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Abstract: A new proposal to generate pseudorandom numbers with Gaussian distribution is
presented. The generator is a generalization to the extended field GF(2n) of the one using cyclic
rotations of linear feedback shift registers (LFSRs) originally defined in GF(2). The rotations applied
to LFSRs in the binary case are no longer needed in the extended field due to the implicit rotations
found in the binary equivalent model of LFSRs in GF(2n). The new proposal is aligned with the
current trend in cryptography of using extended fields as a way to speed up the bitrate of the
pseudorandom generators. This proposal allows the use of LFSRs in cryptography to be taken further,
from the generation of the classical uniformly distributed sequences to other areas, such as quantum
key distribution schemes, in which sequences with Gaussian distribution are needed. The paper
contains the statistical analysis of the numbers produced and a comparison with other Gaussian
generators.

Keywords: LFSR; Gaussian distribution; extended fields; central limit theorem

1. Introduction

Random number generators are of vital importance in many areas and, particularly,
in cryptography. Most cryptographic algorithms and protocols make use of random or
pseudorandom numbers. Encryption and authentication schemes in wireless and mobile
communications, such as Bluetooth [1], IEEE 802.15.4, IEEE 802.11 WLAN [2], GSM [3]
or LTE [4], employ pseudorandom numbers; radio frequency identification [5] standards
define and recommend the utilization of true random numbers [6].A large part of the
pseudo-random number generators (PRNGs) used in cryptography are based on linear
feedback shift registers (LFSRs), mainly due to their simplicity, low cost of implementation,
good statistical behavior and the possibility of using a mathematical model that allows the
generator to be designed for an optimal performance [7].

In fact, the maximal sequence length generated by an LFSR of m cells is 2m − 1.
However, those sequences suffer from a high predictability in such a way that the whole
sequence can be reproduced if an eavesdropper gains access to 2m bits. Despite that,
the LFSR is still an important part of the cryptographic generators because those sequences
are used to derive more robust ones but keeping the original statistical properties. Two
main methods are applied to fix that weakness: nonlinear combination and nonlinear
filtering. The former is based on several LFSR, usually with different number of cells [3],
and the latter on a unique LFSR whose sequence is processed (filtered) by a nonlinear
function [4].

Another advantage of using LFSRs in cryptography is that the sequences generated
have a uniform statistical distribution. For all these reasons, there is a lot of published
works related to the LFSR, but only a few regarding its utilization to produce numbers
with Gaussian distribution.

More precisely, in 2010, Kang [8] proposed a Gaussian PRNG, using a LFSR of length
N = 4M bits, to generate pseudorandom numbers of (M + 4) bits. The numbers were
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produced by means of an accumulator applied on decimated M-bits numbers, producing
a sequence of length (2N − 1)/(8N). In order to fix this LFSR oversizing, Condo et al [9]
proposed, in 2015, a Gaussian PRNG using permutations over the successive states of
a unique LFSR, thus reducing the implementation cost. The main drawback is that not
all the possible permutations yield numbers with the required Gaussian distribution
and, consequently, a high computational effort must be performed to find the suitable
permutations. Later, in 2020, Cotrina et al [10] presented an improvement of the Condo’s
PRNG focusing on a particular type of permutations of the LFSR state, the cyclic rotations.
The authors concluded that more than 90% of the cycle rotations are usable for the PRNG
and produce Gaussian distributed numbers.

These proposals are based on the central limit theorem (CLT) [11], trying to obtain a
Gaussian distribution using sequences of uniformly distributed numbers. In this sense,
the first proposal [12] employed several LFSRs to generate independent sequences of
numbers. However, most of the proposals use a unique LFSR to generate all the sequences,
such as those of Kang [8], Condo [9] and Cotrina [10].

Following the same approach, the present paper describes a Gaussian PRNG based on
an LFSR operated and defined in an extension field GF(2n) instead of using the binary field
GF(2). An LFSR in GF(2n) can be represented as a combination of n LFSR in GF(2n). This
fact, as it is described later, allows a particular implementation of the CLT. Furthermore, as it
can be deduced from the equivalent model, the cyclic rotations proposed by Cotrina [10],
as a particular case of the permutations proposed by Condo [9], are implicitly included in
the operations of an LFSR in GF(2n). This proposal is also in line with the trend of using
cryptographic algorithm and protocols in extended fields to take advantage of the word
length of processors [13].

On the other hand, the proposed generator is a way to keep using the LFSR as a basic
element to generate pseudorandom numbers in cryptographic areas where other than
uniform distribution is required. An example of this is quantum key distribution (QKD)
schemes [14]. This type of scheme, designed to establish keys between two endpoints, can
be considered the most mature application of quantum communications. Currently, all
developed countries have deployed QKD schemes, some experimentally (in controlled
environments) and others in their current transit networks [15]. The first QKD schemes
were based on the transmission of polarized photons using non-orthogonal states. These
schemes, named discrete-variable QKD (DV-QKD) [16,17], require the utilization of spe-
cific components for single-photon detection. A different type of QKD scheme has been
developed to carry information on some continuous properties of the light, such as the
values of the quadrature components of a coherent state. The so-called continuous-variable
QKD (CV-QKD) [18–21], currently deployed in several countries e.g., China, Japan, Spain
and Italy [15] present a lower implementation cost due to the utilization of standard com-
munications components. They use coherent detection techniques usually employed in
classical optical communications. Furthermore, they employ Gaussian modulation to
send random amplitude and phase values that must be generated following a Gaussian
distribution [10,14,22].

Section 2 introduces the fundamentals of the LFSR in the binary and extended Galois
fields. Section 3 describes the binary equivalent model of an LFSR defined in a GF(2n)
and the proposal of a Gaussian PRNG based on this model. The statistical analysis of
the numbers produced by the proposed PRNG is presented in Section 4 and compared
to the Box–Muller [23,24] algorithm, a well-known algorithm not based on CLT. Finally,
conclusions are presented in Section 5.

2. LFSR Fundamentals

In this section the basic properties of the linear feedback shift register (LFSR) (see
Figure 1), and its generated sequences are described.

A linear feedback shift register (LSFR) is a shift register that takes a linear function
of a previous state as an input. Most commonly. The LFSR [25] of length m consists of m
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stages numbered 0, 1, 2, · · ·m− 1, each capable of storing one bit and having one input and
one output and a clock which controls the movement of data.

Definition 1. An LFSR of length m consists of: A linear feedback shift register (LFSR) of length
m consists of m stages numbered 0, 1, 2, · · ·m− 1, each capable of storing one bit and having one
input and one output; and a clock which controls the movement of data. During each unit of time
the following operations are performed:

• The content of stage 0 is output and forms part of the output sequence.
• The content of stage i is moved to stage i− 1 for each i where 1 ≤ i ≤ m− 1.
• The new content content of state m− 1 is the feedback bit aj which is calculated by adding

together modulo 2 the previous contents of a fixed subset of stages 0, 1, · · · , m− 1.

The values qi are either 0 or 1 and the feedback bit aj is the modulo 2 sum of the contents of
those stages i, 1 ≤ i ≤ m− 1, for which qm−i = 1. As a consequence, the output sequence of the
LFSR is A = (a0, a1, a2, · · · ) and is uniquely determined by the following recursion:

aj = f (aj−m, aj−m+1, · · · , aj−1) = q0 · aj−m + q1 · aj−m+1 + · · ·+ qm · aj−1 (1)

a0 a1 ak am−1

f (a0, a1, · · · , am−1)

· · · · · ·

q0 q1 qk qm−1

am

Figure 1. A Linear Feedback Shift Register of length m.

The evolution of the LFSR and their sequences generated can be performed by means
of a polynomial whose coefficients are the values qi that represents the stages used to
compute the feedback bit aj. For this reason, the LFSR is denoted 〈m, p(x)〉, where
p(x) = 1 + q1x + q2x2 + · · ·+ qmxm is the connection polynomial.

The LFSR is said to be nonsingular if the degree of p(x) is m (that is, qm = 1). If the
initial content of stage i is ai ∈ {0, 1} for each i, 0 ≤ i ≤, m− 1, then [am−1, · · · , a1, a0] is
called the initial state or seed of the LFSR.

On the other hand, the state of the LFSR at the time t is denoted as

s(t) = [am−1+t, · · · , at+1, at] (2)

which corresponds to the application of the recursion in the Equation (1) t consecutive
times starting with the seed s(0) = [am−1, . . . , a1, a0]

Example 1. Consider the LFSR 〈4, 1+ x + x4〉. If the initial state of the LFSR is s(0) = [0, 0, 0, 0],
the output sequence is the zero sequence A = (0, 0, · · · ). For the initial state s(0) = [0, 1, 1, 0],
the sequence has a length of 15 The following table shows the successive states s(t). Note that the right-
most bit of each state constitutes the output sequence A = (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, · · · )
as we can see in Table 1.
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Table 1. Values of the Linear Feedback Shift Register (LFSR) 〈4, 1 + x + x4〉 whose initial state is
[0, 1, 1, 0].

t s(t) t s(t)

0 0 1 1 0 8 1 1 1 0
1 0 0 1 1 9 1 1 1 1
2 1 0 0 1 10 0 1 1 1
3 0 1 0 0 11 1 0 1 1
4 0 0 1 0 12 0 1 0 1
5 0 0 0 1 13 1 0 1 0
6 1 0 0 0 14 1 1 0 1
7 1 1 0 0 15 0 1 1 0

Definition 2 (cf. [25]). An output sequence A = (a0, a1, · · · ) generated by an LFSR 〈m, p(x)〉,
is said to be periodic if there exits j0 ∈ N such that ai = ai+j0 ∀i ∈ N. Such j0 is called period of
the sequence.

From this definition, the sequence of the example is a periodic sequence with period
L = 15.

One of the advantages of LFSR is the mathematical model that allows one to predict
the length of the sequences generated. The following definition and theorem states how
and when the maximal length is reached by the sequences.

Definition 3 (cf. [25]). If p(x) ∈ Z2[x] is a connection polynomial of degree m, then 〈m, p(x)〉
is called a maximum length LFSR if the output sequence, with non-zero initial state, has period
2m − 1. This sequence is called m-sequence.

Definition 4. A polynomial p(x) in GF(2)[x] is irreducible if it cannot be factored into a product
of lower-degree polynomials in GF(2)[x]. An irreducible polynomial p(x) ∈ GF(2)[x] of degree
m ∈ N is said to be primitive if minn∈N{n : p(x) | (x− 1)} = 2m − 1.

Theorem 1 (cf. [7]). An output sequence A generated by an LFSR 〈m, p(x)〉 is an m-sequence
if and only if the connection polynomial p(x) is a primitive polynomial. The sequence length is
independent of the initial state.

Consequently, a primitive polynomial of degree m will generate a sequence of length
2m − 1 and the LFSR will run through 2m−1 different nonzero states, that is, all possible
nonzero states. Hence, if we consider each state as an m-bit pseudorandom number, we
can say that LFSR produce numbers with uniform distribution.

Besides its maximal length, the m-sequences have many desirable statistical properties
that can be summarized in the three Golomb’s postulates [7]. Given a periodic binary
sequence A = (ai)i∈N with period length L = 2m − 1, it is said to be pseudoradom if the
following postulates hold.

1. Balance property. In every period, the number of zeros is nearly equal to the number
of ones (the disparity does not exceed 1, or | ∑m−1

i=0 (−1)ai |≤ 1.
2. In every period, half of the run have length 1, one fourth have length 2, one eighth

have length 3, and so on. For each of these lengths there are the same number of runs
of 0’s and runs of 1’s.

3. Two level autocorrelation. The autocorrelation function c(τ) is two-valued given by

c(τ) =
{

m if τ = 0 mod m
k if τ 6= 0 mod m

(3)
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where k is a constant. If k = −1 for m odd, or k = 0 for m even, we say that the
sequence has the ideal two level autocorrelation function.

4. The ideal k− tuple distribution. In every period of A , if each nonzero k− tuple
(a1, a2, a3, · · · , ak) occurs q times and the zero k−tuple occurs qn−k − 1 times, then we
say that the sequence satisfies the ideal k-tuple distribution.

LFSR over GF(2n)

Definition 5. Let’s suppose (F,+, ∗) be a field with operations + and ∗, we will say that this field
F is a Galois field if the cardinal of field F is finite. If the cardinal of the finite field F is p, then F
will be represented as GF(p).

It is possible to extend the prime field GF(p) to a field of pm elements, represented by
GF(pm), which is called an extension field of GF(p). In our case we shall work for p = 2.

To build up the field extension of GF(2), GF(2n), let’s consider p(x) a primitive
polynomial over GF(2) of degree n, once this polynomial is defined, let’s consider a
root alpha of this primitive polynomial, therefore p(α) = 0. Let’s consider GF(2n) ={

0, 1, α, α2, · · · , α2n−1
}

. It can be proven that all the elements of GF(2n) can be represented
by 2n − 1 distinct non-zero polynomials of α over GF(2) with degree m− 1 or less. The
0 ∈ GF(2n) can be represented as the zero polynomial. Then the set GF(2n) with the usual
operations is a Galois field with 2n elements.

Example 2. Let’s build the finite field GF(24) generated by the primitive polynomial p(x) =
1 + x + x4. First of all, we consider α to be a root of the primitive polynomial p(x), then we
determine all multiplicative powers of α, α0 = 1, α1, · · · until we obtain the multiplicative identity
1 on this field. For any Galois field we will have three representations as shown in Table 2.

This Table 2 shows how all the elements of the extended Field are obtained. The equivalence has
been obtained using the vector notation as a function of one of the roots of the primitive polynomial
that generates the extended field. In the same way, it can be observed that the body is generated
cyclically and that no equal values are obtained except when it has been cycled and all its elements
have been obtained periodically.

Table 2. Representation of the Galois Field GF(24) over GF(2) with primitive polynomial
p(x) = 1 + x + x4 over GF(2).

Power Representation Polynomial Representation Vector Representation

0 0 (0, 0, 0, 0)
1 1 (1, 0, 0, 0)
α α (0, 1, 0, 0)
α2 α2 (0, 0, 1, 0)
α3 α3 (0, 0, 0, 1)
α4 1 + α (1, 1, 0, 0)
α5 α + α2 (0, 1, 1, 0)
α6 α2 + α3 (0, 0, 1, 1)
α7 1 + α + α3 (1, 1, 0, 1)
α8 1 + α2 (1, 0, 1, 0)
α9 α + α3 (0, 1, 0, 1)
α10 1 + α + α2 (1, 1, 1, 0)
α11 α + α2 + α3 (0, 1, 1, 1)
α12 1 + α + α2 + α3 (1, 1, 1, 1)
α13 1 + α2 + α3 (1, 0, 1, 1)
α14 1 + α3 (1, 0, 0, 1)
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According to the Example 2, form this point on, we shall represent the elements of the
extended fields using the vector notation, where for example the element 1 + α2 + α3 will
be represented as (1, 0, 1, 1).

To generate an LFSR on a GF(2n) we will start by determining a primitive polynomial
p over GF(2) that will be used to generate the extended field. Once this polynomial and
this field have been set, we choose a primitive polynomial g over GF(2n) and a seed or
non-zero initial state value β0 on which the primitive polynomial g is applied. In this way,
a value β1, is obtained by g(β1) on which the primitive polynomial g will be applied and
thus the process will be repeated.

Example 3. We consider the GF(26) that has been built using the primitive polynomial q(x) =
1+ x+ x6. Let’s consider the primitive polynomial p(x) over GF(26) whose vector representation is
p(x) = {{1, 0, 1, 1, 0, 1}, {1, 0, 0, 1, 0, 1}, {1, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 1, 0}, {1, 0, 0, 1, 0, 1}}. The
initial seed will be

{{1, 0, 1, 1, 0, 1}, {1, 0, 0, 1, 0, 1}, {1, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 1, 0}, {1, 0, 0, 1, 0, 1}} (4)

and taking into consideration these conditions the output sequence will be

A = ({1, 0, 1, 1, 1, 0}, {0, 1, 0, 1, 0, 1}, {1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 0}, · · · ) (5)

As in GF(2), the LFSR in GF(2n) produces an m-sequence if and only of the connection
polynomial is primitive. The m− sequence has a period of 2m·n − 1 that corresponds to all
nonzero states, where m is the degree of the connection polynomial.

3. Gaussian Number Generator over GF(2n)

To apply the CLT, Gaussian generators based on a single LFSR [8–10] try to obtain
different sequences of pseudo-random numbers with uniform distribution from the same
sequence generated by the LFSR. To do this, they apply permutations—generic in some
cases, rotations in others—on each state of the LFSR. In this way, with each number gener-
ated by the LFSR, other numbers are also being generated (as many as permutations are
applied) and therefore different uniform sequences suitable to be combined in a sequence
of numbers are being simultaneously constructed. LFSRs defined on an extended field can
be analyzed as the combination of a series of binary LFSRs. For this reason, each state of an
LFSR in an extended field is related to the states of a series of binary LFSRs. This relation is
the one used to propose a PRNG with Gaussian distribution. Next, the equivalent model of
an LFSR defined in an extended field that allows the definition of a Gaussian PRNG with
excellent performance is described.

3.1. Binary Equivalent Model of an LFSR in GF(2n)

As it is known [26], there is a relationship between the m− sequences generated in
GF(2n) and those generated in GF(2), in such a way that the former can be obtained from
the latter. The relationship is established from the feedback polynomials that define each
LFSR. Specifically, if q(x) is the primitive polynomial of degree m that defines the LFSR
in GF(2n) and therefore generates an m−sequence in GF(2n), the decimated sequences
obtained by taking the j−th bit of each element in the m−sequence are generated by a
binary LFSR with primitive feedback polynomial h(x) of degree m · n, where h(x) divides
q(x). This allows to develop an equivalent model of the LFSR defined in GF(2n) using
n LFSRs in GF(2), as shown in Figure 2 where the j−th bit of each element is generated
by the j−th binary LFSR. Note that all the binary LFSRs used in the model have the same
polynomial h(x) although initialized in different seeds. Therefore, the sequences generated
by the binary LFSRs are m−sequences in GF(2), and consequently, shifted versions of
the same sequence. In this way, the generation of an m−sequence in GF(2n) implies the
generation of n binary m− sequences, one for each bit, which can be used as sources with a
uniform distribution to later apply CLT.
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Figure 2. Binary equivalent model of an LFSR in GF(2n).

Definition 6. Let 〈m, q(x)〉 be a LFSR over GF(2n). Let s(t) = [am−1+t, am−2+t, · · · , at]
be the state of the LFSR at time t, with ai ∈ GF(2n) that can be represented as the vector
[ai,n−1, . . . , ai,1, ai,0] with ai,j ∈ GF(2) ∀ 0 ≤ j ≤ n − 1. Then, Πk is defined as the projec-
tion over the k−th component of an element. Hence, Πk(ai) = ai,k and Πk(s(t)) = s(t)k =
[am−1+t,k, am−2+t,k, · · · , at,k] .

This definition allows us to represent the decimated sequences Πk(A) of a sequence A =
(a0, a1, a2, · · · ) as:

Πk(A) = (Πk(a0), Πk(a1), Πk(a2), · · · ) (6)

Theorem 2. Let 〈m, q(x)〉 be an LFSR over GF(2n) and let 〈rk, fk(x)〉 be the set of all its decimated
sequences ∀k ∈ {1, 2, · · · , n} then, q(x) is primitive over GF(2n) if and only if ∀k ∈ {1, 2, · · · , n}
fk is primitive over GF(2). If these conditions hold, f j(x) = fk(x) = h(x) ∀j, k ∈ {1, 2, · · · , n}
and m | rk

Therefore, if we have an LFSR 〈m, q(x)〉 over GF(2n) where q(x) is primitive, then we
can consider that we have n’s m−sequences over GF(2).

In other words, this equivalent model represents the interleaving process that gener-
ates the sequence in GF(2n); that is, the sequence generated by the LFSR in GF(2n) can be
expressed as an interleaved sequence, in the sense describe by Gong in [27], composed by
n component sequences, corresponding with the decimated sequences. More precisely, it
is a primitive interleaved sequence as all the component sequences are generated by the
same primitive polynomial in GF(2).

On the other hand, pseudorandom sequences must be difficult to reproduce. Linear
complexity (or linear span) of a sequence is defined as the degree of the minimal poly-
nomial that generates it, or equivalently the length of the shortest LFSR that generates it.
Consequently, the linear complexity of a sequence generated by a primitive LFSR is the
length of that LFSR. Hence, considering the sequence produced by an LFSR of m cells
in GF(2n) as an interleaved sequence, its linear complexity LCext is n times the linear
complexity LCbin of its primitive components; that is,

LCext = n · LCbin = m · n2 (7)

3.2. The Proposed Generator

Taking in mind that one of the potential applications of a Gaussian PRNG based in
LFSR could be a QKD scheme, it is important to note the following requirements:

• The PRNG should allow a discrete set of values to be generated large enough to
approximate the continuous probability distribution.
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• The set of values generated must have a Gaussian probability distribution.
• The security of the system must allow the generation of a set of values with a suffi-

ciently large cardinal.
• The generation of obtained values should be done as fast as possible and within the

lowest implementation cost. In addition, for the system to be effective, the possibility
of a hardware implementation must be considered.

• The system must allow the generation of the pseudo-random values with Gaussian
distribution to be different for each of its different executions.

In order to fulfil all the requirements, we propose a PRNG based on an LFSR in
GF(2n). The PRNG is composed by two units: the control unit and the processing unit
(see Figure 3).The control unit consists in an LFSR with m cells, defined by a primitive
polynomial q(x) over GF(2n). This unit is responsible for the generation of the basic
m−sequence from which all the sequences with uniform distribution are obtained for
the subsequent application of CLT. As it is described in the previous sections, i f q(x) is
primitive the LFSR generates an m−sequence, i.e., a sequence of maximal period 2n·m − 1.

Figure 3. Gaussian number generator proposed.

The processing unit has been design with a two-fold objective. On the one hand, like
many other cryptosystems, it applies a nonlinear filtering to the sequence produced by
the LFSR in the control unit to increase the difficulty that an eavesdropper reproduces the
whole sequence. On the other hand, this unit implements the operations that transform
the statistical distribution from uniform to Gaussian, i.e., implements the CLT. To do that,
the operator Πk is applied on each LFSR state, thus producing n strings of m bits that
corresponds with segments of the n binary sequences in the equivalent model described in
Section 3.1. Hence, applying the CLT, the pseudorandom number B is obtained by means
of the integer sum of those n bitstrings as:

B = D(st
1) + D(st

2) + · · ·+ D(st
n) (8)

where D is the function that maps an m−bit vector x = (x0, x1, · · · , xn−1) into a decimal
value,

D(x) =
n−1

∑
i=1

2i · xi (9)

The period, range and accuracy of the proposed PRNG can be configured using two
main parameters: m and n. The sequence of pseudorandom numbers has a period of
2mn − 1 because the feedback polynomial in the LFSR is a degree m primitive polynomial
in GF(2n). The range of the numbers is mainly determined by m since each state of the
LFSR contains n · m bits that split in n strings of m bits later summed to produce the
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pseudorandom number. The parameter n increases slightly, until m + log2(n), the number
of bits of the generated numbers due to the carry of the integer sum. Thus, for m = 5 and
n = 8, the PRNG generates values with a range of 5 + 3 = 8 bits.

Finally, when the CLT is applied to obtain a Gaussian distribution, its accuracy is
related to the numbers of uniform distributed numbers that are summed. In this case,
each pseudorandom number is obtained summing n values. Hence, generating 16−bit
pseudorandom numbers requires the utilization of an LFSR with 16 cells. If the LFSR
operates in GF(24), the PRNG will present a period of 24·16 − 1 = 264 − 1, obtained from
the addition of 4 uniformly distributed sequences. The accuracy may increase using
8 values instead of 4. In that case, the LFSR would work in GF(28) what would also
increase the period to 216·8 − 1 = 2128 − 1.

Regarding the speed of generation, although, generally, the use of LFSRs in GF(2n) is
motivated by the speed increase that is achieved by generating n bits instead of 1 in each
iteration, in this case, the use of the LFSR in GF(2n) pursues a second objective: to take
advantage of the implicit relationship with n different binary sequences. This makes it easy
to apply the CLT by using a single LFSR that is equivalent to n binary LFSRs. Therefore,
the final rate of generating numbers with Gaussian distribution is the same as the rate
at which a binary LFSR generates a bit. However, taking into account that the generated
numbers are m bits long, the generation speed in bits per second is m times higher.

4. Statistical Analysis

In this section, the distribution of the numbers generated by the proposed PRNG is
analyzed. Several normality tests have been applied to identify the configurations that
generates numbers with Gaussian distribution.

4.1. Distribution Fit Test

Goodness-of-fit tests are used to evaluate how well a proposed model fits or predicts
a particular data set. Usually, test statistics compute deviations between the observed
data and predictions from the model. The value of a test statistic is said to be statistically
significant if it is found to be within the rejection area of the distribution of the test statistic
under the assumption that the model is true. The rejection area is often the upper its
significance level α of 5% or 10% of the distribution frequencies. In our work we have set
this acceptance minimum level to 10%. Therefore a distribution fit test performs a goodness
of fit hypothesis test with null hypothesis H0 that data was drawn from a population
with a specific distribution of values, in this case the Normal distribution, and alternative
hypothesis that it was not.

Usually, a statistical hypothesis test returns a value called p or the p-value. This value
is used to reject or fail to reject the null hypothesis. This is done by comparing the p-value
to a threshold value chosen beforehand called the significance level α. When the p-value is
less than α, the default hypothesis can be rejected. In the same way, the confidence level of
the test is 1− α. If we set the significance level to 5% and the p-value is greater than 95%,
we would conclude that the null hypothesis affirming that the data is distributed according
to the Normal Distribution would not be rejected at the 5 percent significance level. In the
present context, the higher the p-value, the better the data fits the normal distribution.

According to the CLT [21], if we consider {X1, . . . , Xn} a random sample of size n that
is, a sequence of independent and identically distributed random variables drawn from
a distribution of expected value given by µ and finite variance given by σ2. Suppose we
are interested in the sample average Sn = X1+···+Xn

n of these random variables. By the law
of large numbers, the sample averages converge in probability and almost surely to the
expected value µ as n −→ ∞. The classical central limit theorem describes the size and
the distributional form of the stochastic fluctuations around the deterministic number µ
during this convergence. More precisely, it states that as n gets larger, the distribution
of the difference between the sample average Sn and its limit µ, when multiplied by the
factor

√
n (that is

√
n(Sn − µ) ), approximates the normal distribution with mean 0 and
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variance σ2. For large n, the distribution of sn is close to the normal distribution with mean
µ and variance σ2/n. The usefulness of the theorem is that the distribution of

√
n(Sn − µ)

approaches normality regardless of the shape of the distribution of the individual Xi.
There exist different methods to distinguish whether or not the range of values in a

distribution follows a Normal distribution. Due to the large number of values that we have
obtained in all our tests, we have decided to use the Chi Square Test that will be described
in the next Section 4.1.1.

4.1.1. Chi Square Test

The chi-square test [22,28] is used to test if a sample of data came from a population
with a specific distribution. In this case we shall focus on this test to check if the distribution
of numbers fits the normal distribution.

The χ2 goodness-of-fit test examines the discrepancy between observed values and
the values expected under some particular distribution of a random variable A.

The null hypothesis H0: The random variable A follows the normal distribution.
The alternative hypothesis H1: The random variable A does not follow the normal dis-

tribution.
Let a1, a2, · · · , am be the observed values of a variable A. We shall follow:

• Categorize the observations into k categories.
• Calculate the frequencies fi where k = {1, 2, · · · , n} and fi is the observed frequency

of the category i.
• Let pi be the probability, that under null hypothesis, the random variable A belongs

to the category i. Calculate the expected frequencies Ei = npi of the observations in
category i.

• Now, under the null hypothesis, the random variables f1, f2, · · · , fk follow multino-
mial distribution with parameters n, p1, p2, · · · , pk.

• We shall continue working out the test statistic

χ2
g =

k

∑
i=1

( fi − Ei)
2

Ei
(10)

• If n is large, then under the null hypothesis, the test statistic χ2
g approximately follows

χ2
g(k− 1− e) where e is the number of estimated parameters.

• The expected value of the test statistic, under the null hypothesis, is k− 1− e.
• Large and small values of the test statistic (compared to the expected value) suggest

that the null hypothesis H0 does not hold.
• If the p-value is small enough, the null hypothesis H0 is rejected.

4.1.2. Measures of Central Tendency, Dispersion, Kurtosis and Skewness

To check if these measures make the values fit in a feacient way with the data of a
Gaussian distribution, we have normalized the results applying the elementary transfor-
mation

Z =
X− µ

σ
(11)

From here, we have determined the measures of central tendency of the variable,
the measures of dispersion and the measures of skewness and kurtosis. The first thing
that we have should verify is that if the values of the degree of the feedback polynomial
are increased and the cardinal of the field is increased, the obtained values fit better to
the normal distribution, obtaining in each case values closer to standard values of the
normal distribution.

If the numerical data have been normalized, in the sense that we have applied the
typification (11), then we can set the various control parameters to verify whether or not
the data follow a normal distribution.

The expected values for the normal distribution are as follows:
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1. Quartiles Q1 and Q3 to be Q1 = −0.67448, Q3 = 0.67448
2. About 95% of the observations are within 2 times the standard deviation of the mean.

95% of the values will be within 1.96 times the standard deviation from the mean
(between −1.96 and 1.96). Approximately 68% of the observations are within one
standard deviation of the mean (−1 to +1), and around 99.7% of the observations
would be within three standard deviations of the mean (−3 to 3).

3. The standard deviation σ = 1 and the mean µ = 0.
4. The skewness for a normal distribution is zero, and any symmetric data should

have a skewness near zero. Negative values for the skewness indicate data that are
skewed left and positive values for the skewness indicate data that are skewed right.
By skewed left, we mean that the left tail is long relative to the right tail. Similarly,
skewed right means that the right tail is long relative to the left tail. If the data are
multi-modal, then this may affect the sign of the skewness.

5. The kurtosis for a standard normal distribution is 3.

4.2. Results

In this section we will go on to show the results that have been obtained for the
generation of numbers with a Gaussian distribution.

To illustrate the results obtained in the generation of numbers with a Gaussian distri-
bution, the following polynomials {qi}i∈N have been taken into account for the generation
of the base Fields and the following polynomials as polynomials of connection polynomials
{pj}j∈N.

To generate all the extended fields, different primitive polynomials have been used.
The degrees of these polynomials have ranged from 4 to 16. The list of primitive polynomi-
als that have been used are represented in Table 3.

Table 3. List of primitive polynomial used for the extended field generation.

Degree (qi) Polynomial qi(x)

4 q4 = x4 + x + 1
5 q5 = x5 + x2 + 1
6 q6 = x6 + x + 1
7 q7 = x7 + x + 1
8 q8 = x8 + x4 + x3 + x2 + 1
16 q16 = x16 + x12 + x3 + x1 + 1

We will continue describing the primitive polynomials that we have used as the
connection polynomial for each of extended field. Note that due to the great length of each
of the terms of each polynomial, the conversion to hex has been carried out.

From now on we will denote κi j to be the LFSR
〈

j, pj
〉

so j ∈ {4, 5, 6, 7, 8, 16} rep-
resents the degree of the primtive polynomial over the extended Field GF(2i). There-
fore, according to the Table 4, the LFSR κ45(x) will be the LFSR generated by p(x) =
{{1, 0, 0, 0}, {0, 1, 0, 1}, {0, 0, 1, 1}, {1, 1, 0, 1}, {1, 0, 0, 1}, {0, 0, 0, 1}} over GF(24).

First, we will determine the arithmetic mean, the standard deviation and the quartiles
of the obtained numerical values. According to the Table 5, it can be seen that all the
values obtained are within the range of expected values so that they fit to the values of a
Gaussian distribution.
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Table 4. List of primitive polynomial used for the extended field generated by each qi(x).

Polynomial qi(x) Degree (pi) pi(x)

q4 4 {a, 5, 9, 6}
q4 5 {6, 5, a , 8, 9}
q4 6 {6, 3, c, a , 9, b}
q4 7 {6, 3, c, a , 2, 9, b}
q4 8 {6, 3, c, a , d, 2, 9, b}
q5 4 {15, a , 11, 16}
q5 5 {15, a , 6, 17, 13}
q5 6 {15, a , 17, 6, 17, 13}
q5 7 {15, a , 17, 16, 6, 17, 13}
q5 8 {15, a , 17, 14, 16, 6, 17, 13}
q6 4 {2d, 25, 31, 36}
q6 5 {2d, 25, 31, 36, 25}
q6 6 {2d, 23, 25, 31, 36, 25}
q6 7 {2d, 23, 25, 31, 14, 36, 25}
q6 8 {2d, 23, 25, 31, 14, 36, 26, 25}
q7 4 {45, 65, 55, 76}
q7 5 {45, 65, 55, 65, 76}
q7 6 {45, 65, 55, 55, 65, 57}
q7 7 {45, 65, 55, 55, 61, 65, 57}
q7 8 {45, 65, 63, 66, 55, 61, 65, 57}
q8 4 {95, e5, 55, ed}
q8 5 {aa, 55, 93, 65, 99}
q8 6 {aa, 55, 93, b1, 65, 99}
q8 7 {aa, 55, 74, 93, b1, 65, 99}
q8 8 {80, aa, 0, 0, 0, 1}
q16 24 {1002d, 10039, 1003 f , 10053, 100bd, 100d7, 1012 f , 1013d , 1014 f ,

1015d, 10197, 101a1, 101ad, 101b f , 101c7, 10215, 10219, 10225,
1022 f , 1025d, 66157, 10285, 10291, 102a1}

In the same way we have generated all the quantiles and we have compared them
with the theoretical values of those of the Gaussian distribution. In each of the cases it can
be verified that the values fit the Gaussian model. In the Figure 4 we plot the obtained
quantiles list against the quantiles list of a normal distribution for some cases.

Figure 4. Quantiles plot against normal distribution for κ44, κ58 and κ74 respectively.

In order to better support the results presented, we have represented the cumulative
distribution function (CDF) and the results obtained and compared them with those
expected in the normal distribution. In the Figure 5 we confront the CDFs of the normal
distribution against those obtained resutls.

In this regard, it should also be noticed that the histograms of the results obtained
have been analyzed and these have been compared within the corresponding histograms
of the normal distribution. Continuity correction has been applied since a discrete set
of values are being used and we have also been able to verify that the data fit a normal
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distribution of values. In the Figure 6 we can see how the histograms tend to the normal
ditribution CDFs curve.

Table 5. Mean and standard deviation for the different polynomial over extended fields.

LFSR generation Mean µ St. Deviation σ {Q1, Q2, Q3}
κ44 1.28113 · 10−17 1. {−0.652405,−0.000815332, 0.650774}
κ45 7.92835 · 10−18 1. {−0.652215,−0.000012122, 0.650214}
κ46 7.21716 · 10−18 1. {−0.6754,−0.0100635, 0.699629}
κ47 4.02607 · 10−18 1. {−0.699102, 0.0137925, 0.696134}
κ48 2.62951 · 10−17 1. {−0.696669,−0.000285917, 0.696097}
κ54 −2.60767 · 10−17 1. {−0.660901,−0.00813484, 0.644631}
κ55 −3.87947 · 10−17 1. {−0.671761,−0.0087515, 0.676358}
κ56 4.76993 · 10−17 1. {−0.671761,−0.0087515, 0.676358}
κ57 1.74443 · 10−17 1. {−0.680723, 0.00183247, 0.684388}
κ58 3.47529 · 10−17 1. {−0.687545,−0.0026389, 0.691847}
κ64 3.90608 · 10−17 1. {−0.659401, 0.000866493, 0.661134}
κ65 3.20183 · 10−17 1. {−0.711603,−0.026917, 0.706675}
κ66 2.84824 · 10−17 1. {−0.685646,−0.000279343, 0.685087}
κ67 7.32401 · 10−17 1. {−0.688653, 0.0113709, 0.680959}
κ68 2.24457 · 10−17 1. −0.67203,−0.00582178, 0.68299
κ74 1.26656 · 10−17 1. {−0.65119, 0.000928774, 0.653048}
κ75 8.49908 · 10−18 1. {−0.699352,−0.0176537, 0.712738}
κ76 8.49908 · 10−18 1. {−0.673098,−0.00289631, 0.667306}
κ77 1.39497 · 10−18 1. {−0.694148, 0.00888319, 0.701576}
κ78 −4.53049 · 10−18 1. {−0.693528, 0.0000646841, 0.703291}
κ84 5.43506 · 10−17 1. {−0.649619, 0.0029409, 0.655501}
κ85 3.3536 · 10−18 1. {−0.698031,−0.0244844, 0.697172}
κ86 1.42056 · 10−17 1. {−0.693034,−0.00748555, 0.700178}
κ87 −3.13666 · 10−18 1. {−0.685563,−0.00883622, 0.69865}
κ88 −3.93139 · 10−19 1. {−0.687156,−0.0022108, 0.682735}

κ1624 1.90913 · 10−17 1. {−0.690607,−0.005302, 0.672002}

Figure 5. Plots of the cumulative distribution function (CDF) of list against the CDF of a normal distribution for κ67, κ86
and κ88 respectively.

Figure 6. Plots of the histogrmas of the obtained results against their corresponding in a normal distribution for κ57, κ68
and κ88 respectively.
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Although different normality tests were originally used to check if the data fit the
normal distribution, as we can see in Table 6, due to the large number of data, we have
opted for the method of the Chi-Square Test, which allows us to check whether or not a
model or theory follows an approximately normal distribution.

Table 6. Distribution fit tests for κ44.

Distribution Fit Tests Statistic p-Value

Anderson–Darling 0.16486 0.956321
Cramér–von Mises 0.0248859 0.924378
Jarque–Bera ALM 0.214813 0.894745
Mardia Combined 0.214813 0.894745
Mardia Kurtosis 0.00564325 0.995497
Mardia Skewness 0.205783 0.650093
Pearson χ2 13.4135 0.966447
Shapiro–Wilk 0.997609 0.907292

These described tests have been used to check whether the statistical variables are
distributed according to a Normal distribution. A minimum level of confidence has been set
to 90% therefore the significance level is set to 10% and according to that level of confidence
the sequence obtained has been screened. That is, given a set of values, the Normality
tests have been applied to verify whether the data followed a normal distribution or not.
The output of these mentioned tests is a p-test. If the p-test value obtained is greater than
90%, the sequence obtained is considered valid and otherwise has been discarded.

The proposed generator has been tested for all possible polynomials. All primitive
polynomial combinations have been tested using the Mathematica environment. The tests
have been performed using Chi sqaure, the Anderson–Darling and Shapiro methods.
The results are exemplified in Table 6.

The proposed PRNG [24] has also been compared with the Box–Muller algorithm
that was designed as a pseudo-random number sampling method for generating pairs
of independent, standard, normally distributed (zero expectation, unit variance) random
numbers, given a source of uniformly distributed random numbers. If U1 and U2 are
independent samples chosen from the uniform distribution on the unit interval (0, 1), then
the variables defined as:

Z0 = Rcos(Θ) =
√
−2ln(U1) · cos(2πU2) (12)

Z1 = Rsin(Θ) =
√
−2ln(U1) · sin(2πU2) (13)

are independent random variables with a standard normal distribution.
After having executed the Box–Muller algorithm we have found the following disad-

vantages.

• According to the results presented in Table 7, we can see that the values of the p-test
are better our LFSR model, than in the Box–Muller algorithm.

• The computational cost required to implement the algorithm is much higher.

Table 7. Evolution of the p-test values obtained, after applying the Chi Square goodness of fit test
method to a set of values, for Box–Muller and for our LFSR model.

LFSR Model Box–Muller Pol. Degree Pol. Degree Ext Field Number of Values

0.951123 0.87231 4 4 65,535
0.90900 0.761121 5 4 1,048,575
0.90101 0.755181 6 5 1,073,741,823
0.90012 0.699876 6 6 68,719,476,735
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Another way to improve the accuracy of the Gaussian distribution is to modify the
way the m-bit strings are generated. If all the states of the LFSR are used, each cell is used in
the generation of n consecutive pseudo-random numbers. Although the fit tests reveal very
good results (see Section 4.2), decreasing or removing the amount of numbers affected by
the same cell would help to improve the accuracy. Therefore, we propose, as an alternative,
to use one out of every m states. More formally, we propose to decimate by m the LFSR
output. In this way, the period would be (2mn − 1)/gcd((2mn − 1), m) giving rise to select
m, n such that gcd((2mn − 1), m) = 1 in order to reach the same period 2mn − 1.

In any case, it is important to note that the period is much greater than the range,
i.e., 2mn − 1� 2m+log2(n), giving rise to a probability about 0.005 of generating the same
number in 10, 000 values generated.

5. Conclusions

A new Gaussian PRNG has been proposed in this paper. It is based on a unique LFSR,
using the same approach than the previous proposals [8–10], in order to generate a certain
number of sequences of uniformly distributed numbers, needed to apply the CLT. Unlike
the previous proposals, no explicit permutations or rotations have been applied to the
successive LFSR states. Instead, the PRNG is operated in GF(2n) to take advantage of the
relationship between the states and sequences generated in GF(2n) and GF(2), that allows
to represent the m−sequences in GF(2n) as primitive interleaved sequences composed by
m−sequences in GF(2).

The PRNG, presented in Section 3.2, allows to configure it by means of two main
parameters, m (the number of cells in the LFSR) and n (the dimension of GF(2n)), deter-
mining the period as 2m·n − 1, and the range 2m+log2(n). The statistical analysis reveals an
excellent behaviour when the fit tests are applied.

Finally, this PRNG is a way to keep using LFSR in cryptographic applications where a
uniform distribution is not required. Furthermore, as in other applications, the use of LFSRs
in GF(2n) is motivated by the speed increase that is achieved by generating n bits instead
of 1 in each iteration; in this case, the use of the LFSR in GF(2n) pursues a second objective:
to take advantage of the implicit relationship with n different binary sequences looking
for an easier implementation of the CLT. Therefore, the final rate of generating numbers
with Gaussian distribution is the same as the rate at which a binary LFSR generates a
bit. However, taking into account that the generated numbers are m + log2(n) bits long,
the generation speed in bits per second is m + log2(n) times higher.
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