφ = 0 or Dx nx +Dy ny = 0

δγ = 0 or Bx nx + By ny = 0.

(19)

By including the constitutive equations in the equilibrium equations, the following
equilibrium in terms of displacements and potentials can be carried out as

A11
∂2u
∂x2 + A12

∂2v
∂x∂y

+ A66
∂2u
∂y2 + A66

∂2v
∂x∂y

− B11
∂3w
∂x3 − B12

∂3w
∂x∂y2 − 2B66

∂3w
∂x∂y2

+ A f
E,13

∂φ

∂x
+ A f

H,13
∂γ

∂x
− Aα

1
∂T0

∂x
−

Bα
1

h
∂T1

∂x
− Aα

3
∂T0

∂y
−

Bα
3

h
∂T1

∂y
= 0

(20)

A12
∂2u

∂x∂y
+ A22

∂2v
∂y2 + A66

∂2u
∂x∂y

+ A66
∂2v
∂x2 − B12

∂3w
∂x2∂y

− B22
∂3w
∂y3 − 2B66

∂3w
∂x2∂y

+ A f
E,23

∂φ

∂y
+ A f

H,23
∂γ

∂y
− Aα

2
∂T0

∂y
−

Bα
2

h
∂T1

∂y
− Aα

3
∂T0

∂x
−

Bα
3

h
∂T1

∂x
= 0

(21)

B11
∂3u
∂x3 + B12

∂3v
∂x2∂y

+ B12
∂3u

∂x∂y2 + B22
∂3v
∂y3 + 2B66

∂3u
∂x∂y2 + 2B66

∂3v
∂x2∂y

− D11
∂4w
∂x4

− 2D12
∂4w

∂x2∂y2 − D22
∂4w
∂y4 − 4D66

∂4w
∂x2∂y2 + B f

E,13
∂2φ

∂x2 + B f
H,13

∂2γ

∂x2 + B f
E,23

∂2φ

∂y2

+ B f
H,23

∂2γ

∂y2 − Bα
1

∂2T0

∂x2 −
Dα

1
h

∂2T1

∂x2 − Bα
2

∂2T0

∂y2 −
Dα

2
h

∂2T1

∂y2 − 4Bα
3

∂2T0

∂x∂y
− 4

Dα
3

h
∂T1

∂x∂y
= −q

(22)
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B f
ξ,11

∂2φ

∂x2 + B f
ζ,11

∂2γ

∂x2 + B f
ξ,22

∂2φ

∂y2 + B f
ζ,22

∂2γ

∂y2 + B f
ξ,33φ + B f

ζ,33γ− A f
E,31

∂u
∂x

− A f
E,32

∂v
∂y
− B f

E,31
∂2w
∂x2 − B f

E,32
∂2w
∂y2 − Ap,1

∂T0

∂x
−

Bp,1

h
∂T1

∂x
− Ap,2

∂T0

∂y
−

Bp,2

h
∂T1

∂y

+ Ap,3T0 +
Bp,3

h
T1 − A f

ξ,33
2
h

∆V − A f
ζ,33

2
h

∆Ω = −ρE

(23)

B f
ζ,11

∂2φ

∂x2 + B f
χ,11

∂2γ

∂x2 + B f
ζ,22

∂2φ

∂y2 + B f
χ,22

∂2γ

∂y2 + B f
ζ,33φ + B f

χ,33γ− A f
H,31

∂u
∂x

− A f
H,32

∂v
∂y
− B f

H,31
∂2w
∂x2 − B f

H,32
∂2w
∂y2 − Aλ,1

∂T0

∂x
− Bλ,1

h
∂T1

∂x
− Aλ,2

∂T0

∂y
− Bλ,2

h
∂T1

∂y

+ Aλ,3T0 +
Bλ,3

h
T1 − A f

ζ,33
2
h

∆V − A f
χ,33

2
h

∆Ω = −ρH .

(24)

The present system of partial differential equations will be solved in the section below
by using the Navier method.

3. Navier Solution

The Navier method is considered for obtaining a trigonometric solution of the problem.
This choice allows us to solve the plate in simply-supported boundary conditions only;
however, the quality of the solution is extremely fast and reliable and can be considered
as a benchmark. Navier expansion for all the parameters governing the present problem
takes the form

u
v
w
φ
γ

 =
∞

∑
m=1

∞

∑
n=1


cos αx sin βy 0 0 0 0

0 sin αx cos βy 0 0 0
0 0 sin αx sin βy 0 0
0 0 0 sin αx sin βy 0
0 0 0 0 sin αx sin βy




Umn
Vmn
Wmn
Φmn
Γmn,

 (25)

where α = mπ/a and α = nπ/b. A trigonometric expansion is also used for the mechanical
and hygro-thermal loads as

(q, T0, T1, C0, C1) =
∞

∑
m=1

∞

∑
n=1

(Qmn, T0,mn, T1,mn, C0,mn, C1,mn) sin αx sin βy. (26)

By substituting the displacements field into the equations of motion and performing
the derivatives we obtain the following algebraic system which can be solved by using
Cramer method.

ĉ11 ĉ12 ĉ13 ĉ14 ĉ15
ĉ12 ĉ22 ĉ23 ĉ24 ĉ25
ĉ13 ĉ23 ĉ33 + s̃33 ĉ34 ĉ35
ĉ14 ĉ24 ĉ34 ĉ44 ĉ45
ĉ15 ĉ25 ĉ35 ĉ45 ĉ55




Umn
Vmn
Wmn
Φmn
Γmn

 =


0
0

−Qmn
−ρE,mn
−ρH,mn

+



FT
1,mn
FT

2,mn
FT

3,mn
FT

4,mn
FT

5,mn.


(27)

For the sake of conciseness, the coefficients ĉij, s̃33 and the vector FT
i,mn for i, j =

1, 2, . . . , 5 are defined in Appendix A Equations (A9) and (A10).

4. Applications

For the numerical applications, different functionally graded plates are considered.
First a comparison with Reference [74] (Figure 2) is proposed where the plate is composed
in the lower side of aluminium and in the upper side of zirconia. The properties of the two
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materials are for the aluminium EAl = 70 GPa, νAl = 0.3, ρAl = 2707 kg/m3 and for the
zirconia EZr = 151 GPa, νZr = 0.3, ρZr = 3000 kg/m3. These two materials do not have
piezo-electro-magnetic properties but the comparison is useful to verify the validity of the
code. The considered mechanical load follows a sinusoidal distribution and is defined by
introducing a load parameter P = q0a4/EZrh4 and the result is provided in dimensionless
form w̄ = w/h. The plate is squared with sides a = b = 0.2 m, h = 0.01 m and the variation
of material properties along the thickness is adjusted by the following relation

P(z) = (Pt − Pb)

(
z
h
+

1
2

)np

+ Pb, (28)

where Pt and Pb indicate top and bottom plate properties, respectively.

Figure 2. Displacement w̄ of middle point of a FG square plate composed of Al/ZrO2 for different
values of np.

By comparing Figure 2 with the same provided in [74] the results are in very good
agreement.

In all the problems that will follow the material properties will be those reported in
the Table 1 where the two materials have piezo-electro-magnetic properties. The plate is
considered with a = 1 m and b is variable according to the problem analyzed. The plate
aspect ratio is kept constant as a/h = 100. For each application details on the loads applied
will be given. The values of the displacement, electrical and magnetic potentials are referred
to the central point of the plate and the displacements are reported in dimensionless form
according to w̄ = w/h. In the following, the effects on the behavior of the plate when
the nonlocal parameter varies are analyzed. Due to limitations in finding hygro-electro-
magnetic properties of materials, the following applications will focus on thermal effects
only. Nevertheless, the present model is able to deal with hygroscopic loads also.

Table 1. Piezo-electro-magnetic-thermal properties of materials BaTiO3 and CoFe2O4.

BaTiO3 CoFe2O4

C11 [GPa] 166 286
C22 166 286
C33 162 269.5
C13 78 170.5
C23 78 170.5
C12 77 173
C44 43 45.3
C55 43 45.3
C66 44.5 56.5



Mathematics 2021, 9, 567 10 of 22

Table 1. Cont.

BaTiO3 CoFe2O4

e31 [C/m2] −4.4 0
e32 −4.4 0
e33 18.6 0

q31 [N/A·m] 0 580.3
q32 0 580.3
q33 0 699.7

ξ11 [10−9C2/N·m2] 11.2 0.08
ξ22 11.2 0.08
ξ33 12.6 0.093

ζ11 = ζ22 = ζ33 [s/m] 0 0

χ11 [10−6N·s2/C] 5 −590
χ22 5 −590
χ33 10 157

p11 = p22 [10−7 C/m2 K] 0 0
p33 −11.4 0

λ11 = λ22 [10−5 Wb/m2 K] 0 0
λ33 0 −36.2

α1 = α2 [10−6K−1] 15.8 10

ρ [kg/m3] 5300 5800

4.1. Sinusoidal Load

As first application, a square FG plate of width a = 1 m and aspect ratio a/h = 100 is
considered. The plate is subjected to a mechanical load only distributed according to single
sinusoidal functions (SDL), therefore the resulting solution is analytical. In the following,
Table 2 reports the values of the displacement w̄, the electrical potential φ and the magnetic
potential γ, by varying the FG exponent np and the nonlocal parameter `. Since the plate
stiffness is increased by the nonlocal parameter, the transverse displacement reduces and
the plate is working as a sensor, consequently, electric and magnetic potential reduce with
the transverse displacement.

Table 2. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np (SDL; q = 103N/m2,
T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [V] γ [A]

1 0 0.01994 −7.1675 0.6580
0.05 0.01004 −3.5647 0.3349
0.10 0.00671 −2.3721 0.2246

0.5 0 0.02067 −11.463 0.4636
0.05 0.01040 −5.7348 0.2359
0.10 0.00695 −3.8236 0.1582

2 0 0.01929 −4.7860 0.8932
0.05 0.00971 −2.3734 0.4531
0.10 0.00649 −1.5779 0.3036

In Figure 3, the graphs of the vertical displacement and potentials of the BaTiO3/CoFe2O4
plate are presented as the ratio between the edges (a is kept constant) varies and for differ-
ent values of the nonlocal parameter. The plates are subjected only to a transverse load
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q = 103N/m2. The displacements reduce as in the aforementioned cases due to an increase
of the nonlocal parameter, consequently, electric and magnetic potentials are also reduced.

(a) (b) (c)

Figure 3. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of a/b ratio and for
different values of nonlocal parameter (`/a)2 and for np = 1 (SDL; q = 103 N/m2, T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

Tables 3–5 list the values of the displacement w̄, the electric potential φ and the
magnetic potential γ, due to the sinusoidally distributed (SDL) action of a thermal load
that varies linearly along the thickness, an electric charge density and a magnetic charge
density on the plate surface. It is noted that with respect to the mechanical load a relatively
small temperature rise of T1 = 1 K leads to higher electric and magnetic fields and smaller
mechanical deflections. In addition, it is obvious that by applying electric or magnetic
densities the correspondent fields are of several orders of magnitude higher than the other
mechanical and thermal loads.

Table 3. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np. (SDL; q = 0 N/m2,
T0 = 0 K, T1 = 1 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [V] γ [A]

1 0 0.00855 −3.4621 0.2359
0.05 0.00430 −1.7194 0.1208
0.10 0.00287 −1.1435 0.0812

0.5 0 0.00898 −5.4569 0.1739
0.05 0.00452 −2.7300 0.0888
0.10 0.00302 −1.8201 0.0595

2 0 0.00819 −2.3699 0.3132
0.05 0.00412 −1.1716 0.1598
0.10 0.00275 −0.7781 0.1073
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Table 4. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np. (SDL; q = 0 N/m2,
T0 = T1 = 0 K, ρE = 0.1 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [103 V] γ [A]

1 0 −0.07168 −3.7535 4.6774
0.05 −0.03565 −1.8899 2.2793
0.10 −0.02372 −1.2626 1.5288

0.5 0 −0.11463 −4.6931 5.6947
0.05 −0.05735 −2.3627 2.8018
0.10 −0.03824 −1.5786 1.8745

2 0 −0.04786 −3.2178 4.2379
0.05 −0.02373 −1.6199 2.0733
0.10 −0.01578 −1.0823 1.3924

Table 5. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np. (SDL; q = 0 N/m2,
T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 1 Wb/m2).

np (`/a)2 w̄ φ [10 V] γ [102 A]

1 0 0.06580 4.6773 −3.4533
0.05 0.03349 2.2793 −1.7383
0.10 0.02246 1.5288 −1.1612

0.5 0 0.04636 5.6947 −2.9196
0.05 0.02359 2.8018 −1.4696
0.10 0.01582 1.8744 −0.9818

2 0 0.08932 4.2379 −4.0778
0.05 0.04531 2.0733 −2.0525
0.10 0.03036 1.3924 −1.3712

Figures 4 and 5 report the the middle point displacements, electric and magnetic
potential, as a function of the a/b ratio and for different values of the nonlocal parameter.
Load data are reported in each figure caption. In all cases the nonlocal effect plays a
relevant role in the evaluation of the electric and potential fields when loads different to
the mechanical one are applied. In fact, a negligible variation is observed for (`/a)2 = 0 on
the contrary evident variations are visible for the other cases as b decreases (a/b increases).
This phenomenon is not reflected in the transverse displacement which behaves closely in
the same way both for the local and nonlocal cases.

Finally, Figure 6 shows the displacements, electric and magnetic potentials of the
central point of the plate subjected to a SDL magnetic charge density. From graph Figure 6a
it can be seen that for np = 0 the displacement is null as the material is purely piezo-electric,
while for np > 0 the displacements increase as the composition of the plate becomes
piezo-magnetic.
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(a) (b) (c)

Figure 4. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of a/b ratio and for
different values of nonlocal parameter (`/a)2 and for np = 1. (SDL; q = 0 N/m2, T0 = 0 K, T1 = 1 K, ρE = 0 C/m2, ρH = 0 Wb/m2)

(a) (b) (c)

Figure 5. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of a/b ratio and for
different values of nonlocal parameter (`/a)2 and for np = 1. (SDL; q = 0 N/m2, T0 = T1 = 0 K, ρE = 0.1 C/m2, ρH = 0 Wb/m2)

(a) (b) (c)

Figure 6. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of np and for different
values of nonlocal parameter (`/a)2 and for np = 1. (SDL; q = 0 N/m2, T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 1 Wb/m2)

4.2. Uniform Load

Unlike the sinusoidal case which leads to an exact solution for the present problem,
the uniform load gives an approximate solution and its accuracy depends on the expansion
order selected. Therefore, before discussing the results obtained with uniform loading a
convergence analysis is performed. Figure 7a shows the convergence of the transverse
displacement as well as the electric potential by increasing the expansion order (m, n). The
convergence is computed in terms of relative error with respect to the value obtained for
(m, n) = 299. It is clear that two convergence trends take place and the displacements show
a faster accuracy with respect to the potential. From the graph it can be deducted that
(m, n) = 199 is already a sufficient number of semi-waves to accurately approximate the
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displacements within a reasonable error, whereas for the electrical and magnetic potentials
the error is larger but still small for engineering applications. It is specified that in Figure 7a
is reported only the electrical potential because the error curves is equal to the one obtained
for the magnetic potential. As for the cases just discussed for SDL, tables and graphs are
reported for each type of uniform applied load (UDL).

As for the mechanical load, convergence test is performed also for the uniformly
distributed thermal load by checking transverse displacement and electric potential as in
the case above. Figure 7b shows that the error made on both displacement and potential is
several orders of magnitude larger than in the case of uniform mechanical loading, where
the displacement looks more accurate as in the previous case.

(a) (b)

Figure 7. Convergence of the relative error on the displacement and potential at a square plate central point by increasing
(m, n) for: (a) uniformly distributed mechanical load only; (b) uniformly distributed thermal load only.

Considering both convergence trends, an expansion with (m, n) = 199 is considered in
the following computations. Therefore, the results listed and shown below will be accurate
up to the accuracy levels indicated in Figure 7.

The results in terms of maximum displacement and electric and magnetic potentials
are listed in Table 6 by varying the FG exponent and the nonlocal parameter. The plate
under consideration is squared a = b and the plate is subjected to UDL mechanical load. As
for the SDL, displacements and potentials decrease by increasing the nonlocal parameter.
In addition the magnetic potential changes sign for a FG distribution np = 2. A graphical
representation of the displacement and potentials variations according to a/b and nonlocal
parameter variation is depicted in Figure 8. The plots are presented for np = 1 and the
potentials decrease as well as the transverse displacement by increasing a/b with a constant.

Table 6. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np (UDL; q = 103 N/m2,
T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [V] γ [A]

1 0 0.03156 −10.413 0.9571
0.05 0.01614 −5.5579 0.5214
0.10 0.01080 −3.7245 0.3523

0.5 0 0.03271 −16.668 0.6744
0.05 0.01672 −8.9377 0.3672
0.10 0.01119 −6.0017 0.2481

2 0 0.03054 −6.9616 1.2988
0.05 0.01561 −3.7011 0.7055
0.10 0.01044 −2.4779 0.4761
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(a) (b) (c)

Figure 8. Displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, at the central point (a/2, b/2) by varying a/b and for different
nonlocal parameters (`/a)2 with np = 1 (UDL; q = 103N/m2, T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

In Table 7, the results obtained for a square plate FG subjected to a UDL thermal load
on the surface and variable linearly along the thickness are reported.

Table 7. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate at the central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np (UDL; q = 0N/m2, T0 = 0,
T1 = 1 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [V] γ [A]

1 0 0.01243 −3.4601 0.2357
0.05 0.00670 −2.3305 0.1620
0.10 0.00451 −1.6021 0.1128

0.5 0 0.01306 −5.4536 0.1738
0.05 0.00704 −3.6912 0.1192
0.10 0.00474 −2.5452 0.0829

2 0 0.01191 −2.3686 0.3129
0.05 0.00642 −1.5904 0.2146
0.10 0.00432 −1.0914 0.1492

Figure 9 shows the results obtained for the same type of load described in Table 7,
by varying the plate ratio a/b and for np = 1. Negligible variations are observed for the
potentials with (`/a)2 = 0 as occurred in the SDL case.

(a) (b) (c)

Figure 9. Displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, at the central point (a/2, b/2) by varying a/b ratio and for
different nonlocal parameter (`/a)2 with np = 1 (UDL; q = 0 N/m2, T0 = 0 K, T1 = 1 K, ρE = 0 C/m2, ρH = 0 Wb/m2).

In Tables 8 and 9 the results obtained for a square FG plate are reported, for different
types of load applied with the common characteristic of being uniformly distributed on
the surface. Load values are reported in the table captions. Coupling effects in terms of
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sensing/actuating actions are observed when electric and magnetic densities are applied
as expected. With respect to all the other cases presented, Table 9 with np = 2 presents an
opposite elastic deformation of the plate when magnetic density is applied.

Table 8. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np (UDL; q = 0 N/m2,
T0 = T1 = 0 K, ρE = 0.1 C/m2, ρH = 0 Wb/m2).

np (`/a)2 w̄ φ [103 V] γ [A]

1 0 −0.10421 −3.7513 4.6753
0.05 −0.05558 −2.5500 3.0680
0.10 −0.03725 −1.7627 2.1258

0.5 0 −0.16647 −4.6922 5.6941
0.05 −0.08938 −3.1879 3.7784
0.10 −0.06002 −2.2038 2.6124

2 0 −0.06950 −3.2171 4.2377
0.05 −0.03701 −2.1859 2.7877
0.10 −0.02478 −1.5110 1.9346

Table 9. Displacement w̄, electric and magnetic potential φ and γ, of a square nanoplate in central
point (a/2, b/2) for different values of nonlocal parameter (`/a)2 and np. (UDL; q = 0 N/m2,
T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 1 Wb/m2).

np (`/a)2 w̄ φ [10 V] γ [102 A]

1 0 0.09568 4.6753 −3.4507
0.05 0.05214 3.0680 −2.3456
0.10 0.03523 2.1258 −1.6213

0.5 0 0.06733 5.6941 −2.9191
0.05 0.03672 3.7784 −1.9830
0.10 0.02481 2.6124 −1.3707

2 0 0.12971 4.2377 −4.0772
0.05 0.07055 2.7877 −2.7697
0.10 0.04761 1.9346 −1.9144

Graphical representation of the same configurations are displayed in Figures 10 and 11
as a function of the a/b ratio and the nonlocal parameter with np = 1. From these graphs
it is possible to observe how for the uniform distribution, as already detected for the
sinusoidal distribution, except in the case of mechanical load, the potentials are almost
invariant with respect to the a/b ratio for the null value of the nonlocal parameter. For the
present value of the FG parameter as shown also in the correspondent Table 8 electric and
magnetic potentials have opposite signs, thus on one hand the plate works as a sensor and
on the other hand as an actuator.
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(a) (b) (c)

Figure 10. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of a/b ratio and for
different values of nonlocal parameter (`/a)2 and for np = 1. (UDL; q = 0 N/m2, T0 = T1 = 0 K, ρE = 0.1 C/m2, ρH = 0 Wb/m2).

(a) (b) (c)

Figure 11. Graphs of displacement w̄ (a) electric φ (b) and magnetic γ (c) potential, in the point (a/2, b/2) to vary of a/b ratio and for
different values of nonlocal parameter (`/a)2 and for np = 1. (UDL; q = 0 N/m2, T0 = T1 = 0 K, ρE = 0 C/m2, ρH = 1 Wb/m2).

5. Conclusions

The focus of this paper was to investigate the effects of the nonlocal parameter on the
bending analysis of functionally graded magneto-electro-thermo-elastic nanoplates sub-
jected to different types of load in hygro-thermal environment. The equilibrium equations
are carried out via the principle of virtual work and solved by using the trigonometric
framework of Navier approach. The materials that have been used in the simulations are
BaTiO3 and CoFe2O4 and the properties of the materials used are reported in the article
according to a classical FG power law. Tables and graphs show the results obtained for
mechanical, electrical, magnetic and thermal loads, distributed sinusoidally and uniformly
on the plate middle surface. For uniform loads, convergence analyses of the results are
also reported, which allowed the identification of the appropriate number of half-waves
needed to best approximate the distribution of the parameters. The results show a decrease
in displacements as the nonlocal parameter increases for all loading conditions. A decrease
in absolute values is also observed for potentials as the nonlocal parameter increases, but
positive or negative values of electric and magnetic potentials are observed alternatively as
a function of the applied electric and magnetic densities. Furthermore, from the graphs, it
is evident that for both sinusoidal and uniform loads, the aspect ratio has little influence
on the value of the potentials, with a negligible value of the nonlocal parameter.
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Appendix A

Integrating along thickness thermal properties Q(z)α(z) and hygrometric properties
Q(z)β(z), it is obtained:

Aα =
∫ h

2

− h
2

Q(z)α(z) dz, Bα =
∫ h

2

− h
2

Q(z)α(z)z dz, Dα =
∫ h

2

− h
2

Q(z)α(z)z2 dz (A1)

Aβ =
∫ h

2

− h
2

Q(z)β(z)dz, Bβ =
∫ h

2

− h
2

Q(z)β(z)zdz, Dβ =
∫ h

2

− h
2

Q(z)β(z)z2dz (A2)

Integrating last two integrals of Equation (15) along the thickness the following
quantities can be defined:

A f
E =

∫ h
2

− h
2

ẽfE dz, AE =
∫ h

2

− h
2

ẽ dz, B f
E =

∫ h
2

− h
2

ẽfE z dz , BE =
∫ h

2

− h
2

ẽ z dz

A f
H =

∫ h
2

− h
2

q̃fH dz, AH =
∫ h

2

− h
2

q̃ dz, B f
H =

∫ h
2

− h
2

q̃fH z dz, BH =
∫ h

2

− h
2

q̃ z dz

(A3)

A f
ξ =

∫ h
2

− h
2

f>E ξ̃dz, B f
ξ =

∫ h
2

− h
2

f>E ξ̃fEdz, A f
ζ =

∫ h
2

− h
2

f>E ζ̃dz, B f
ζ =

∫ h
2

− h
2

f>E ζ̃fHdz

Ap =
∫ h

2

− h
2

f>E pdz, Bp =
∫ h

2

− h
2

f>E pz dz, Ah =
∫ h

2

− h
2

f>E hdz, Bh =
∫ h

2

− h
2

f>E hz dz

(A4)

A f
ζ =

∫ h
2

− h
2

f>H ζ̃dz, B f
ζ =

∫ h
2

− h
2

f>H ζ̃fEdz, A f
χ =

∫ h
2

− h
2

f>Hχ̃dz, B f
χ =

∫ h
2

− h
2

f>Hχ̃fHdz

Aλ =
∫ h

2

− h
2

f>Hλdz, Bλ =
∫ h

2

− h
2

f>Hλz dz, Aη =
∫ h

2

− h
2

f>Hηdz, Bη =
∫ h

2

− h
2

f>Hηz dz

(A5)

Considering what reported in Equations (A3)–(A5) the coefficients ĉij, for i, j =
1, 2, . . . , 5 can be written as

ĉ11 = α2 A11 + β2 A66 + `2
[
α4 A11 + α2β2(A11 + A66) + β4 A66

]
ĉ12 = αβ(A12 + A66) + `2

[
α3β(A12 + A66) + αβ3(A12 + A66)

]
ĉ13 = −α3B11 − αβ2(B12 + 2B66)

− `2
[
α5B11 + α3β2(B12 + B11 + 2B66) + αβ4(B12 + 2B66)

]
ĉ14 = −αA f

E,13 + `2
[
−α3 A f

E,13 − αβ2 A f
E,13

]
ĉ15 = −αA f

H,13 + `2
[
−α3 A f

H,13 − αβ2 A f
H,13

]
(A6)
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ĉ22 = β2 A22 + α2 A66 + `2
[
α2β2(A22 + A66) + α4 A66 + β4 A22

]
ĉ23 = −α2β(B12 + 2B66)− β3B22

− `2
[
α4β(B12 + 2B66) + α2β3(B22 + B12 + 2B66) + β5B22

]
ĉ24 = βA f

E,23 − `2
[
−β3 A f

E,23 − α2βA f
E,23

]
ĉ25 = βA f

H,23 − `2
[
−β3 A f

H,23 − α2βA f
H,23

]
(A7)

ĉ33 = α4D11 + 2α2β2(D12 + 2D66) + β4D22 + `2[α6D11 + α4β2(D11 + 2D12 + 4D66)

+ α2β4(D22 + 2D12 + 4D66) + β6D22
]

ĉ34 = α2B f
E,13 + β2B f

E,23 + `2
[
α4B f

E,13 + α2β2
(

B f
E,13 + B f

E,23

)
+ β4B f

E,23

]
ĉ35 = α2B f

H,13 + β2B f
H,23 + `2

[
α4B f

H,13 + α2β2
(

B f
H,13 + B f

H,23

)
+ β4B f

H,23

]
(A8)

ĉ44 = −B f
ξ,33 − α2B f

ξ,11 − β2B f
ξ,22

− `2
[
α4B f

ξ,11 + α2β2
(

B f
ξ,11 + B f

ξ,22

)
+ β4B f

ξ,22 + α2B f
ξ,33 + β2B f

ξ,33

]
ĉ45 = −B f E

ζ,33 − α2B f E
ζ,11 − β2B f E

ζ,22

− `2
[
α4B f E

ζ,11 + α2β2
(

B f E
ζ,11 + B f E

ζ22

)
+ β4B f E

ζ,22 + α2B f E
ζ,33 + β2B f E

ζ,33

]
ĉ54 = −B f H

ζ,33 − α2B f H
ζ,11 − β2B f H

ζ,22

− `2
[
α4B f H

ζ,11 + α2β2
(

B f H
ζ,11 + B f H

ζ,22

)
+ β4B f H

ζ,22 + α2B f H
ζ,33 + β2B f H

ζ,33

]
ĉ55 = −B f

χ,33 − α2B f
χ,11 − β2B f

χ22

− `2
[
α4B f

χ,11 + α2β2
(

B f
χ,11 + B f

χ,22

)
+ β4B f

χ,22 + α2B f
χ,33 + β2B f

χ,33

]
s̃33 = α

(
N̂xx + N̂T

xx + N̂E
xx + N̂H

xx

)
+ β

(
N̂yy + N̂T

yy + N̂E
yy + N̂H

yy

)

(A9)

In the present case electric and magnetic potentials have the same expansion through-
the-thickness as shown in Equation (9), thus, B f E

ζ = B f H
ζ = B f

ζ , hence, ĉ45 = ĉ54.
The vector of hygro-thermal loads turns out to have the following form

FT
1,mn =− α

[(
Aα

1 T0,mn +
1
h

Bα
1 T1,mn

)
+

(
Aβ

1 C0,mn +
1
h

Bβ
1 C1,mn

)]

FT
2,mn =− β

[(
Aα

2 T0,mn +
1
h

Bα
2 T1,mn

)
+

(
Aβ

2 C0,mn +
1
h

Bβ
2 C1,mn

)]

FT
3,mn =α2

[(
Bα

1 T0,mn +
1
h

Dα
1 T1,mn

)
+

(
Bβ

1 C0,mn +
1
h

Dβ
1 C1,mn

)]

+β2

[(
Bα

2 T0,mn +
1
h

Dα
2 T1,mn

)
+

(
Bβ

2 C0,mn +
1
h

Dβ
2 C1,mn

)]

FT
4,mn =− Ap,3T0,mn − Bp,3

1
h

T1,mn − Ah,3C0,mn − Bh,3
1
h

C1,mn

FT
5,mn =− Aλ,3T0,mn − Bλ,3

1
h

T1,mn − Aη,3C0,mn − Bη,3
1
h

C1,mn

(A10)
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71. Zhou, L.; Li, X.; Li, M.; Żur, K.K. The smoothed finite element method for time-dependent mechanical responses of MEE materials
and structures around Curie temperature. Comput. Methods Appl. Mech. Eng. 2020, 370, 113241. [CrossRef]
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